fact
stringlengths 8
1.54k
| type
stringclasses 19
values | library
stringclasses 8
values | imports
listlengths 1
10
| filename
stringclasses 98
values | symbolic_name
stringlengths 1
42
| docstring
stringclasses 1
value |
|---|---|---|---|---|---|---|
prodrV(I : eqType) (r : seq I) (P : pred I) (E : I -> R) :
(forall i, P i -> E i \is a GRing.unit) ->
\prod_(i <- r | P i) (E i)^-1 = (\prod_(i <- r | P i) E i)^-1.
Proof.
by move=> /rev_prodrV->; rewrite rev_prodr (perm_big r)// perm_rev.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
prodrV
| |
scaler_injl: {in unit, @right_injective R A A *:%R}.
Proof.
move=> k Uk x1 x2 Hx1x2.
by rewrite -[x1]scale1r -(mulVr Uk) -scalerA Hx1x2 scalerA mulVr // scale1r.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
scaler_injl
| |
scaler_unitk x : k \in unit -> (k *: x \in unit) = (x \in unit).
Proof.
move=> Uk; apply/idP/idP=> [Ukx | Ux]; apply/unitrP; last first.
exists (k^-1 *: x^-1).
by rewrite -!scalerAl -!scalerAr !scalerA !mulVr // !mulrV // scale1r.
exists (k *: (k *: x)^-1); split.
apply: (mulrI Ukx).
by rewrite mulr1 mulrA -scalerAr mulrV // -scalerAl mul1r.
apply: (mulIr Ukx).
by rewrite mul1r -mulrA -scalerAl mulVr // -scalerAr mulr1.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
scaler_unit
| |
invrZk x : k \in unit -> x \in unit -> (k *: x)^-1 = k^-1 *: x^-1.
Proof.
move=> Uk Ux; have Ukx: (k *: x \in unit) by rewrite scaler_unit.
apply: (mulIr Ukx).
by rewrite mulVr // -scalerAl -scalerAr scalerA !mulVr // scale1r.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
invrZ
| |
divalg_closed:= [/\ 1 \in S, linear_closed S & divr_2closed S].
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
divalg_closed
| |
divalg_closedBdiv: divalg_closed -> divring_closed S.
Proof. by case=> S1 /linear_closedB. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
divalg_closedBdiv
| |
divalg_closedZ: divalg_closed -> subalg_closed S.
Proof. by case=> S1 Slin Sdiv; split=> //; have [] := @divr_closedM A S. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
divalg_closedZ
| |
addr_closed:= nmod_closed.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
addr_closed
| |
oppr_closed:= oppr_closed.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
oppr_closed
| |
zmod_closed:= zmod_closed.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
zmod_closed
| |
mulr_closed:= mulr_closed.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
mulr_closed
| |
semiring_closed:= semiring_closed.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
semiring_closed
| |
smulr_closed:= smulr_closed.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
smulr_closed
| |
subring_closed:= subring_closed.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
subring_closed
| |
scaler_closed:= scaler_closed.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
scaler_closed
| |
subsemimod_closed:= subsemimod_closed.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
subsemimod_closed
| |
linear_closed:= linear_closed.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
linear_closed
| |
submod_closed:= submod_closed.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
submod_closed
| |
subalg_closed:= subalg_closed.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
subalg_closed
| |
invr_closed:= invr_closed.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
invr_closed
| |
divr_2closed:= divr_2closed.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
divr_2closed
| |
divr_closed:= divr_closed.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
divr_closed
| |
sdivr_closed:= sdivr_closed.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
sdivr_closed
| |
divring_closed:= divring_closed.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
divring_closed
| |
divalg_closed:= divalg_closed.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
divalg_closed
| |
zmod_closedD: zmod_closed >-> nmod_closed.
|
Coercion
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
zmod_closedD
| |
zmod_closedN: zmod_closed >-> oppr_closed.
|
Coercion
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
zmod_closedN
| |
semiring_closedD: semiring_closed >-> addr_closed.
|
Coercion
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
semiring_closedD
| |
semiring_closedM: semiring_closed >-> mulr_closed.
|
Coercion
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
semiring_closedM
| |
smulr_closedM: smulr_closed >-> mulr_closed.
|
Coercion
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
smulr_closedM
| |
smulr_closedN: smulr_closed >-> oppr_closed.
|
Coercion
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
smulr_closedN
| |
subring_closedB: subring_closed >-> zmod_closed.
|
Coercion
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
subring_closedB
| |
subring_closedM: subring_closed >-> smulr_closed.
|
Coercion
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
subring_closedM
| |
subring_closed_semi: subring_closed >-> semiring_closed.
|
Coercion
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
subring_closed_semi
| |
subsemimod_closedD: subsemimod_closed >-> addr_closed.
|
Coercion
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
subsemimod_closedD
| |
subsemimod_closedZ: subsemimod_closed >-> scaler_closed.
|
Coercion
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
subsemimod_closedZ
| |
linear_closedB: linear_closed >-> subr_2closed.
|
Coercion
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
linear_closedB
| |
submod_closedB: submod_closed >-> zmod_closed.
|
Coercion
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
submod_closedB
| |
submod_closed_semi: submod_closed >-> subsemimod_closed.
|
Coercion
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
submod_closed_semi
| |
subsemialg_closedZ: subsemialg_closed >-> subsemimod_closed.
|
Coercion
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
subsemialg_closedZ
| |
subsemialg_closedM: subsemialg_closed >-> semiring_closed.
|
Coercion
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
subsemialg_closedM
| |
subalg_closedZ: subalg_closed >-> submod_closed.
|
Coercion
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
subalg_closedZ
| |
subalg_closedBM: subalg_closed >-> subring_closed.
|
Coercion
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
subalg_closedBM
| |
subalg_closed_semi: subalg_closed >-> subsemialg_closed.
|
Coercion
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
subalg_closed_semi
| |
divr_closedV: divr_closed >-> invr_closed.
|
Coercion
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
divr_closedV
| |
divr_closedM: divr_closed >-> mulr_closed.
|
Coercion
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
divr_closedM
| |
sdivr_closed_div: sdivr_closed >-> divr_closed.
|
Coercion
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
sdivr_closed_div
| |
sdivr_closedM: sdivr_closed >-> smulr_closed.
|
Coercion
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
sdivr_closedM
| |
divring_closedBM: divring_closed >-> subring_closed.
|
Coercion
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
divring_closedBM
| |
divring_closed_div: divring_closed >-> sdivr_closed.
|
Coercion
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
divring_closed_div
| |
divalg_closedBdiv: divalg_closed >-> divring_closed.
|
Coercion
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
divalg_closedBdiv
| |
divalg_closedZ: divalg_closed >-> subalg_closed.
|
Coercion
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
divalg_closedZ
| |
term: Type :=
| Var of nat
| Const of R
| NatConst of nat
| Add of term & term
| Opp of term
| NatMul of term & nat
| Mul of term & term
| Inv of term
| Exp of term & nat.
|
Inductive
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
term
| |
formula: Type :=
| Bool of bool
| Equal of term & term
| Unit of term
| And of formula & formula
| Or of formula & formula
| Implies of formula & formula
| Not of formula
| Exists of nat & formula
| Forall of nat & formula.
|
Inductive
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
formula
| |
True:= (Bool true).
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
True
| |
False:= (Bool false).
Local Notation "''X_' i" := (Var _ i) : term_scope.
Local Notation "n %:R" := (NatConst _ n) : term_scope.
Local Notation "x %:T" := (Const x) : term_scope.
Local Notation "0" := 0%:R%T : term_scope.
Local Notation "1" := 1%:R%T : term_scope.
Local Infix "+" := Add : term_scope.
Local Notation "- t" := (Opp t) : term_scope.
Local Notation "t - u" := (Add t (- u)) : term_scope.
Local Infix "*" := Mul : term_scope.
Local Infix "*+" := NatMul : term_scope.
Local Notation "t ^-1" := (Inv t) : term_scope.
Local Notation "t / u" := (Mul t u^-1) : term_scope.
Local Infix "^+" := Exp : term_scope.
Local Infix "==" := Equal : term_scope.
Local Infix "/\" := And : term_scope.
Local Infix "\/" := Or : term_scope.
Local Infix "==>" := Implies : term_scope.
Local Notation "~ f" := (Not f) : term_scope.
Local Notation "x != y" := (Not (x == y)) : term_scope.
Local Notation "''exists' ''X_' i , f" := (Exists i f) : term_scope.
Local Notation "''forall' ''X_' i , f" := (Forall i f) : term_scope.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
False
| |
tsubst(t : term R) (s : nat * term R) :=
match t with
| 'X_i => if i == s.1 then s.2 else t
| _%:T | _%:R => t
| t1 + t2 => tsubst t1 s + tsubst t2 s
| - t1 => - tsubst t1 s
| t1 *+ n => tsubst t1 s *+ n
| t1 * t2 => tsubst t1 s * tsubst t2 s
| t1^-1 => (tsubst t1 s)^-1
| t1 ^+ n => tsubst t1 s ^+ n
end%T.
|
Fixpoint
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
tsubst
| |
fsubst(f : formula R) (s : nat * term R) :=
match f with
| Bool _ => f
| t1 == t2 => tsubst t1 s == tsubst t2 s
| Unit t1 => Unit (tsubst t1 s)
| f1 /\ f2 => fsubst f1 s /\ fsubst f2 s
| f1 \/ f2 => fsubst f1 s \/ fsubst f2 s
| f1 ==> f2 => fsubst f1 s ==> fsubst f2 s
| ~ f1 => ~ fsubst f1 s
| ('exists 'X_i, f1) => 'exists 'X_i, if i == s.1 then f1 else fsubst f1 s
| ('forall 'X_i, f1) => 'forall 'X_i, if i == s.1 then f1 else fsubst f1 s
end%T.
|
Fixpoint
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
fsubst
| |
eval(e : seq R) (t : term R) {struct t} : R :=
match t with
| ('X_i)%T => e`_i
| (x%:T)%T => x
| (n%:R)%T => n%:R
| (t1 + t2)%T => eval e t1 + eval e t2
| (- t1)%T => - eval e t1
| (t1 *+ n)%T => eval e t1 *+ n
| (t1 * t2)%T => eval e t1 * eval e t2
| t1^-1%T => (eval e t1)^-1
| (t1 ^+ n)%T => eval e t1 ^+ n
end.
|
Fixpoint
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
eval
| |
same_env(e e' : seq R) := nth 0 e =1 nth 0 e'.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
same_env
| |
eq_evale e' t : same_env e e' -> eval e t = eval e' t.
Proof. by move=> eq_e; elim: t => //= t1 -> // t2 ->. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
eq_eval
| |
eval_tsubste t s :
eval e (tsubst t s) = eval (set_nth 0 e s.1 (eval e s.2)) t.
Proof.
case: s => i u; elim: t => //=; do 2?[move=> ? -> //] => j.
by rewrite nth_set_nth /=; case: (_ == _).
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
eval_tsubst
| |
holds(e : seq R) (f : formula R) {struct f} : Prop :=
match f with
| Bool b => b
| (t1 == t2)%T => eval e t1 = eval e t2
| Unit t1 => eval e t1 \in unit
| (f1 /\ f2)%T => holds e f1 /\ holds e f2
| (f1 \/ f2)%T => holds e f1 \/ holds e f2
| (f1 ==> f2)%T => holds e f1 -> holds e f2
| (~ f1)%T => ~ holds e f1
| ('exists 'X_i, f1)%T => exists x, holds (set_nth 0 e i x) f1
| ('forall 'X_i, f1)%T => forall x, holds (set_nth 0 e i x) f1
end.
|
Fixpoint
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
holds
| |
same_env_syme e' : same_env e e' -> same_env e' e.
Proof. exact: fsym. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
same_env_sym
| |
eq_holdse e' f : same_env e e' -> holds e f -> holds e' f.
Proof.
pose sv := set_nth (0 : R).
have eq_i i v e1 e2: same_env e1 e2 -> same_env (sv e1 i v) (sv e2 i v).
by move=> eq_e j; rewrite !nth_set_nth /= eq_e.
elim: f e e' => //=.
- by move=> t1 t2 e e' eq_e; rewrite !(eq_eval _ eq_e).
- by move=> t e e' eq_e; rewrite (eq_eval _ eq_e).
- by move=> f1 IH1 f2 IH2 e e' eq_e; move/IH2: (eq_e); move/IH1: eq_e; tauto.
- by move=> f1 IH1 f2 IH2 e e' eq_e; move/IH2: (eq_e); move/IH1: eq_e; tauto.
- by move=> f1 IH1 f2 IH2 e e' eq_e f12; move/IH1: (same_env_sym eq_e); eauto.
- by move=> f1 IH1 e e'; move/same_env_sym; move/IH1; tauto.
- by move=> i f1 IH1 e e'; move/(eq_i i)=> eq_e [x f_ex]; exists x; eauto.
by move=> i f1 IH1 e e'; move/(eq_i i); eauto.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
eq_holds
| |
holds_fsubste f i v :
holds e (fsubst f (i, v%:T)%T) <-> holds (set_nth 0 e i v) f.
Proof.
elim: f e => //=; do [
by move=> *; rewrite !eval_tsubst
| move=> f1 IHf1 f2 IHf2 e; move: (IHf1 e) (IHf2 e); tauto
| move=> f IHf e; move: (IHf e); tauto
| move=> j f IHf e].
- case eq_ji: (j == i); first rewrite (eqP eq_ji).
by split=> [] [x f_x]; exists x; rewrite set_set_nth eqxx in f_x *.
split=> [] [x f_x]; exists x; move: f_x; rewrite set_set_nth eq_sym eq_ji;
have:= IHf (set_nth 0 e j x); tauto.
case eq_ji: (j == i); first rewrite (eqP eq_ji).
by split=> [] f_ x; move: (f_ x); rewrite set_set_nth eqxx.
split=> [] f_ x; move: (IHf (set_nth 0 e j x)) (f_ x);
by rewrite set_set_nth 1?[i == j]eq_sym eq_ji; tauto.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
holds_fsubst
| |
rterm(t : term R) :=
match t with
| _^-1 => false
| t1 + t2 | t1 * t2 => rterm t1 && rterm t2
| - t1 | t1 *+ _ | t1 ^+ _ => rterm t1
| _ => true
end%T.
|
Fixpoint
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
rterm
| |
rformula(f : formula R) :=
match f with
| Bool _ => true
| t1 == t2 => rterm t1 && rterm t2
| Unit t1 => false
| f1 /\ f2 | f1 \/ f2 | f1 ==> f2 => rformula f1 && rformula f2
| ~ f1 | ('exists 'X__, f1) | ('forall 'X__, f1) => rformula f1
end%T.
|
Fixpoint
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
rformula
| |
ub_var(t : term R) :=
match t with
| 'X_i => i.+1
| t1 + t2 | t1 * t2 => maxn (ub_var t1) (ub_var t2)
| - t1 | t1 *+ _ | t1 ^+ _ | t1^-1 => ub_var t1
| _ => 0%N
end%T.
|
Fixpoint
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
ub_var
| |
to_rterm(t : term R) (r : seq (term R)) (n : nat) {struct t} :=
match t with
| t1^-1 =>
let: (t1', r1) := to_rterm t1 r n in
('X_(n + size r1), rcons r1 t1')
| t1 + t2 =>
let: (t1', r1) := to_rterm t1 r n in
let: (t2', r2) := to_rterm t2 r1 n in
(t1' + t2', r2)
| - t1 =>
let: (t1', r1) := to_rterm t1 r n in
(- t1', r1)
| t1 *+ m =>
let: (t1', r1) := to_rterm t1 r n in
(t1' *+ m, r1)
| t1 * t2 =>
let: (t1', r1) := to_rterm t1 r n in
let: (t2', r2) := to_rterm t2 r1 n in
(Mul t1' t2', r2)
| t1 ^+ m =>
let: (t1', r1) := to_rterm t1 r n in
(t1' ^+ m, r1)
| _ => (t, r)
end%T.
|
Fixpoint
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
to_rterm
| |
to_rterm_idt r n : rterm t -> to_rterm t r n = (t, r).
Proof.
elim: t r n => //.
- by move=> t1 IHt1 t2 IHt2 r n /= /andP[rt1 rt2]; rewrite {}IHt1 // IHt2.
- by move=> t IHt r n /= rt; rewrite {}IHt.
- by move=> t IHt r n m /= rt; rewrite {}IHt.
- by move=> t1 IHt1 t2 IHt2 r n /= /andP[rt1 rt2]; rewrite {}IHt1 // IHt2.
- by move=> t IHt r n m /= rt; rewrite {}IHt.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
to_rterm_id
| |
eq0_rformt1 :=
let m := ub_var t1 in
let: (t1', r1) := to_rterm t1 [::] m in
let fix loop r i := match r with
| [::] => t1' == 0
| t :: r' =>
let f := 'X_i * t == 1 /\ t * 'X_i == 1 in
'forall 'X_i, (f \/ 'X_i == t /\ ~ ('exists 'X_i, f)) ==> loop r' i.+1
end%T
in loop r1 m.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
eq0_rform
| |
to_rformf :=
match f with
| Bool b => f
| t1 == t2 => eq0_rform (t1 - t2)
| Unit t1 => eq0_rform (t1 * t1^-1 - 1)
| f1 /\ f2 => to_rform f1 /\ to_rform f2
| f1 \/ f2 => to_rform f1 \/ to_rform f2
| f1 ==> f2 => to_rform f1 ==> to_rform f2
| ~ f1 => ~ to_rform f1
| ('exists 'X_i, f1) => 'exists 'X_i, to_rform f1
| ('forall 'X_i, f1) => 'forall 'X_i, to_rform f1
end%T.
|
Fixpoint
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
to_rform
| |
to_rform_rformulaf : rformula (to_rform f).
Proof.
suffices eq0_ring t1: rformula (eq0_rform t1) by elim: f => //= => f1 ->.
rewrite /eq0_rform; move: (ub_var t1) => m; set tr := _ m.
suffices: all rterm (tr.1 :: tr.2).
case: tr => {}t1 r /= /andP[t1_r].
by elim: r m => [|t r IHr] m; rewrite /= ?andbT // => /andP[->]; apply: IHr.
have: all rterm [::] by [].
rewrite {}/tr; elim: t1 [::] => //=.
- move=> t1 IHt1 t2 IHt2 r.
move/IHt1; case: to_rterm => {r IHt1}t1 r /= /andP[t1_r].
move/IHt2; case: to_rterm => {r IHt2}t2 r /= /andP[t2_r].
by rewrite t1_r t2_r.
- by move=> t1 IHt1 r /IHt1; case: to_rterm.
- by move=> t1 IHt1 n r /IHt1; case: to_rterm.
- move=> t1 IHt1 t2 IHt2 r.
move/IHt1; case: to_rterm => {r IHt1}t1 r /= /andP[t1_r].
move/IHt2; case: to_rterm => {r IHt2}t2 r /= /andP[t2_r].
by rewrite t1_r t2_r.
- move=> t1 IHt1 r.
by move/IHt1; case: to_rterm => {r IHt1}t1 r /=; rewrite all_rcons.
- by move=> t1 IHt1 n r /IHt1; case: to_rterm.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
to_rform_rformula
| |
to_rformPe f : holds e (to_rform f) <-> holds e f.
Proof.
suffices{e f} equal0_equiv e t1 t2:
holds e (eq0_rform (t1 - t2)) <-> (eval e t1 == eval e t2).
- elim: f e => /=; try tauto.
+ move=> t1 t2 e.
by split; [move/equal0_equiv/eqP | move/eqP/equal0_equiv].
+ by move=> t1 e; rewrite unitrE; apply: equal0_equiv.
+ by move=> f1 IHf1 f2 IHf2 e; move: (IHf1 e) (IHf2 e); tauto.
+ by move=> f1 IHf1 f2 IHf2 e; move: (IHf1 e) (IHf2 e); tauto.
+ by move=> f1 IHf1 f2 IHf2 e; move: (IHf1 e) (IHf2 e); tauto.
+ by move=> f1 IHf1 e; move: (IHf1 e); tauto.
+ by move=> n f1 IHf1 e; split=> [] [x] /IHf1; exists x.
+ by move=> n f1 IHf1 e; split=> Hx x; apply/IHf1.
rewrite -(add0r (eval e t2)) -(can2_eq (subrK _) (addrK _)).
rewrite -/(eval e (t1 - t2)); move: (t1 - t2)%T => {t1 t2} t.
have sub_var_tsubst s t0: s.1 >= ub_var t0 -> tsubst t0 s = t0.
elim: t0 {t} => //=.
- by move=> n; case: ltngtP.
- by move=> t1 IHt1 t2 IHt2; rewrite geq_max => /andP[/IHt1-> /IHt2->].
- by move=> t1 IHt1 /IHt1->.
- by move=> t1 IHt1 n /IHt1->.
- by move=> t1 IHt1 t2 IHt2; rewrite geq_max => /andP[/IHt1-> /IHt2->].
- by move=> t1 IHt1 /IHt1->.
- by move=> t1 IHt1 n /IHt1->.
pose fix rsub t' m r : term R :=
if r is u :: r' then tsubst (rsub t' m.+1 r') (m, u^-1)%T else t'.
pose fix ub_sub m r : Prop :=
if r is u :: r' then ub_var u <= m /\ ub_sub m.+1 r' else true.
suffices{t} rsub_to_r t r0 m: m >= ub_var t -> ub_sub m r0 ->
let: (t', r) := to_rterm t r0 m in
[/\ take (si
...
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
to_rformP
| |
qf_form(f : formula R) :=
match f with
| Bool _ | _ == _ | Unit _ => true
| f1 /\ f2 | f1 \/ f2 | f1 ==> f2 => qf_form f1 && qf_form f2
| ~ f1 => qf_form f1
| _ => false
end%T.
|
Fixpoint
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
qf_form
| |
qf_evale := fix loop (f : formula R) : bool :=
match f with
| Bool b => b
| t1 == t2 => (eval e t1 == eval e t2)%bool
| Unit t1 => eval e t1 \in unit
| f1 /\ f2 => loop f1 && loop f2
| f1 \/ f2 => loop f1 || loop f2
| f1 ==> f2 => (loop f1 ==> loop f2)%bool
| ~ f1 => ~~ loop f1
|_ => false
end%T.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
qf_eval
| |
qf_evalPe f : qf_form f -> reflect (holds e f) (qf_eval e f).
Proof.
elim: f => //=; try by move=> *; apply: idP.
- by move=> t1 t2 _; apply: eqP.
- move=> f1 IHf1 f2 IHf2 /= /andP[/IHf1[] f1T]; last by right; case.
by case/IHf2; [left | right; case].
- move=> f1 IHf1 f2 IHf2 /= /andP[/IHf1[] f1F]; first by do 2 left.
by case/IHf2; [left; right | right; case].
- move=> f1 IHf1 f2 IHf2 /= /andP[/IHf1[] f1T]; last by left.
by case/IHf2; [left | right; move/(_ f1T)].
by move=> f1 IHf1 /IHf1[]; [right | left].
Qed.
Implicit Type bc : seq (term R) * seq (term R).
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
qf_evalP
| |
and_dnfbcs1 bcs2 :=
\big[cat/nil]_(bc1 <- bcs1)
map (fun bc2 => (bc1.1 ++ bc2.1, bc1.2 ++ bc2.2)) bcs2.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
and_dnf
| |
qf_to_dnf(f : formula R) (neg : bool) {struct f} :=
match f with
| Bool b => if b (+) neg then [:: ([::], [::])] else [::]
| t1 == t2 => [:: if neg then ([::], [:: t1 - t2]) else ([:: t1 - t2], [::])]
| f1 /\ f2 => (if neg then cat else and_dnf) [rec f1, neg] [rec f2, neg]
| f1 \/ f2 => (if neg then and_dnf else cat) [rec f1, neg] [rec f2, neg]
| f1 ==> f2 => (if neg then and_dnf else cat) [rec f1, ~~ neg] [rec f2, neg]
| ~ f1 => [rec f1, ~~ neg]
| _ => if neg then [:: ([::], [::])] else [::]
end%T where "[ 'rec' f , neg ]" := (qf_to_dnf f neg).
|
Fixpoint
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
qf_to_dnf
| |
dnf_to_form:=
let pos_lit t := And (t == 0) in let neg_lit t := And (t != 0) in
let cls bc := Or (foldr pos_lit True bc.1 /\ foldr neg_lit True bc.2) in
foldr cls False.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
dnf_to_form
| |
cat_dnfPe bcs1 bcs2 :
qf_eval e (dnf_to_form (bcs1 ++ bcs2))
= qf_eval e (dnf_to_form bcs1 \/ dnf_to_form bcs2).
Proof.
by elim: bcs1 => //= bc1 bcs1 IH1; rewrite -orbA; congr orb; rewrite IH1.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
cat_dnfP
| |
and_dnfPe bcs1 bcs2 :
qf_eval e (dnf_to_form (and_dnf bcs1 bcs2))
= qf_eval e (dnf_to_form bcs1 /\ dnf_to_form bcs2).
Proof.
elim: bcs1 => [|bc1 bcs1 IH1] /=; first by rewrite /and_dnf big_nil.
rewrite /and_dnf big_cons -/(and_dnf bcs1 bcs2) cat_dnfP /=.
rewrite {}IH1 /= andb_orl; congr orb.
elim: bcs2 bc1 {bcs1} => [|bc2 bcs2 IH] bc1 /=; first by rewrite andbF.
rewrite {}IH /= andb_orr; congr orb => {bcs2}.
suffices aux (l1 l2 : seq (term R)) g : let redg := foldr (And \o g) True in
qf_eval e (redg (l1 ++ l2)) = qf_eval e (redg l1 /\ redg l2)%T.
+ by rewrite 2!aux /= 2!andbA -andbA -andbCA andbA andbCA andbA.
by elim: l1 => [| t1 l1 IHl1] //=; rewrite -andbA IHl1.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
and_dnfP
| |
qf_to_dnfPe :
let qev f b := qf_eval e (dnf_to_form (qf_to_dnf f b)) in
forall f, qf_form f && rformula f -> qev f false = qf_eval e f.
Proof.
move=> qev; have qevT f: qev f true = ~~ qev f false.
rewrite {}/qev; elim: f => //=; do [by case | move=> f1 IH1 f2 IH2 | ].
- by move=> t1 t2; rewrite !andbT !orbF.
- by rewrite and_dnfP cat_dnfP negb_and -IH1 -IH2.
- by rewrite and_dnfP cat_dnfP negb_or -IH1 -IH2.
- by rewrite and_dnfP cat_dnfP /= negb_or IH1 -IH2 negbK.
by move=> t1 ->; rewrite negbK.
rewrite /qev; elim=> //=; first by case.
- by move=> t1 t2 _; rewrite subr_eq0 !andbT orbF.
- move=> f1 IH1 f2 IH2; rewrite andbCA -andbA andbCA andbA; case/andP.
by rewrite and_dnfP /= => /IH1-> /IH2->.
- move=> f1 IH1 f2 IH2; rewrite andbCA -andbA andbCA andbA; case/andP.
by rewrite cat_dnfP /= => /IH1-> => /IH2->.
- move=> f1 IH1 f2 IH2; rewrite andbCA -andbA andbCA andbA; case/andP.
by rewrite cat_dnfP /= [qf_eval _ _]qevT -implybE => /IH1 <- /IH2->.
by move=> f1 IH1 /IH1 <-; rewrite -qevT.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
qf_to_dnfP
| |
dnf_to_form_qfbcs : qf_form (dnf_to_form bcs).
Proof.
by elim: bcs => //= [[clT clF] _ ->] /=; elim: clT => //=; elim: clF.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
dnf_to_form_qf
| |
dnf_rtermcl := all rterm cl.1 && all rterm cl.2.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
dnf_rterm
| |
qf_to_dnf_rtermf b : rformula f -> all dnf_rterm (qf_to_dnf f b).
Proof.
set ok := all dnf_rterm.
have cat_ok bcs1 bcs2: ok bcs1 -> ok bcs2 -> ok (bcs1 ++ bcs2).
by move=> ok1 ok2; rewrite [ok _]all_cat; apply/andP.
have and_ok bcs1 bcs2: ok bcs1 -> ok bcs2 -> ok (and_dnf bcs1 bcs2).
rewrite /and_dnf unlock; elim: bcs1 => //= cl1 bcs1 IH1; rewrite -andbA.
case/and3P=> ok11 ok12 ok1 ok2; rewrite cat_ok ?{}IH1 {bcs1 ok1}//.
elim: bcs2 ok2 => //= cl2 bcs2 IH2 /andP[ok2 /IH2->].
by rewrite /dnf_rterm !all_cat ok11 ok12 /= !andbT.
elim: f b => //=; [ by do 2!case | | | | | by auto | | ];
try by repeat case/andP || intro; case: ifP; auto.
by rewrite /dnf_rterm => ?? [] /= ->.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
qf_to_dnf_rterm
| |
dnf_to_rformbcs : rformula (dnf_to_form bcs) = all dnf_rterm bcs.
Proof.
elim: bcs => //= [[cl1 cl2] bcs ->]; rewrite {2}/dnf_rterm /=; congr (_ && _).
by (congr andb; [elim: cl1 | elim: cl2]) => //= t cl ->; rewrite andbT.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
dnf_to_rform
| |
If:= (pred_f /\ then_f \/ ~ pred_f /\ else_f)%T.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
If
| |
If_form_qf:
qf_form pred_f -> qf_form then_f -> qf_form else_f -> qf_form If.
Proof. by move=> /= -> -> ->. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
If_form_qf
| |
If_form_rf:
rformula pred_f -> rformula then_f -> rformula else_f -> rformula If.
Proof. by move=> /= -> -> ->. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
If_form_rf
| |
eval_Ife :
let ev := qf_eval e in ev If = (if ev pred_f then ev then_f else ev else_f).
Proof. by rewrite /=; case: ifP => _; rewrite ?orbF. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
eval_If
| |
Pick:=
\big[Or/False]_(p : {ffun pred I})
((\big[And/True]_i (if p i then pred_f i else ~ pred_f i))
/\ (if pick p is Some i then then_f i else else_f))%T.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
Pick
| |
Pick_form_qf:
(forall i, qf_form (pred_f i)) ->
(forall i, qf_form (then_f i)) ->
qf_form else_f ->
qf_form Pick.
Proof.
move=> qfp qft qfe; have mA := (big_morph qf_form) true andb.
rewrite mA // big1 //= => p _.
rewrite mA // big1 => [|i _]; first by case: pick.
by rewrite fun_if if_same /= qfp.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
Pick_form_qf
| |
eval_Picke (qev := qf_eval e) :
let P i := qev (pred_f i) in
qev Pick = (if pick P is Some i then qev (then_f i) else qev else_f).
Proof.
move=> P; rewrite ((big_morph qev) false orb) //= big_orE /=.
apply/existsP/idP=> [[p] | true_at_P].
rewrite ((big_morph qev) true andb) //= big_andE /=.
case/andP=> /forallP-eq_p_P.
rewrite (@eq_pick _ _ P) => [|i]; first by case: pick.
by move/(_ i): eq_p_P => /=; case: (p i) => //= /negPf.
exists [ffun i => P i] => /=; apply/andP; split.
rewrite ((big_morph qev) true andb) //= big_andE /=.
by apply/forallP=> i; rewrite /= ffunE; case Pi: (P i) => //=; apply: negbT.
rewrite (@eq_pick _ _ P) => [|i]; first by case: pick true_at_P.
by rewrite ffunE.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
eval_Pick
| |
foldExistsPI e :
(exists2 e', {in [predC I], same_env e e'} & holds e' f)
<-> holds e (foldr Exists f I).
Proof.
elim: I e => /= [|i I IHi] e.
by split=> [[e' eq_e] |]; [apply: eq_holds => i; rewrite eq_e | exists e].
split=> [[e' eq_e f_e'] | [x]]; last set e_x := set_nth 0 e i x.
exists e'`_i; apply/IHi; exists e' => // j.
by have:= eq_e j; rewrite nth_set_nth /= !inE; case: eqP => // ->.
case/IHi=> e' eq_e f_e'; exists e' => // j.
by have:= eq_e j; rewrite nth_set_nth /= !inE; case: eqP.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
foldExistsP
| |
foldForallPI e :
(forall e', {in [predC I], same_env e e'} -> holds e' f)
<-> holds e (foldr Forall f I).
Proof.
elim: I e => /= [|i I IHi] e.
by split=> [|f_e e' eq_e]; [apply | apply: eq_holds f_e => i; rewrite eq_e].
split=> [f_e' x | f_e e' eq_e]; first set e_x := set_nth 0 e i x.
apply/IHi=> e' eq_e; apply: f_e' => j.
by have:= eq_e j; rewrite nth_set_nth /= !inE; case: eqP.
move/IHi: (f_e e'`_i); apply=> j.
by have:= eq_e j; rewrite nth_set_nth /= !inE; case: eqP => // ->.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
foldForallP
| |
integral_domain_axiom(R : pzRingType) :=
forall x y : R, x * y = 0 -> (x == 0) || (y == 0).
HB.mixin Record ComUnitRing_isIntegral R of ComUnitRing R := {
mulf_eq0_subproof : integral_domain_axiom R;
}.
#[mathcomp(axiom="integral_domain_axiom"), short(type="idomainType")]
HB.structure Definition IntegralDomain :=
{R of ComUnitRing_isIntegral R & ComUnitRing R}.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
integral_domain_axiom
| |
mulf_eq0x y : (x * y == 0) = (x == 0) || (y == 0).
Proof.
apply/eqP/idP; first exact: mulf_eq0_subproof.
by case/pred2P=> ->; rewrite (mulr0, mul0r).
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
mulf_eq0
| |
prodf_eq0(I : finType) (P : pred I) (F : I -> R) :
reflect (exists2 i, P i & (F i == 0)) (\prod_(i | P i) F i == 0).
Proof.
apply: (iffP idP) => [|[i Pi /eqP Fi0]]; last first.
by rewrite (bigD1 i) //= Fi0 mul0r.
elim: (index_enum _) => [|i r IHr]; first by rewrite big_nil oner_eq0.
rewrite big_cons /=; have [Pi | _] := ifP; last exact: IHr.
by rewrite mulf_eq0; case/orP=> // Fi0; exists i.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq",
"From mathcomp Require Import choice fintype finfun bigop prime binomial",
"From mathcomp Require Export nmodule"
] |
algebra/ssralg.v
|
prodf_eq0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.