fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
prodrV(I : eqType) (r : seq I) (P : pred I) (E : I -> R) : (forall i, P i -> E i \is a GRing.unit) -> \prod_(i <- r | P i) (E i)^-1 = (\prod_(i <- r | P i) E i)^-1. Proof. by move=> /rev_prodrV->; rewrite rev_prodr (perm_big r)// perm_rev. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
prodrV
scaler_injl: {in unit, @right_injective R A A *:%R}. Proof. move=> k Uk x1 x2 Hx1x2. by rewrite -[x1]scale1r -(mulVr Uk) -scalerA Hx1x2 scalerA mulVr // scale1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scaler_injl
scaler_unitk x : k \in unit -> (k *: x \in unit) = (x \in unit). Proof. move=> Uk; apply/idP/idP=> [Ukx | Ux]; apply/unitrP; last first. exists (k^-1 *: x^-1). by rewrite -!scalerAl -!scalerAr !scalerA !mulVr // !mulrV // scale1r. exists (k *: (k *: x)^-1); split. apply: (mulrI Ukx). by rewrite mulr1 mulrA -scalerAr mulrV // -scalerAl mul1r. apply: (mulIr Ukx). by rewrite mul1r -mulrA -scalerAl mulVr // -scalerAr mulr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scaler_unit
invrZk x : k \in unit -> x \in unit -> (k *: x)^-1 = k^-1 *: x^-1. Proof. move=> Uk Ux; have Ukx: (k *: x \in unit) by rewrite scaler_unit. apply: (mulIr Ukx). by rewrite mulVr // -scalerAl -scalerAr scalerA !mulVr // scale1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
invrZ
divalg_closed:= [/\ 1 \in S, linear_closed S & divr_2closed S].
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
divalg_closed
divalg_closedBdiv: divalg_closed -> divring_closed S. Proof. by case=> S1 /linear_closedB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
divalg_closedBdiv
divalg_closedZ: divalg_closed -> subalg_closed S. Proof. by case=> S1 Slin Sdiv; split=> //; have [] := @divr_closedM A S. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
divalg_closedZ
addr_closed:= nmod_closed.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addr_closed
oppr_closed:= oppr_closed.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
oppr_closed
zmod_closed:= zmod_closed.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
zmod_closed
mulr_closed:= mulr_closed.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulr_closed
semiring_closed:= semiring_closed.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
semiring_closed
smulr_closed:= smulr_closed.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
smulr_closed
subring_closed:= subring_closed.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subring_closed
scaler_closed:= scaler_closed.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scaler_closed
subsemimod_closed:= subsemimod_closed.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subsemimod_closed
linear_closed:= linear_closed.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
linear_closed
submod_closed:= submod_closed.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
submod_closed
subalg_closed:= subalg_closed.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subalg_closed
invr_closed:= invr_closed.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
invr_closed
divr_2closed:= divr_2closed.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
divr_2closed
divr_closed:= divr_closed.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
divr_closed
sdivr_closed:= sdivr_closed.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
sdivr_closed
divring_closed:= divring_closed.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
divring_closed
divalg_closed:= divalg_closed.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
divalg_closed
zmod_closedD: zmod_closed >-> nmod_closed.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
zmod_closedD
zmod_closedN: zmod_closed >-> oppr_closed.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
zmod_closedN
semiring_closedD: semiring_closed >-> addr_closed.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
semiring_closedD
semiring_closedM: semiring_closed >-> mulr_closed.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
semiring_closedM
smulr_closedM: smulr_closed >-> mulr_closed.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
smulr_closedM
smulr_closedN: smulr_closed >-> oppr_closed.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
smulr_closedN
subring_closedB: subring_closed >-> zmod_closed.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subring_closedB
subring_closedM: subring_closed >-> smulr_closed.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subring_closedM
subring_closed_semi: subring_closed >-> semiring_closed.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subring_closed_semi
subsemimod_closedD: subsemimod_closed >-> addr_closed.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subsemimod_closedD
subsemimod_closedZ: subsemimod_closed >-> scaler_closed.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subsemimod_closedZ
linear_closedB: linear_closed >-> subr_2closed.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
linear_closedB
submod_closedB: submod_closed >-> zmod_closed.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
submod_closedB
submod_closed_semi: submod_closed >-> subsemimod_closed.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
submod_closed_semi
subsemialg_closedZ: subsemialg_closed >-> subsemimod_closed.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subsemialg_closedZ
subsemialg_closedM: subsemialg_closed >-> semiring_closed.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subsemialg_closedM
subalg_closedZ: subalg_closed >-> submod_closed.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subalg_closedZ
subalg_closedBM: subalg_closed >-> subring_closed.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subalg_closedBM
subalg_closed_semi: subalg_closed >-> subsemialg_closed.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subalg_closed_semi
divr_closedV: divr_closed >-> invr_closed.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
divr_closedV
divr_closedM: divr_closed >-> mulr_closed.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
divr_closedM
sdivr_closed_div: sdivr_closed >-> divr_closed.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
sdivr_closed_div
sdivr_closedM: sdivr_closed >-> smulr_closed.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
sdivr_closedM
divring_closedBM: divring_closed >-> subring_closed.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
divring_closedBM
divring_closed_div: divring_closed >-> sdivr_closed.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
divring_closed_div
divalg_closedBdiv: divalg_closed >-> divring_closed.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
divalg_closedBdiv
divalg_closedZ: divalg_closed >-> subalg_closed.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
divalg_closedZ
term: Type := | Var of nat | Const of R | NatConst of nat | Add of term & term | Opp of term | NatMul of term & nat | Mul of term & term | Inv of term | Exp of term & nat.
Inductive
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
term
formula: Type := | Bool of bool | Equal of term & term | Unit of term | And of formula & formula | Or of formula & formula | Implies of formula & formula | Not of formula | Exists of nat & formula | Forall of nat & formula.
Inductive
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
formula
True:= (Bool true).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
True
False:= (Bool false). Local Notation "''X_' i" := (Var _ i) : term_scope. Local Notation "n %:R" := (NatConst _ n) : term_scope. Local Notation "x %:T" := (Const x) : term_scope. Local Notation "0" := 0%:R%T : term_scope. Local Notation "1" := 1%:R%T : term_scope. Local Infix "+" := Add : term_scope. Local Notation "- t" := (Opp t) : term_scope. Local Notation "t - u" := (Add t (- u)) : term_scope. Local Infix "*" := Mul : term_scope. Local Infix "*+" := NatMul : term_scope. Local Notation "t ^-1" := (Inv t) : term_scope. Local Notation "t / u" := (Mul t u^-1) : term_scope. Local Infix "^+" := Exp : term_scope. Local Infix "==" := Equal : term_scope. Local Infix "/\" := And : term_scope. Local Infix "\/" := Or : term_scope. Local Infix "==>" := Implies : term_scope. Local Notation "~ f" := (Not f) : term_scope. Local Notation "x != y" := (Not (x == y)) : term_scope. Local Notation "''exists' ''X_' i , f" := (Exists i f) : term_scope. Local Notation "''forall' ''X_' i , f" := (Forall i f) : term_scope.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
False
tsubst(t : term R) (s : nat * term R) := match t with | 'X_i => if i == s.1 then s.2 else t | _%:T | _%:R => t | t1 + t2 => tsubst t1 s + tsubst t2 s | - t1 => - tsubst t1 s | t1 *+ n => tsubst t1 s *+ n | t1 * t2 => tsubst t1 s * tsubst t2 s | t1^-1 => (tsubst t1 s)^-1 | t1 ^+ n => tsubst t1 s ^+ n end%T.
Fixpoint
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
tsubst
fsubst(f : formula R) (s : nat * term R) := match f with | Bool _ => f | t1 == t2 => tsubst t1 s == tsubst t2 s | Unit t1 => Unit (tsubst t1 s) | f1 /\ f2 => fsubst f1 s /\ fsubst f2 s | f1 \/ f2 => fsubst f1 s \/ fsubst f2 s | f1 ==> f2 => fsubst f1 s ==> fsubst f2 s | ~ f1 => ~ fsubst f1 s | ('exists 'X_i, f1) => 'exists 'X_i, if i == s.1 then f1 else fsubst f1 s | ('forall 'X_i, f1) => 'forall 'X_i, if i == s.1 then f1 else fsubst f1 s end%T.
Fixpoint
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
fsubst
eval(e : seq R) (t : term R) {struct t} : R := match t with | ('X_i)%T => e`_i | (x%:T)%T => x | (n%:R)%T => n%:R | (t1 + t2)%T => eval e t1 + eval e t2 | (- t1)%T => - eval e t1 | (t1 *+ n)%T => eval e t1 *+ n | (t1 * t2)%T => eval e t1 * eval e t2 | t1^-1%T => (eval e t1)^-1 | (t1 ^+ n)%T => eval e t1 ^+ n end.
Fixpoint
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
eval
same_env(e e' : seq R) := nth 0 e =1 nth 0 e'.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
same_env
eq_evale e' t : same_env e e' -> eval e t = eval e' t. Proof. by move=> eq_e; elim: t => //= t1 -> // t2 ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
eq_eval
eval_tsubste t s : eval e (tsubst t s) = eval (set_nth 0 e s.1 (eval e s.2)) t. Proof. case: s => i u; elim: t => //=; do 2?[move=> ? -> //] => j. by rewrite nth_set_nth /=; case: (_ == _). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
eval_tsubst
holds(e : seq R) (f : formula R) {struct f} : Prop := match f with | Bool b => b | (t1 == t2)%T => eval e t1 = eval e t2 | Unit t1 => eval e t1 \in unit | (f1 /\ f2)%T => holds e f1 /\ holds e f2 | (f1 \/ f2)%T => holds e f1 \/ holds e f2 | (f1 ==> f2)%T => holds e f1 -> holds e f2 | (~ f1)%T => ~ holds e f1 | ('exists 'X_i, f1)%T => exists x, holds (set_nth 0 e i x) f1 | ('forall 'X_i, f1)%T => forall x, holds (set_nth 0 e i x) f1 end.
Fixpoint
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
holds
same_env_syme e' : same_env e e' -> same_env e' e. Proof. exact: fsym. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
same_env_sym
eq_holdse e' f : same_env e e' -> holds e f -> holds e' f. Proof. pose sv := set_nth (0 : R). have eq_i i v e1 e2: same_env e1 e2 -> same_env (sv e1 i v) (sv e2 i v). by move=> eq_e j; rewrite !nth_set_nth /= eq_e. elim: f e e' => //=. - by move=> t1 t2 e e' eq_e; rewrite !(eq_eval _ eq_e). - by move=> t e e' eq_e; rewrite (eq_eval _ eq_e). - by move=> f1 IH1 f2 IH2 e e' eq_e; move/IH2: (eq_e); move/IH1: eq_e; tauto. - by move=> f1 IH1 f2 IH2 e e' eq_e; move/IH2: (eq_e); move/IH1: eq_e; tauto. - by move=> f1 IH1 f2 IH2 e e' eq_e f12; move/IH1: (same_env_sym eq_e); eauto. - by move=> f1 IH1 e e'; move/same_env_sym; move/IH1; tauto. - by move=> i f1 IH1 e e'; move/(eq_i i)=> eq_e [x f_ex]; exists x; eauto. by move=> i f1 IH1 e e'; move/(eq_i i); eauto. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
eq_holds
holds_fsubste f i v : holds e (fsubst f (i, v%:T)%T) <-> holds (set_nth 0 e i v) f. Proof. elim: f e => //=; do [ by move=> *; rewrite !eval_tsubst | move=> f1 IHf1 f2 IHf2 e; move: (IHf1 e) (IHf2 e); tauto | move=> f IHf e; move: (IHf e); tauto | move=> j f IHf e]. - case eq_ji: (j == i); first rewrite (eqP eq_ji). by split=> [] [x f_x]; exists x; rewrite set_set_nth eqxx in f_x *. split=> [] [x f_x]; exists x; move: f_x; rewrite set_set_nth eq_sym eq_ji; have:= IHf (set_nth 0 e j x); tauto. case eq_ji: (j == i); first rewrite (eqP eq_ji). by split=> [] f_ x; move: (f_ x); rewrite set_set_nth eqxx. split=> [] f_ x; move: (IHf (set_nth 0 e j x)) (f_ x); by rewrite set_set_nth 1?[i == j]eq_sym eq_ji; tauto. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
holds_fsubst
rterm(t : term R) := match t with | _^-1 => false | t1 + t2 | t1 * t2 => rterm t1 && rterm t2 | - t1 | t1 *+ _ | t1 ^+ _ => rterm t1 | _ => true end%T.
Fixpoint
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rterm
rformula(f : formula R) := match f with | Bool _ => true | t1 == t2 => rterm t1 && rterm t2 | Unit t1 => false | f1 /\ f2 | f1 \/ f2 | f1 ==> f2 => rformula f1 && rformula f2 | ~ f1 | ('exists 'X__, f1) | ('forall 'X__, f1) => rformula f1 end%T.
Fixpoint
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rformula
ub_var(t : term R) := match t with | 'X_i => i.+1 | t1 + t2 | t1 * t2 => maxn (ub_var t1) (ub_var t2) | - t1 | t1 *+ _ | t1 ^+ _ | t1^-1 => ub_var t1 | _ => 0%N end%T.
Fixpoint
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
ub_var
to_rterm(t : term R) (r : seq (term R)) (n : nat) {struct t} := match t with | t1^-1 => let: (t1', r1) := to_rterm t1 r n in ('X_(n + size r1), rcons r1 t1') | t1 + t2 => let: (t1', r1) := to_rterm t1 r n in let: (t2', r2) := to_rterm t2 r1 n in (t1' + t2', r2) | - t1 => let: (t1', r1) := to_rterm t1 r n in (- t1', r1) | t1 *+ m => let: (t1', r1) := to_rterm t1 r n in (t1' *+ m, r1) | t1 * t2 => let: (t1', r1) := to_rterm t1 r n in let: (t2', r2) := to_rterm t2 r1 n in (Mul t1' t2', r2) | t1 ^+ m => let: (t1', r1) := to_rterm t1 r n in (t1' ^+ m, r1) | _ => (t, r) end%T.
Fixpoint
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
to_rterm
to_rterm_idt r n : rterm t -> to_rterm t r n = (t, r). Proof. elim: t r n => //. - by move=> t1 IHt1 t2 IHt2 r n /= /andP[rt1 rt2]; rewrite {}IHt1 // IHt2. - by move=> t IHt r n /= rt; rewrite {}IHt. - by move=> t IHt r n m /= rt; rewrite {}IHt. - by move=> t1 IHt1 t2 IHt2 r n /= /andP[rt1 rt2]; rewrite {}IHt1 // IHt2. - by move=> t IHt r n m /= rt; rewrite {}IHt. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
to_rterm_id
eq0_rformt1 := let m := ub_var t1 in let: (t1', r1) := to_rterm t1 [::] m in let fix loop r i := match r with | [::] => t1' == 0 | t :: r' => let f := 'X_i * t == 1 /\ t * 'X_i == 1 in 'forall 'X_i, (f \/ 'X_i == t /\ ~ ('exists 'X_i, f)) ==> loop r' i.+1 end%T in loop r1 m.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
eq0_rform
to_rformf := match f with | Bool b => f | t1 == t2 => eq0_rform (t1 - t2) | Unit t1 => eq0_rform (t1 * t1^-1 - 1) | f1 /\ f2 => to_rform f1 /\ to_rform f2 | f1 \/ f2 => to_rform f1 \/ to_rform f2 | f1 ==> f2 => to_rform f1 ==> to_rform f2 | ~ f1 => ~ to_rform f1 | ('exists 'X_i, f1) => 'exists 'X_i, to_rform f1 | ('forall 'X_i, f1) => 'forall 'X_i, to_rform f1 end%T.
Fixpoint
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
to_rform
to_rform_rformulaf : rformula (to_rform f). Proof. suffices eq0_ring t1: rformula (eq0_rform t1) by elim: f => //= => f1 ->. rewrite /eq0_rform; move: (ub_var t1) => m; set tr := _ m. suffices: all rterm (tr.1 :: tr.2). case: tr => {}t1 r /= /andP[t1_r]. by elim: r m => [|t r IHr] m; rewrite /= ?andbT // => /andP[->]; apply: IHr. have: all rterm [::] by []. rewrite {}/tr; elim: t1 [::] => //=. - move=> t1 IHt1 t2 IHt2 r. move/IHt1; case: to_rterm => {r IHt1}t1 r /= /andP[t1_r]. move/IHt2; case: to_rterm => {r IHt2}t2 r /= /andP[t2_r]. by rewrite t1_r t2_r. - by move=> t1 IHt1 r /IHt1; case: to_rterm. - by move=> t1 IHt1 n r /IHt1; case: to_rterm. - move=> t1 IHt1 t2 IHt2 r. move/IHt1; case: to_rterm => {r IHt1}t1 r /= /andP[t1_r]. move/IHt2; case: to_rterm => {r IHt2}t2 r /= /andP[t2_r]. by rewrite t1_r t2_r. - move=> t1 IHt1 r. by move/IHt1; case: to_rterm => {r IHt1}t1 r /=; rewrite all_rcons. - by move=> t1 IHt1 n r /IHt1; case: to_rterm. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
to_rform_rformula
to_rformPe f : holds e (to_rform f) <-> holds e f. Proof. suffices{e f} equal0_equiv e t1 t2: holds e (eq0_rform (t1 - t2)) <-> (eval e t1 == eval e t2). - elim: f e => /=; try tauto. + move=> t1 t2 e. by split; [move/equal0_equiv/eqP | move/eqP/equal0_equiv]. + by move=> t1 e; rewrite unitrE; apply: equal0_equiv. + by move=> f1 IHf1 f2 IHf2 e; move: (IHf1 e) (IHf2 e); tauto. + by move=> f1 IHf1 f2 IHf2 e; move: (IHf1 e) (IHf2 e); tauto. + by move=> f1 IHf1 f2 IHf2 e; move: (IHf1 e) (IHf2 e); tauto. + by move=> f1 IHf1 e; move: (IHf1 e); tauto. + by move=> n f1 IHf1 e; split=> [] [x] /IHf1; exists x. + by move=> n f1 IHf1 e; split=> Hx x; apply/IHf1. rewrite -(add0r (eval e t2)) -(can2_eq (subrK _) (addrK _)). rewrite -/(eval e (t1 - t2)); move: (t1 - t2)%T => {t1 t2} t. have sub_var_tsubst s t0: s.1 >= ub_var t0 -> tsubst t0 s = t0. elim: t0 {t} => //=. - by move=> n; case: ltngtP. - by move=> t1 IHt1 t2 IHt2; rewrite geq_max => /andP[/IHt1-> /IHt2->]. - by move=> t1 IHt1 /IHt1->. - by move=> t1 IHt1 n /IHt1->. - by move=> t1 IHt1 t2 IHt2; rewrite geq_max => /andP[/IHt1-> /IHt2->]. - by move=> t1 IHt1 /IHt1->. - by move=> t1 IHt1 n /IHt1->. pose fix rsub t' m r : term R := if r is u :: r' then tsubst (rsub t' m.+1 r') (m, u^-1)%T else t'. pose fix ub_sub m r : Prop := if r is u :: r' then ub_var u <= m /\ ub_sub m.+1 r' else true. suffices{t} rsub_to_r t r0 m: m >= ub_var t -> ub_sub m r0 -> let: (t', r) := to_rterm t r0 m in [/\ take (si ...
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
to_rformP
qf_form(f : formula R) := match f with | Bool _ | _ == _ | Unit _ => true | f1 /\ f2 | f1 \/ f2 | f1 ==> f2 => qf_form f1 && qf_form f2 | ~ f1 => qf_form f1 | _ => false end%T.
Fixpoint
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
qf_form
qf_evale := fix loop (f : formula R) : bool := match f with | Bool b => b | t1 == t2 => (eval e t1 == eval e t2)%bool | Unit t1 => eval e t1 \in unit | f1 /\ f2 => loop f1 && loop f2 | f1 \/ f2 => loop f1 || loop f2 | f1 ==> f2 => (loop f1 ==> loop f2)%bool | ~ f1 => ~~ loop f1 |_ => false end%T.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
qf_eval
qf_evalPe f : qf_form f -> reflect (holds e f) (qf_eval e f). Proof. elim: f => //=; try by move=> *; apply: idP. - by move=> t1 t2 _; apply: eqP. - move=> f1 IHf1 f2 IHf2 /= /andP[/IHf1[] f1T]; last by right; case. by case/IHf2; [left | right; case]. - move=> f1 IHf1 f2 IHf2 /= /andP[/IHf1[] f1F]; first by do 2 left. by case/IHf2; [left; right | right; case]. - move=> f1 IHf1 f2 IHf2 /= /andP[/IHf1[] f1T]; last by left. by case/IHf2; [left | right; move/(_ f1T)]. by move=> f1 IHf1 /IHf1[]; [right | left]. Qed. Implicit Type bc : seq (term R) * seq (term R).
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
qf_evalP
and_dnfbcs1 bcs2 := \big[cat/nil]_(bc1 <- bcs1) map (fun bc2 => (bc1.1 ++ bc2.1, bc1.2 ++ bc2.2)) bcs2.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
and_dnf
qf_to_dnf(f : formula R) (neg : bool) {struct f} := match f with | Bool b => if b (+) neg then [:: ([::], [::])] else [::] | t1 == t2 => [:: if neg then ([::], [:: t1 - t2]) else ([:: t1 - t2], [::])] | f1 /\ f2 => (if neg then cat else and_dnf) [rec f1, neg] [rec f2, neg] | f1 \/ f2 => (if neg then and_dnf else cat) [rec f1, neg] [rec f2, neg] | f1 ==> f2 => (if neg then and_dnf else cat) [rec f1, ~~ neg] [rec f2, neg] | ~ f1 => [rec f1, ~~ neg] | _ => if neg then [:: ([::], [::])] else [::] end%T where "[ 'rec' f , neg ]" := (qf_to_dnf f neg).
Fixpoint
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
qf_to_dnf
dnf_to_form:= let pos_lit t := And (t == 0) in let neg_lit t := And (t != 0) in let cls bc := Or (foldr pos_lit True bc.1 /\ foldr neg_lit True bc.2) in foldr cls False.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
dnf_to_form
cat_dnfPe bcs1 bcs2 : qf_eval e (dnf_to_form (bcs1 ++ bcs2)) = qf_eval e (dnf_to_form bcs1 \/ dnf_to_form bcs2). Proof. by elim: bcs1 => //= bc1 bcs1 IH1; rewrite -orbA; congr orb; rewrite IH1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
cat_dnfP
and_dnfPe bcs1 bcs2 : qf_eval e (dnf_to_form (and_dnf bcs1 bcs2)) = qf_eval e (dnf_to_form bcs1 /\ dnf_to_form bcs2). Proof. elim: bcs1 => [|bc1 bcs1 IH1] /=; first by rewrite /and_dnf big_nil. rewrite /and_dnf big_cons -/(and_dnf bcs1 bcs2) cat_dnfP /=. rewrite {}IH1 /= andb_orl; congr orb. elim: bcs2 bc1 {bcs1} => [|bc2 bcs2 IH] bc1 /=; first by rewrite andbF. rewrite {}IH /= andb_orr; congr orb => {bcs2}. suffices aux (l1 l2 : seq (term R)) g : let redg := foldr (And \o g) True in qf_eval e (redg (l1 ++ l2)) = qf_eval e (redg l1 /\ redg l2)%T. + by rewrite 2!aux /= 2!andbA -andbA -andbCA andbA andbCA andbA. by elim: l1 => [| t1 l1 IHl1] //=; rewrite -andbA IHl1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
and_dnfP
qf_to_dnfPe : let qev f b := qf_eval e (dnf_to_form (qf_to_dnf f b)) in forall f, qf_form f && rformula f -> qev f false = qf_eval e f. Proof. move=> qev; have qevT f: qev f true = ~~ qev f false. rewrite {}/qev; elim: f => //=; do [by case | move=> f1 IH1 f2 IH2 | ]. - by move=> t1 t2; rewrite !andbT !orbF. - by rewrite and_dnfP cat_dnfP negb_and -IH1 -IH2. - by rewrite and_dnfP cat_dnfP negb_or -IH1 -IH2. - by rewrite and_dnfP cat_dnfP /= negb_or IH1 -IH2 negbK. by move=> t1 ->; rewrite negbK. rewrite /qev; elim=> //=; first by case. - by move=> t1 t2 _; rewrite subr_eq0 !andbT orbF. - move=> f1 IH1 f2 IH2; rewrite andbCA -andbA andbCA andbA; case/andP. by rewrite and_dnfP /= => /IH1-> /IH2->. - move=> f1 IH1 f2 IH2; rewrite andbCA -andbA andbCA andbA; case/andP. by rewrite cat_dnfP /= => /IH1-> => /IH2->. - move=> f1 IH1 f2 IH2; rewrite andbCA -andbA andbCA andbA; case/andP. by rewrite cat_dnfP /= [qf_eval _ _]qevT -implybE => /IH1 <- /IH2->. by move=> f1 IH1 /IH1 <-; rewrite -qevT. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
qf_to_dnfP
dnf_to_form_qfbcs : qf_form (dnf_to_form bcs). Proof. by elim: bcs => //= [[clT clF] _ ->] /=; elim: clT => //=; elim: clF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
dnf_to_form_qf
dnf_rtermcl := all rterm cl.1 && all rterm cl.2.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
dnf_rterm
qf_to_dnf_rtermf b : rformula f -> all dnf_rterm (qf_to_dnf f b). Proof. set ok := all dnf_rterm. have cat_ok bcs1 bcs2: ok bcs1 -> ok bcs2 -> ok (bcs1 ++ bcs2). by move=> ok1 ok2; rewrite [ok _]all_cat; apply/andP. have and_ok bcs1 bcs2: ok bcs1 -> ok bcs2 -> ok (and_dnf bcs1 bcs2). rewrite /and_dnf unlock; elim: bcs1 => //= cl1 bcs1 IH1; rewrite -andbA. case/and3P=> ok11 ok12 ok1 ok2; rewrite cat_ok ?{}IH1 {bcs1 ok1}//. elim: bcs2 ok2 => //= cl2 bcs2 IH2 /andP[ok2 /IH2->]. by rewrite /dnf_rterm !all_cat ok11 ok12 /= !andbT. elim: f b => //=; [ by do 2!case | | | | | by auto | | ]; try by repeat case/andP || intro; case: ifP; auto. by rewrite /dnf_rterm => ?? [] /= ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
qf_to_dnf_rterm
dnf_to_rformbcs : rformula (dnf_to_form bcs) = all dnf_rterm bcs. Proof. elim: bcs => //= [[cl1 cl2] bcs ->]; rewrite {2}/dnf_rterm /=; congr (_ && _). by (congr andb; [elim: cl1 | elim: cl2]) => //= t cl ->; rewrite andbT. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
dnf_to_rform
If:= (pred_f /\ then_f \/ ~ pred_f /\ else_f)%T.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
If
If_form_qf: qf_form pred_f -> qf_form then_f -> qf_form else_f -> qf_form If. Proof. by move=> /= -> -> ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
If_form_qf
If_form_rf: rformula pred_f -> rformula then_f -> rformula else_f -> rformula If. Proof. by move=> /= -> -> ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
If_form_rf
eval_Ife : let ev := qf_eval e in ev If = (if ev pred_f then ev then_f else ev else_f). Proof. by rewrite /=; case: ifP => _; rewrite ?orbF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
eval_If
Pick:= \big[Or/False]_(p : {ffun pred I}) ((\big[And/True]_i (if p i then pred_f i else ~ pred_f i)) /\ (if pick p is Some i then then_f i else else_f))%T.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Pick
Pick_form_qf: (forall i, qf_form (pred_f i)) -> (forall i, qf_form (then_f i)) -> qf_form else_f -> qf_form Pick. Proof. move=> qfp qft qfe; have mA := (big_morph qf_form) true andb. rewrite mA // big1 //= => p _. rewrite mA // big1 => [|i _]; first by case: pick. by rewrite fun_if if_same /= qfp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Pick_form_qf
eval_Picke (qev := qf_eval e) : let P i := qev (pred_f i) in qev Pick = (if pick P is Some i then qev (then_f i) else qev else_f). Proof. move=> P; rewrite ((big_morph qev) false orb) //= big_orE /=. apply/existsP/idP=> [[p] | true_at_P]. rewrite ((big_morph qev) true andb) //= big_andE /=. case/andP=> /forallP-eq_p_P. rewrite (@eq_pick _ _ P) => [|i]; first by case: pick. by move/(_ i): eq_p_P => /=; case: (p i) => //= /negPf. exists [ffun i => P i] => /=; apply/andP; split. rewrite ((big_morph qev) true andb) //= big_andE /=. by apply/forallP=> i; rewrite /= ffunE; case Pi: (P i) => //=; apply: negbT. rewrite (@eq_pick _ _ P) => [|i]; first by case: pick true_at_P. by rewrite ffunE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
eval_Pick
foldExistsPI e : (exists2 e', {in [predC I], same_env e e'} & holds e' f) <-> holds e (foldr Exists f I). Proof. elim: I e => /= [|i I IHi] e. by split=> [[e' eq_e] |]; [apply: eq_holds => i; rewrite eq_e | exists e]. split=> [[e' eq_e f_e'] | [x]]; last set e_x := set_nth 0 e i x. exists e'`_i; apply/IHi; exists e' => // j. by have:= eq_e j; rewrite nth_set_nth /= !inE; case: eqP => // ->. case/IHi=> e' eq_e f_e'; exists e' => // j. by have:= eq_e j; rewrite nth_set_nth /= !inE; case: eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
foldExistsP
foldForallPI e : (forall e', {in [predC I], same_env e e'} -> holds e' f) <-> holds e (foldr Forall f I). Proof. elim: I e => /= [|i I IHi] e. by split=> [|f_e e' eq_e]; [apply | apply: eq_holds f_e => i; rewrite eq_e]. split=> [f_e' x | f_e e' eq_e]; first set e_x := set_nth 0 e i x. apply/IHi=> e' eq_e; apply: f_e' => j. by have:= eq_e j; rewrite nth_set_nth /= !inE; case: eqP. move/IHi: (f_e e'`_i); apply=> j. by have:= eq_e j; rewrite nth_set_nth /= !inE; case: eqP => // ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
foldForallP
integral_domain_axiom(R : pzRingType) := forall x y : R, x * y = 0 -> (x == 0) || (y == 0). HB.mixin Record ComUnitRing_isIntegral R of ComUnitRing R := { mulf_eq0_subproof : integral_domain_axiom R; }. #[mathcomp(axiom="integral_domain_axiom"), short(type="idomainType")] HB.structure Definition IntegralDomain := {R of ComUnitRing_isIntegral R & ComUnitRing R}.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
integral_domain_axiom
mulf_eq0x y : (x * y == 0) = (x == 0) || (y == 0). Proof. apply/eqP/idP; first exact: mulf_eq0_subproof. by case/pred2P=> ->; rewrite (mulr0, mul0r). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulf_eq0
prodf_eq0(I : finType) (P : pred I) (F : I -> R) : reflect (exists2 i, P i & (F i == 0)) (\prod_(i | P i) F i == 0). Proof. apply: (iffP idP) => [|[i Pi /eqP Fi0]]; last first. by rewrite (bigD1 i) //= Fi0 mul0r. elim: (index_enum _) => [|i r IHr]; first by rewrite big_nil oner_eq0. rewrite big_cons /=; have [Pi | _] := ifP; last exact: IHr. by rewrite mulf_eq0; case/orP=> // Fi0; exists i. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
prodf_eq0