fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
rpredZnat(S : addrClosed V) n : {in S, forall u, n%:R *: u \in S}. Proof. by move=> u Su; rewrite /= scaler_nat rpredMn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rpredZnat
subsemimodClosedP(modS : submodClosed V) : subsemimod_closed modS. Proof. by split; [exact: rpred0D | exact: rpredZ]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subsemimodClosedP
rpredZsign(S : opprClosed V) n u : ((-1) ^+ n *: u \in S) = (u \in S). Proof. by rewrite -signr_odd scaler_sign fun_if if_arg rpredN if_same. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rpredZsign
submodClosedP(modS : submodClosed V) : submod_closed modS. Proof. exact/subsemimod_closed_submod/subsemimodClosedP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
submodClosedP
subsemialgClosedP(algS : subalgClosed A) : subsemialg_closed algS. Proof. split; [ exact: rpred1 | exact: rpred0D | exact: rpredZ | exact: rpredM ]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subsemialgClosedP
subalgClosedP(algS : subalgClosed A) : subalg_closed algS. Proof. exact/subsemialg_closed_subalg/subsemialgClosedP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subalgClosedP
rpredVx : (x^-1 \in S) = (x \in S). Proof. by apply/idP/idP=> /rpredVr; rewrite ?invrK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rpredV
rpred_div: {in S &, forall x y, x / y \in S}. Proof. by move=> x y Sx Sy; rewrite /= rpredM ?rpredV. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rpred_div
rpredXNn : {in S, forall x, x ^- n \in S}. Proof. by move=> x Sx; rewrite /= rpredV rpredX. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rpredXN
rpredMlx y : x \in S -> x \is a unit-> (x * y \in S) = (y \in S). Proof. move=> Sx Ux; apply/idP/idP=> [Sxy | /(rpredM _ _ Sx)-> //]. by rewrite -(mulKr Ux y); rewrite rpredM ?rpredV. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rpredMl
rpredMrx y : x \in S -> x \is a unit -> (y * x \in S) = (y \in S). Proof. move=> Sx Ux; apply/idP/idP=> [Sxy | /rpredM-> //]. by rewrite -(mulrK Ux y); rewrite rpred_div. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rpredMr
rpred_divrx y : x \in S -> x \is a unit -> (y / x \in S) = (y \in S). Proof. by rewrite -rpredV -unitrV; apply: rpredMr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rpred_divr
rpred_divlx y : x \in S -> x \is a unit -> (x / y \in S) = (y \in S). Proof. by rewrite -(rpredV y); apply: rpredMl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rpred_divl
divringClosedP(divS : divringClosed R) : divring_closed divS. Proof. split; [ exact: rpred1 | exact: rpredB | exact: rpred_div ]. Qed. Fact unitr_sdivr_closed : @sdivr_closed R unit. Proof. by split=> [|x y Ux Uy]; rewrite ?unitrN1 // unitrMl ?unitrV. Qed. #[export] HB.instance Definition _ := isSdivClosed.Build R unit_pred unitr_sdivr_closed. Implicit Type x : R.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
divringClosedP
unitrNx : (- x \is a unit) = (x \is a unit). Proof. exact: rpredN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
unitrN
invrNx : (- x)^-1 = - x^-1. Proof. have [Ux | U'x] := boolP (x \is a unit); last by rewrite !invr_out ?unitrN. by rewrite -mulN1r invrM ?unitrN1 // invrN1 mulrN1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
invrN
divrNNx y : (- x) / (- y) = x / y. Proof. by rewrite invrN mulrNN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
divrNN
divrNx y : x / (- y) = - (x / y). Proof. by rewrite invrN mulrN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
divrN
invr_signMn x : ((-1) ^+ n * x)^-1 = (-1) ^+ n * x^-1. Proof. by rewrite -signr_odd !mulr_sign; case: ifP => // _; rewrite invrN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
invr_signM
divr_signM(b1 b2 : bool) x1 x2: ((-1) ^+ b1 * x1) / ((-1) ^+ b2 * x2) = (-1) ^+ (b1 (+) b2) * (x1 / x2). Proof. by rewrite invr_signM mulr_signM. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
divr_signM
rpredZeq(S : submodClosed V) a v : (a *: v \in S) = (a == 0) || (v \in S). Proof. have [-> | nz_a] := eqVneq; first by rewrite scale0r rpred0. by apply/idP/idP; first rewrite -{2}(scalerK nz_a v); apply: rpredZ. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rpredZeq
fpredMlx y : x \in S -> x != 0 -> (x * y \in S) = (y \in S). Proof. by rewrite -!unitfE; apply: rpredMl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
fpredMl
fpredMrx y : x \in S -> x != 0 -> (y * x \in S) = (y \in S). Proof. by rewrite -!unitfE; apply: rpredMr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
fpredMr
fpred_divlx y : x \in S -> x != 0 -> (x / y \in S) = (y \in S). Proof. by rewrite -!unitfE; apply: rpred_divl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
fpred_divl
fpred_divrx y : x \in S -> x != 0 -> (y / x \in S) = (y \in S). Proof. by rewrite -!unitfE; apply: rpred_divr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
fpred_divr
RecordisSubPzSemiRing (R : pzSemiRingType) (S : pred R) U of SubNmodule R S U & PzSemiRing U := { valM_subproof : monoid_morphism (val : U -> R); }.
HB.mixin
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Record
BuildR S U := (isSubPzSemiRing.Build R S U) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Build
isSubSemiRingR S U := (isSubPzSemiRing R S U) (only parsing). #[short(type="subPzSemiRingType")] HB.structure Definition SubPzSemiRing (R : pzSemiRingType) (S : pred R) := { U of SubNmodule R S U & PzSemiRing U & isSubPzSemiRing R S U }. #[short(type="subNzSemiRingType")] HB.structure Definition SubNzSemiRing (R : nzSemiRingType) (S : pred R) := { U of SubNmodule R S U & NzSemiRing U & isSubPzSemiRing R S U }. #[deprecated(since="mathcomp 2.4.0", note="Use SubNzSemiRing instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
isSubSemiRing
SubSemiRingR := (SubNzSemiRing R) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
SubSemiRing
sort:= (SubNzSemiRing.sort) (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use SubNzSemiRing.on instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
sort
onR := (SubNzSemiRing.on R) (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use SubNzSemiRing.copy instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
on
copyT U := (SubNzSemiRing.copy T U) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
copy
val:= (val : U -> R). #[export] HB.instance Definition _ := isMonoidMorphism.Build U R val valM_subproof.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
val
val1: val 1 = 1. Proof. exact: rmorph1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
val1
valM: {morph val : x y / x * y}. Proof. exact: rmorphM. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
valM
valM1: monoid_morphism val. Proof. exact: valM_subproof. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
valM1
RecordSubNmodule_isSubPzSemiRing (R : pzSemiRingType) S U of SubNmodule R S U := { mulr_closed_subproof : mulr_closed S }. HB.builders Context R S U of SubNmodule_isSubPzSemiRing R S U. HB.instance Definition _ := isMulClosed.Build R S mulr_closed_subproof. Let inU v Sv : U := Sub v Sv. Let oneU : U := inU (@rpred1 _ (MulClosed.clone R S _)). Let mulU (u1 u2 : U) := inU (rpredM _ _ (valP u1) (valP u2)).
HB.factory
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Record
mulrA: associative mulU. Proof. by move=> x y z; apply: val_inj; rewrite !SubK mulrA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrA
mul1r: left_id oneU mulU. Proof. by move=> x; apply: val_inj; rewrite !SubK mul1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mul1r
mulr1: right_id oneU mulU. Proof. by move=> x; apply: val_inj; rewrite !SubK mulr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulr1
mulrDl: left_distributive mulU +%R. Proof. by move=> x y z; apply: val_inj; rewrite !(SubK, raddfD)/= !SubK mulrDl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrDl
mulrDr: right_distributive mulU +%R. Proof. by move=> x y z; apply: val_inj; rewrite !(SubK, raddfD)/= !SubK mulrDr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrDr
mul0r: left_zero 0%R mulU. Proof. by move=> x; apply: val_inj; rewrite SubK val0 mul0r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mul0r
mulr0: right_zero 0%R mulU. Proof. by move=> x; apply: val_inj; rewrite SubK val0 mulr0. Qed. HB.instance Definition _ := Nmodule_isPzSemiRing.Build U mulrA mul1r mulr1 mulrDl mulrDr mul0r mulr0.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulr0
valM: monoid_morphism (val : U -> R). Proof. by split=> [|x y] /=; rewrite !SubK. Qed. HB.instance Definition _ := isSubPzSemiRing.Build R S U valM. HB.end. HB.factory Record SubPzSemiRing_isNonZero (R : nzSemiRingType) S U of SubPzSemiRing R S U := {}. HB.builders Context R S U of SubPzSemiRing_isNonZero R S U.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
valM
oner_neq0: (1 : U) != 0. Proof. by rewrite -(inj_eq val_inj) rmorph0 rmorph1 oner_neq0. Qed. HB.instance Definition _ := PzSemiRing_isNonZero.Build U oner_neq0. HB.end. HB.factory Record SubNmodule_isSubNzSemiRing (R : nzSemiRingType) S U of SubNmodule R S U := { mulr_closed_subproof : mulr_closed S }.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
oner_neq0
BuildR S U := (SubNmodule_isSubNzSemiRing.Build R S U) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Build
SubNmodule_isSubSemiRingR S U := (SubNmodule_isSubNzSemiRing R S U) (only parsing). HB.builders Context R S U of SubNmodule_isSubNzSemiRing R S U. HB.instance Definition _ := SubNmodule_isSubPzSemiRing.Build R S U mulr_closed_subproof. HB.instance Definition _ := SubPzSemiRing_isNonZero.Build R S U. HB.end. #[short(type="subComPzSemiRingType")] HB.structure Definition SubComPzSemiRing (R : pzSemiRingType) S := {U of SubPzSemiRing R S U & ComPzSemiRing U}. HB.factory Record SubPzSemiRing_isSubComPzSemiRing (R : comPzSemiRingType) S U of SubPzSemiRing R S U := {}. HB.builders Context R S U of SubPzSemiRing_isSubComPzSemiRing R S U.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
SubNmodule_isSubSemiRing
mulrC: @commutative U U *%R. Proof. by move=> x y; apply: val_inj; rewrite !rmorphM mulrC. Qed. HB.instance Definition _ := PzSemiRing_hasCommutativeMul.Build U mulrC. HB.end. #[short(type="subComNzSemiRingType")] HB.structure Definition SubComNzSemiRing (R : nzSemiRingType) S := {U of SubNzSemiRing R S U & ComNzSemiRing U}. #[deprecated(since="mathcomp 2.4.0", note="Use SubComNzSemiRing instead.")]
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrC
SubComSemiRingR := (SubComNzSemiRing R) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
SubComSemiRing
sort:= (SubComNzSemiRing.sort) (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use SubComNzSemiRing.on instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
sort
onR := (SubComNzSemiRing.on R) (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use SubComNzSemiRing.copy instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
on
copyT U := (SubComNzSemiRing.copy T U) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
copy
RecordSubNzSemiRing_isSubComNzSemiRing (R : comNzSemiRingType) S U of SubNzSemiRing R S U := {}.
HB.factory
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Record
BuildR S U := (SubNzSemiRing_isSubComNzSemiRing.Build R S U) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Build
SubSemiRing_isSubComSemiRingR S U := (SubNzSemiRing_isSubComNzSemiRing R S U) (only parsing). HB.builders Context R S U of SubNzSemiRing_isSubComNzSemiRing R S U. HB.instance Definition _ := SubPzSemiRing_isSubComPzSemiRing.Build R S U. HB.end. #[short(type="subPzRingType")] HB.structure Definition SubPzRing (R : pzRingType) (S : pred R) := { U of SubPzSemiRing R S U & PzRing U & isSubZmodule R S U }. HB.factory Record SubZmodule_isSubPzRing (R : pzRingType) S U of SubZmodule R S U := { subring_closed_subproof : subring_closed S }. HB.builders Context R S U of SubZmodule_isSubPzRing R S U. HB.instance Definition _ := SubNmodule_isSubPzSemiRing.Build R S U (smulr_closedM (subring_closedM subring_closed_subproof)). HB.end. #[short(type="subNzRingType")] HB.structure Definition SubNzRing (R : nzRingType) (S : pred R) := { U of SubNzSemiRing R S U & NzRing U & isSubBaseAddUMagma R S U }. #[deprecated(since="mathcomp 2.4.0", note="Use SubNzRing instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
SubSemiRing_isSubComSemiRing
SubRingR := (SubNzRing R) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
SubRing
sort:= (SubNzRing.sort) (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use SubNzRing.on instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
sort
onR := (SubNzRing.on R) (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use SubNzRing.copy instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
on
copyT U := (SubNzRing.copy T U) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
copy
RecordSubZmodule_isSubNzRing (R : nzRingType) S U of SubZmodule R S U := { subring_closed_subproof : subring_closed S }.
HB.factory
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Record
BuildR S U := (SubZmodule_isSubNzRing.Build R S U) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Build
SubZmodule_isSubRingR S U := (SubZmodule_isSubNzRing R S U) (only parsing). HB.builders Context R S U of SubZmodule_isSubNzRing R S U. HB.instance Definition _ := SubNmodule_isSubNzSemiRing.Build R S U (smulr_closedM (subring_closedM subring_closed_subproof)). HB.end. #[short(type="subComPzRingType")] HB.structure Definition SubComPzRing (R : pzRingType) S := {U of SubPzRing R S U & ComPzRing U}. HB.factory Record SubPzRing_isSubComPzRing (R : comPzRingType) S U of SubPzRing R S U := {}. HB.builders Context R S U of SubPzRing_isSubComPzRing R S U. HB.instance Definition _ := SubPzSemiRing_isSubComPzSemiRing.Build R S U. HB.end. #[short(type="subComNzRingType")] HB.structure Definition SubComNzRing (R : nzRingType) S := {U of SubNzRing R S U & ComNzRing U}. #[deprecated(since="mathcomp 2.4.0", note="Use SubComNzRing instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
SubZmodule_isSubRing
SubComRingR := (SubComNzRing R) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
SubComRing
sort:= (SubComNzRing.sort) (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use SubComNzRing.on instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
sort
onR := (SubComNzRing.on R) (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use SubComNzRing.copy instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
on
copyT U := (SubComNzRing.copy T U) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
copy
RecordSubNzRing_isSubComNzRing (R : comNzRingType) S U of SubNzRing R S U := {}.
HB.factory
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Record
BuildR S U := (SubNzRing_isSubComNzRing.Build R S U) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Build
SubRing_isSubComRingR S U := (SubNzRing_isSubComNzRing R S U) (only parsing). HB.builders Context R S U of SubNzRing_isSubComNzRing R S U. HB.instance Definition _ := SubPzRing_isSubComPzRing.Build R S U. HB.end. HB.mixin Record isSubLSemiModule (R : pzSemiRingType) (V : lSemiModType R) (S : pred V) W of SubNmodule V S W & LSemiModule R W := { valZ : scalable (val : W -> V); }. #[short(type="subLSemiModType")] HB.structure Definition SubLSemiModule (R : pzSemiRingType) (V : lSemiModType R) (S : pred V) := { W of SubNmodule V S W & Nmodule_isLSemiModule R W & isSubLSemiModule R V S W}. #[short(type="subLmodType")] HB.structure Definition SubLmodule (R : pzRingType) (V : lmodType R) (S : pred V) := { W of SubZmodule V S W & Nmodule_isLSemiModule R W & isSubLSemiModule R V S W}.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
SubRing_isSubComRing
val:= (val : W -> V). #[export] HB.instance Definition _ := isScalable.Build R W V *:%R val valZ.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
val
RecordisSubLmodule (R : pzRingType) (V : lmodType R) (S : pred V) W of SubZmodule V S W & Lmodule R W := { valZ : scalable (val : W -> V); }. HB.builders Context R V S W of isSubLmodule R V S W. HB.instance Definition _ := isSubLSemiModule.Build R V S W valZ. HB.end. HB.factory Record SubNmodule_isSubLSemiModule (R : pzSemiRingType) (V : lSemiModType R) S W of SubNmodule V S W := { subsemimod_closed_subproof : subsemimod_closed S }. HB.builders Context R V S W of SubNmodule_isSubLSemiModule R V S W. HB.instance Definition _ := isSubSemiModClosed.Build R V S subsemimod_closed_subproof. Let inW v Sv : W := Sub v Sv. Let scaleW a (w : W) := inW (rpredZ a _ (valP w)).
HB.factory
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Record
scalerA'a b v : scaleW a (scaleW b v) = scaleW (a * b) v. Proof. by apply: val_inj; rewrite !SubK scalerA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scalerA'
scale0rv : scaleW 0 v = 0. Proof. by apply: val_inj; rewrite SubK scale0r raddf0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scale0r
scale1r: left_id 1 scaleW. Proof. by move=> x; apply: val_inj; rewrite SubK scale1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scale1r
scalerDr: right_distributive scaleW +%R. Proof. by move=> a u v; apply: val_inj; rewrite SubK !raddfD/= !SubK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scalerDr
scalerDlv : {morph scaleW^~ v : a b / a + b}. Proof. by move=> a b; apply: val_inj; rewrite raddfD/= !SubK scalerDl. Qed. HB.instance Definition _ := Nmodule_isLSemiModule.Build R W scalerA' scale0r scale1r scalerDr scalerDl. Fact valZ : scalable (val : W -> _). Proof. by move=> k w; rewrite SubK. Qed. HB.instance Definition _ := isSubLSemiModule.Build R V S W valZ. HB.end. HB.factory Record SubZmodule_isSubLmodule (R : pzRingType) (V : lmodType R) S W of SubZmodule V S W := { subsemimod_closed_subproof : subsemimod_closed S }. HB.builders Context R V S W of SubZmodule_isSubLmodule R V S W. HB.instance Definition _ := SubNmodule_isSubLSemiModule.Build R V S W subsemimod_closed_subproof. HB.end. #[short(type="subLSemiAlgType")] HB.structure Definition SubLSemiAlgebra (R : pzSemiRingType) (V : lSemiAlgType R) S := {W of SubNzSemiRing V S W & @SubLSemiModule R V S W & LSemiAlgebra R W}. #[short(type="subLalgType")] HB.structure Definition SubLalgebra (R : pzRingType) (V : lalgType R) S := {W of SubNzRing V S W & @SubLmodule R V S W & Lalgebra R W}. HB.factory Record SubNzSemiRing_SubLSemiModule_isSubLSemiAlgebra (R : pzSemiRingType) (V : lSemiAlgType R) S W of SubNzSemiRing V S W & @SubLSemiModule R V S W := {}. HB.builders Context R V S W of SubNzSemiRing_SubLSemiModule_isSubLSemiAlgebra R V S W.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scalerDl
scalerAl(a : R) (u v : W) : a *: (u * v) = a *: u * v. Proof. by apply: val_inj; rewrite !(linearZ, rmorphM) /= linearZ scalerAl. Qed. HB.instance Definition _ := LSemiModule_isLSemiAlgebra.Build R W scalerAl. HB.end. HB.factory Record SubNzRing_SubLmodule_isSubLalgebra (R : pzRingType) (V : lalgType R) S W of SubNzRing V S W & @SubLmodule R V S W := {}.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scalerAl
BuildR V S U := (SubNzRing_SubLmodule_isSubLalgebra.Build R V S U) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Build
SubRing_SubLmodule_isSubLalgebraR V S U := (SubNzRing_SubLmodule_isSubLalgebra R V S U) (only parsing). HB.builders Context R V S W of SubNzRing_SubLmodule_isSubLalgebra R V S W. HB.instance Definition _ := SubNzSemiRing_SubLSemiModule_isSubLSemiAlgebra.Build R V S W. HB.end. #[short(type="subSemiAlgType")] HB.structure Definition SubSemiAlgebra (R : pzSemiRingType) (V : semiAlgType R) S := {W of @SubLSemiAlgebra R V S W & SemiAlgebra R W}. #[short(type="subAlgType")] HB.structure Definition SubAlgebra (R : pzRingType) (V : algType R) S := {W of @SubLalgebra R V S W & Algebra R W}. HB.factory Record SubLSemiAlgebra_isSubSemiAlgebra (R : pzSemiRingType) (V : semiAlgType R) S W of @SubLSemiAlgebra R V S W := {}. HB.builders Context R V S W of SubLSemiAlgebra_isSubSemiAlgebra R V S W.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
SubRing_SubLmodule_isSubLalgebra
scalerAr(k : R) (x y : W) : k *: (x * y) = x * (k *: y). Proof. by apply: val_inj; rewrite !(linearZ, rmorphM)/= linearZ scalerAr. Qed. HB.instance Definition _ := LSemiAlgebra_isSemiAlgebra.Build R W scalerAr. HB.end. HB.factory Record SubLalgebra_isSubAlgebra (R : pzRingType) (V : algType R) S W of @SubLalgebra R V S W := {}. HB.builders Context R V S W of SubLalgebra_isSubAlgebra R V S W. HB.instance Definition _ := SubLSemiAlgebra_isSubSemiAlgebra.Build R V S W. HB.end. #[short(type="subUnitRingType")] HB.structure Definition SubUnitRing (R : nzRingType) (S : pred R) := {U of SubNzRing R S U & UnitRing U}. HB.factory Record SubNzRing_isSubUnitRing (R : unitRingType) S U of SubNzRing R S U := { divring_closed_subproof : divring_closed S }. HB.builders Context R S U of SubNzRing_isSubUnitRing R S U. HB.instance Definition _ := isDivringClosed.Build R S divring_closed_subproof. Let inU v Sv : U := Sub v Sv. Let invU (u : U) := inU (rpredVr _ (valP u)).
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
scalerAr
mulVr: {in [pred x | val x \is a unit], left_inverse 1 invU *%R}. Proof. by move=> x /[!inE] xu; apply: val_inj; rewrite rmorphM rmorph1 /= SubK mulVr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulVr
divrr: {in [pred x | val x \is a unit], right_inverse 1 invU *%R}. by move=> x /[!inE] xu; apply: val_inj; rewrite rmorphM rmorph1 /= SubK mulrV. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
divrr
unitrP(x y : U) : y * x = 1 /\ x * y = 1 -> val x \is a unit. Proof. move=> -[/(congr1 val) yx1 /(congr1 val) xy1]. by apply: rev_unitrP (val y) _; rewrite !rmorphM rmorph1 /= in yx1 xy1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
unitrP
invr_out: {in [pred x | val x \isn't a unit], invU =1 id}. Proof. by move=> x /[!inE] xNU; apply: val_inj; rewrite SubK invr_out. Qed. HB.instance Definition _ := NzRing_hasMulInverse.Build U mulVr divrr unitrP invr_out. HB.end. #[short(type="subComUnitRingType")] HB.structure Definition SubComUnitRing (R : comUnitRingType) (S : pred R) := {U of SubComNzRing R S U & SubUnitRing R S U}. #[short(type="subIdomainType")] HB.structure Definition SubIntegralDomain (R : idomainType) (S : pred R) := {U of SubComNzRing R S U & IntegralDomain U}. HB.factory Record SubComUnitRing_isSubIntegralDomain (R : idomainType) S U of SubComUnitRing R S U := {}. HB.builders Context R S U of SubComUnitRing_isSubIntegralDomain R S U.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
invr_out
id: IntegralDomain.axiom U. Proof. move=> x y /(congr1 val)/eqP; rewrite rmorphM /=. by rewrite -!(inj_eq val_inj) rmorph0 -mulf_eq0. Qed. HB.instance Definition _ := ComUnitRing_isIntegral.Build U id. HB.end. #[short(type="subFieldType")] HB.structure Definition SubField (F : fieldType) (S : pred F) := {U of SubIntegralDomain F S U & Field U}. HB.factory Record SubIntegralDomain_isSubField (F : fieldType) S U of SubIntegralDomain F S U := { subfield_subproof : {mono (val : U -> F) : u / u \in unit} }. HB.builders Context F S U of SubIntegralDomain_isSubField F S U.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
id
fieldP: Field.axiom U. Proof. by move=> u; rewrite -(inj_eq val_inj) rmorph0 -unitfE subfield_subproof. Qed. HB.instance Definition _ := UnitRing_isField.Build U fieldP. HB.end. HB.factory Record SubChoice_isSubPzSemiRing (R : pzSemiRingType) S U of SubChoice R S U := { semiring_closed_subproof : semiring_closed S }. HB.builders Context R S U of SubChoice_isSubPzSemiRing R S U. HB.instance Definition _ := SubChoice_isSubNmodule.Build R S U (semiring_closedD semiring_closed_subproof). HB.instance Definition _ := SubNmodule_isSubPzSemiRing.Build R S U (semiring_closedM semiring_closed_subproof). HB.end. HB.factory Record SubChoice_isSubNzSemiRing (R : nzSemiRingType) S U of SubChoice R S U := { semiring_closed_subproof : semiring_closed S }.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
fieldP
BuildR S U := (SubChoice_isSubNzSemiRing.Build R S U) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Build
SubChoice_isSubSemiRingR S U := (SubChoice_isSubNzSemiRing R S U) (only parsing). HB.builders Context R S U of SubChoice_isSubNzSemiRing R S U. HB.instance Definition _ := SubChoice_isSubPzSemiRing.Build R S U semiring_closed_subproof. HB.instance Definition _ := SubPzSemiRing_isNonZero.Build R S U. HB.end. HB.factory Record SubChoice_isSubComPzSemiRing (R : comPzSemiRingType) S U of SubChoice R S U := { semiring_closed_subproof : semiring_closed S }. HB.builders Context R S U of SubChoice_isSubComPzSemiRing R S U. HB.instance Definition _ := SubChoice_isSubPzSemiRing.Build R S U semiring_closed_subproof. HB.instance Definition _ := SubPzSemiRing_isSubComPzSemiRing.Build R S U. HB.end. HB.factory Record SubChoice_isSubComNzSemiRing (R : comNzSemiRingType) S U of SubChoice R S U := { semiring_closed_subproof : semiring_closed S }.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
SubChoice_isSubSemiRing
BuildR S U := (SubChoice_isSubComNzSemiRing.Build R S U) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Build
SubChoice_isSubComSemiRingR S U := (SubChoice_isSubComNzSemiRing R S U) (only parsing). HB.builders Context R S U of SubChoice_isSubComNzSemiRing R S U. HB.instance Definition _ := SubChoice_isSubComPzSemiRing.Build R S U semiring_closed_subproof. HB.instance Definition _ := SubPzSemiRing_isNonZero.Build R S U. HB.end. HB.factory Record SubChoice_isSubPzRing (R : pzRingType) S U of SubChoice R S U := { subring_closed_subproof : subring_closed S }. HB.builders Context R S U of SubChoice_isSubPzRing R S U. HB.instance Definition _ := SubChoice_isSubZmodule.Build R S U (subring_closedB subring_closed_subproof). HB.instance Definition _ := SubZmodule_isSubPzRing.Build R S U subring_closed_subproof. HB.end. HB.factory Record SubChoice_isSubNzRing (R : nzRingType) S U of SubChoice R S U := { subring_closed_subproof : subring_closed S }.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
SubChoice_isSubComSemiRing
BuildR S U := (SubChoice_isSubNzRing.Build R S U) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Build
SubChoice_isSubRingR S U := (SubChoice_isSubNzRing R S U) (only parsing). HB.builders Context R S U of SubChoice_isSubNzRing R S U. HB.instance Definition _ := SubChoice_isSubPzRing.Build R S U subring_closed_subproof. HB.instance Definition _ := SubPzSemiRing_isNonZero.Build R S U. HB.end. HB.factory Record SubChoice_isSubComPzRing (R : comPzRingType) S U of SubChoice R S U := { subring_closed_subproof : subring_closed S }. HB.builders Context R S U of SubChoice_isSubComPzRing R S U. HB.instance Definition _ := SubChoice_isSubPzRing.Build R S U subring_closed_subproof. HB.instance Definition _ := SubPzRing_isSubComPzRing.Build R S U. HB.end. HB.factory Record SubChoice_isSubComNzRing (R : comNzRingType) S U of SubChoice R S U := { subring_closed_subproof : subring_closed S }.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
SubChoice_isSubRing
BuildR S U := (SubChoice_isSubComNzRing.Build R S U) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Build
SubChoice_isSubComRingR S U := (SubChoice_isSubComNzRing R S U) (only parsing). HB.builders Context R S U of SubChoice_isSubComNzRing R S U. HB.instance Definition _ := SubChoice_isSubComPzRing.Build R S U subring_closed_subproof. HB.instance Definition _ := SubPzSemiRing_isNonZero.Build R S U. HB.end. HB.factory Record SubChoice_isSubLSemiModule (R : pzSemiRingType) (V : lSemiModType R) S W of SubChoice V S W := { subsemimod_closed_subproof : subsemimod_closed S }. HB.builders Context R V S W of SubChoice_isSubLSemiModule R V S W. HB.instance Definition _ := SubChoice_isSubNmodule.Build V S W (subsemimod_closedD subsemimod_closed_subproof). HB.instance Definition _ := SubNmodule_isSubLSemiModule.Build R V S W subsemimod_closed_subproof. HB.end. HB.factory Record SubChoice_isSubLmodule (R : pzRingType) (V : lmodType R) S W of SubChoice V S W := { subsemimod_closed_subproof : subsemimod_closed S }. HB.builders Context R V S W of SubChoice_isSubLmodule R V S W. HB.instance Definition _ := SubChoice_isSubZmodule.Build V S W (subsemimod_closedB subsemimod_closed_subproof). HB.instance Definition _ := SubZmodule_isSubLmodule.Build R V S W subsemimod_closed_subproof. HB.end. HB.factory Record SubChoice_isSubLSemiAlgebra (R : pzSemiRingType) (A : lSemiAlgType R) S W of SubChoice A S W := { subsemialg_closed_subproof : subsemialg_closed S }. HB.builders Context R A S W of SubChoice_isSubLSemiAlgebra R A S W. HB.instance Definition _ := SubChoice_isSubNzSemiRing.Build A S W
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
SubChoice_isSubComRing
addrA:= @addrA.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addrA
addrC:= @addrC.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addrC
add0r:= @add0r.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
add0r
addNr:= @addNr.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addNr
addr0:= addr0.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addr0