fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
telescope_sumr_eqn m (f u : nat -> V) : n <= m -> (forall k, (n <= k < m)%N -> u k = f k.+1 - f k) -> \sum_(n <= k < m) u k = f m - f n. Proof. exact: telescope_sumr_eq. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
telescope_sumr_eq
oppr_closed:= oppr_closed S.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
oppr_closed
subr_2closed:= subr_closed S.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subr_2closed
zmod_closed:= zmod_closed S.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
zmod_closed
zmod_closedN: zmod_closed -> oppr_closed. Proof. exact: zmod_closedN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
zmod_closedN
zmod_closedD: zmod_closed -> nmod_closed S. Proof. by move=> z; split; [case: z|apply/zmod_closedD]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
zmod_closedD
RecordNmodule_isPzSemiRing R of Nmodule R := { one : R; mul : R -> R -> R; mulrA : associative mul; mul1r : left_id one mul; mulr1 : right_id one mul; mulrDl : left_distributive mul +%R; mulrDr : right_distributive mul +%R; mul0r : left_zero zero mul; mulr0 : right_zero zero mul; }. #[short(type="pzSemiRingType")] HB.structure Definition PzSemiRing := { R of Nmodule_isPzSemiRing R & Nmodule R }. HB.factory Record isPzSemiRing R of Choice R := { zero : R; add : R -> R -> R; one : R; mul : R -> R -> R; addrA : associative add; addrC : commutative add; add0r : left_id zero add; mulrA : associative mul; mul1r : left_id one mul; mulr1 : right_id one mul; mulrDl : left_distributive mul add; mulrDr : right_distributive mul add; mul0r : left_zero zero mul; mulr0 : right_zero zero mul; }. HB.builders Context R of isPzSemiRing R. HB.instance Definition _ := @isNmodule.Build R zero add addrA addrC add0r. HB.instance Definition _ := @Nmodule_isPzSemiRing.Build R one mul mulrA mul1r mulr1 mulrDl mulrDr mul0r mulr0. HB.end.
HB.mixin
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Record
RecordPzSemiRing_isNonZero R of PzSemiRing R := { oner_neq0 : @one R != 0 }. #[short(type="nzSemiRingType")] HB.structure Definition NzSemiRing := { R of PzSemiRing_isNonZero R & PzSemiRing R }. #[deprecated(since="mathcomp 2.4.0", note="Use NzSemiRing instead.")]
HB.mixin
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Record
SemiRingR := (NzSemiRing R) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
SemiRing
sort:= (NzSemiRing.sort) (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use NzSemiRing.on instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
sort
onR := (NzSemiRing.on R) (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use NzSemiRing.copy instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
on
copyT U := (NzSemiRing.copy T U) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
copy
RecordNmodule_isNzSemiRing R of Nmodule R := { one : R; mul : R -> R -> R; mulrA : associative mul; mul1r : left_id one mul; mulr1 : right_id one mul; mulrDl : left_distributive mul +%R; mulrDr : right_distributive mul +%R; mul0r : left_zero zero mul; mulr0 : right_zero zero mul; oner_neq0 : one != 0 }. HB.builders Context R of Nmodule_isNzSemiRing R. HB.instance Definition _ := Nmodule_isPzSemiRing.Build R mulrA mul1r mulr1 mulrDl mulrDr mul0r mulr0. HB.instance Definition _ := PzSemiRing_isNonZero.Build R oner_neq0. HB.end.
HB.factory
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Record
BuildR := (Nmodule_isNzSemiRing.Build R) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Build
Nmodule_isSemiRingR := (Nmodule_isNzSemiRing R) (only parsing). HB.factory Record isNzSemiRing R of Choice R := { zero : R; add : R -> R -> R; one : R; mul : R -> R -> R; addrA : associative add; addrC : commutative add; add0r : left_id zero add; mulrA : associative mul; mul1r : left_id one mul; mulr1 : right_id one mul; mulrDl : left_distributive mul add; mulrDr : right_distributive mul add; mul0r : left_zero zero mul; mulr0 : right_zero zero mul; oner_neq0 : one != zero }.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Nmodule_isSemiRing
BuildR := (isNzSemiRing.Build R) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Build
isSemiRingR := (isNzSemiRing R) (only parsing). HB.builders Context R of isNzSemiRing R. HB.instance Definition _ := @isNmodule.Build R zero add addrA addrC add0r. HB.instance Definition _ := @Nmodule_isNzSemiRing.Build R one mul mulrA mul1r mulr1 mulrDl mulrDr mul0r mulr0 oner_neq0. HB.end.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
isSemiRing
expR x n := iterop n (@mul R) x (@one R). Arguments exp : simpl never.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
exp
commR x y := @mul R x y = mul y x.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
comm
lregR x := injective (@mul R x).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
lreg
rregR x := injective ((@mul R)^~ x). Local Notation "1" := (@one _) : ring_scope. Local Notation "n %:R" := (1 *+ n) : ring_scope. Local Notation "*%R" := (@mul _) : function_scope. Local Notation "x * y" := (mul x y) : ring_scope. Local Notation "x ^+ n" := (exp x n) : ring_scope. Local Notation "\prod_ ( i <- r | P ) F" := (\big[*%R/1]_(i <- r | P) F). Local Notation "\prod_ ( i | P ) F" := (\big[*%R/1]_(i | P) F). Local Notation "\prod_ ( i 'in' A ) F" := (\big[*%R/1]_(i in A) F). Local Notation "\prod_ ( m <= i < n ) F" := (\big[*%R/1%R]_(m <= i < n) F%R).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rreg
pchar(R : nzSemiRingType) : nat_pred := [pred p | prime p & p%:R == 0 :> R]. #[deprecated(since="mathcomp 2.4.0", note="Use pchar instead.")]
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
pchar
char:= pchar (only parsing). Local Notation has_pchar0 L := (pchar L =i pred0). #[deprecated(since="mathcomp 2.4.0", note="Use has_pchar0 instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
char
has_char0L := (has_pchar0 L) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
has_char0
converseR : Type := R. Local Notation "R ^c" := (converse R) : type_scope.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
converse
Definition_ := Monoid.isLaw.Build R 1 *%R mulrA mul1r mulr1. #[export] HB.instance Definition _ := Monoid.isMulLaw.Build R 0 *%R mul0r mulr0. #[export] HB.instance Definition _ := Monoid.isAddLaw.Build R *%R +%R mulrDl mulrDr.
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
Definition
mulr_sumlI r P (F : I -> R) x : (\sum_(i <- r | P i) F i) * x = \sum_(i <- r | P i) F i * x. Proof. exact: big_distrl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulr_suml
mulr_sumrI r P (F : I -> R) x : x * (\sum_(i <- r | P i) F i) = \sum_(i <- r | P i) x * F i. Proof. exact: big_distrr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulr_sumr
mulrnAlx y n : (x *+ n) * y = (x * y) *+ n. Proof. by elim: n => [|n IHn]; rewrite ?mul0r // !mulrS mulrDl IHn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrnAl
mulrnArx y n : x * (y *+ n) = (x * y) *+ n. Proof. by elim: n => [|n IHn]; rewrite ?mulr0 // !mulrS mulrDr IHn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrnAr
mulr_natlx n : n%:R * x = x *+ n. Proof. by rewrite mulrnAl mul1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulr_natl
mulr_natrx n : x * n%:R = x *+ n. Proof. by rewrite mulrnAr mulr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulr_natr
natrDm n : (m + n)%:R = m%:R + n%:R :> R. Proof. exact: mulrnDr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
natrD
natr1n : n%:R + 1 = n.+1%:R :> R. Proof. by rewrite mulrSr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
natr1
nat1rn : 1 + n%:R = n.+1%:R :> R. Proof. by rewrite mulrS. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
nat1r
natr_sum:= big_morph (natmul 1) natrD (mulr0n 1).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
natr_sum
natrMm n : (m * n)%:R = m%:R * n%:R :> R. Proof. by rewrite mulrnA mulr_natr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
natrM
expr0x : x ^+ 0 = 1. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
expr0
expr1x : x ^+ 1 = x. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
expr1
expr2x : x ^+ 2 = x * x. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
expr2
exprSx n : x ^+ n.+1 = x * x ^+ n. Proof. by case: n => //; rewrite mulr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
exprS
expr0nn : 0 ^+ n = (n == 0%N)%:R :> R. Proof. by case: n => // n; rewrite exprS mul0r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
expr0n
expr1nn : 1 ^+ n = 1 :> R. Proof. by elim: n => // n IHn; rewrite exprS mul1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
expr1n
exprDx m n : x ^+ (m + n) = x ^+ m * x ^+ n. Proof. by elim: m => [|m IHm]; rewrite ?mul1r // !exprS -mulrA -IHm. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
exprD
exprSrx n : x ^+ n.+1 = x ^+ n * x. Proof. by rewrite -addn1 exprD expr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
exprSr
expr_sumx (I : Type) (s : seq I) (P : pred I) F : x ^+ (\sum_(i <- s | P i) F i) = \prod_(i <- s | P i) x ^+ F i :> R. Proof. exact: (big_morph _ (exprD _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
expr_sum
commr_symx y : comm x y -> comm y x. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
commr_sym
commr_reflx : comm x x. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
commr_refl
commr0x : comm x 0. Proof. by rewrite /comm mulr0 mul0r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
commr0
commr1x : comm x 1. Proof. by rewrite /comm mulr1 mul1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
commr1
commrDx y z : comm x y -> comm x z -> comm x (y + z). Proof. by rewrite /comm mulrDl mulrDr => -> ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
commrD
commr_sum(I : Type) (s : seq I) (P : pred I) (F : I -> R) x : (forall i, P i -> comm x (F i)) -> comm x (\sum_(i <- s | P i) F i). Proof. move=> comm_x_F; rewrite /comm mulr_suml mulr_sumr. by apply: eq_bigr => i /comm_x_F. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
commr_sum
commrMnx y n : comm x y -> comm x (y *+ n). Proof. rewrite /comm => com_xy. by elim: n => [|n IHn]; rewrite ?commr0 // mulrS commrD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
commrMn
commrMx y z : comm x y -> comm x z -> comm x (y * z). Proof. by move=> com_xy; rewrite /comm mulrA com_xy -!mulrA => ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
commrM
commr_prod(I : Type) (s : seq I) (P : pred I) (F : I -> R) x : (forall i, P i -> comm x (F i)) -> comm x (\prod_(i <- s | P i) F i). Proof. exact: (big_ind _ (commr1 x) (@commrM x)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
commr_prod
commr_natx n : comm x n%:R. Proof. exact/commrMn/commr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
commr_nat
commrXx y n : comm x y -> comm x (y ^+ n). Proof. rewrite /comm => com_xy. by elim: n => [|n IHn]; rewrite ?commr1 // exprS commrM. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
commrX
exprMn_commx y n : comm x y -> (x * y) ^+ n = x ^+ n * y ^+ n. Proof. move=> com_xy; elim: n => /= [|n IHn]; first by rewrite mulr1. by rewrite !exprS IHn !mulrA; congr (_ * _); rewrite -!mulrA -commrX. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
exprMn_comm
exprMn_nx m n : (x *+ m) ^+ n = x ^+ n *+ (m ^ n) :> R. Proof. elim: n => [|n IHn]; first by rewrite mulr1n. by rewrite exprS IHn mulrnAl mulrnAr -mulrnA exprS -expnSr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
exprMn_n
exprMx m n : x ^+ (m * n) = x ^+ m ^+ n. Proof. elim: m => [|m IHm]; first by rewrite expr1n. by rewrite mulSn exprD IHm exprS exprMn_comm //; apply: commrX. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
exprM
exprACx m n : (x ^+ m) ^+ n = (x ^+ n) ^+ m. Proof. by rewrite -!exprM mulnC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
exprAC
expr_modn x i : x ^+ n = 1 -> x ^+ (i %% n) = x ^+ i. Proof. move=> xn1; rewrite {2}(divn_eq i n) exprD mulnC exprM xn1. by rewrite expr1n mul1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
expr_mod
expr_dvdn x i : x ^+ n = 1 -> n %| i -> x ^+ i = 1. Proof. by move=> xn1 dvd_n_i; rewrite -(expr_mod i xn1) (eqnP dvd_n_i). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
expr_dvd
natrXn k : (n ^ k)%:R = n%:R ^+ k :> R. Proof. by rewrite exprMn_n expr1n. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
natrX
mulrI_eq0x y : lreg x -> (x * y == 0) = (y == 0). Proof. by move=> reg_x; rewrite -{1}(mulr0 x) (inj_eq reg_x). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrI_eq0
lreg1: lreg (1 : R). Proof. by move=> x y; rewrite !mul1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
lreg1
lregMx y : lreg x -> lreg y -> lreg (x * y). Proof. by move=> reg_x reg_y z t; rewrite -!mulrA => /reg_x/reg_y. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
lregM
lregMl(a b: R) : lreg (a * b) -> lreg b. Proof. by move=> rab c c' eq_bc; apply/rab; rewrite -!mulrA eq_bc. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
lregMl
rregMr(a b: R) : rreg (a * b) -> rreg a. Proof. by move=> rab c c' eq_ca; apply/rab; rewrite !mulrA eq_ca. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
rregMr
lregXx n : lreg x -> lreg (x ^+ n). Proof. by move=> reg_x; elim: n => [|n]; [apply: lreg1 | rewrite exprS; apply: lregM]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
lregX
iter_mulrn x y : iter n ( *%R x) y = x ^+ n * y. Proof. by elim: n => [|n ih]; rewrite ?expr0 ?mul1r //= ih exprS -mulrA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
iter_mulr
iter_mulr_1n x : iter n ( *%R x) 1 = x ^+ n. Proof. by rewrite iter_mulr mulr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
iter_mulr_1
prodr_const(I : finType) (A : pred I) x : \prod_(i in A) x = x ^+ #|A|. Proof. by rewrite big_const -iteropE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
prodr_const
prodr_const_natn m x : \prod_(n <= i < m) x = x ^+ (m - n). Proof. by rewrite big_const_nat -iteropE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
prodr_const_nat
prodrXrx I r P (F : I -> nat) : \prod_(i <- r | P i) x ^+ F i = x ^+ (\sum_(i <- r | P i) F i). Proof. by rewrite (big_morph _ (exprD _) (erefl _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
prodrXr
prodrM_comm{I : eqType} r (P : pred I) (F G : I -> R) : (forall i j, P i -> P j -> comm (F i) (G j)) -> \prod_(i <- r | P i) (F i * G i) = \prod_(i <- r | P i) F i * \prod_(i <- r | P i) G i. Proof. move=> FG; elim: r => [|i r IHr]; rewrite !(big_nil, big_cons) ?mulr1//. case: ifPn => // Pi; rewrite IHr !mulrA; congr (_ * _); rewrite -!mulrA. by rewrite commr_prod // => j Pj; apply/commr_sym/FG. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
prodrM_comm
prodrMl_comm{I : finType} (A : pred I) (x : R) F : (forall i, A i -> comm x (F i)) -> \prod_(i in A) (x * F i) = x ^+ #|A| * \prod_(i in A) F i. Proof. by move=> xF; rewrite prodrM_comm ?prodr_const// => i j _ /xF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
prodrMl_comm
prodrMr_comm{I : finType} (A : pred I) (x : R) F : (forall i, A i -> comm x (F i)) -> \prod_(i in A) (F i * x) = \prod_(i in A) F i * x ^+ #|A|. Proof. by move=> xF; rewrite prodrM_comm ?prodr_const// => i j /xF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
prodrMr_comm
prodrMn(I : Type) (s : seq I) (P : pred I) (F : I -> R) (g : I -> nat) : \prod_(i <- s | P i) (F i *+ g i) = \prod_(i <- s | P i) (F i) *+ \prod_(i <- s | P i) g i. Proof. by elim/big_rec3: _ => // i y1 y2 y3 _ ->; rewrite mulrnAr mulrnAl -mulrnA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
prodrMn
prodrMn_constn (I : finType) (A : pred I) (F : I -> R) : \prod_(i in A) (F i *+ n) = \prod_(i in A) F i *+ n ^ #|A|. Proof. by rewrite prodrMn prod_nat_const. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
prodrMn_const
natr_prodI r P (F : I -> nat) : (\prod_(i <- r | P i) F i)%:R = \prod_(i <- r | P i) (F i)%:R :> R. Proof. exact: (big_morph _ natrM). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
natr_prod
exprDn_commx y n (cxy : comm x y) : (x + y) ^+ n = \sum_(i < n.+1) (x ^+ (n - i) * y ^+ i) *+ 'C(n, i). Proof. elim: n => [|n IHn]; rewrite big_ord_recl mulr1 ?big_ord0 ?addr0 //=. rewrite exprS {}IHn /= mulrDl !big_distrr /= big_ord_recl mulr1 subn0. rewrite !big_ord_recr /= !binn !subnn !mul1r !subn0 bin0 !exprS -addrA. congr (_ + _); rewrite addrA -big_split /=; congr (_ + _). apply: eq_bigr => i _; rewrite !mulrnAr !mulrA -exprS -subSn ?(valP i) //. by rewrite subSS (commrX _ (commr_sym cxy)) -mulrA -exprS -mulrnDr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
exprDn_comm
exprD1nx n : (x + 1) ^+ n = \sum_(i < n.+1) x ^+ i *+ 'C(n, i). Proof. rewrite addrC (exprDn_comm n (commr_sym (commr1 x))). by apply: eq_bigr => i _; rewrite expr1n mul1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
exprD1n
sqrrD1x : (x + 1) ^+ 2 = x ^+ 2 + x *+ 2 + 1. Proof. rewrite exprD1n !big_ord_recr big_ord0 /= add0r. by rewrite addrC addrA addrAC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
sqrrD1
mulr_2closed:= {in S &, forall u v, u * v \in S}.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulr_2closed
mulr_closed:= 1 \in S /\ mulr_2closed.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulr_closed
semiring_closed:= nmod_closed S /\ mulr_closed.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
semiring_closed
semiring_closedD: semiring_closed -> nmod_closed S. Proof. by case. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
semiring_closedD
semiring_closedM: semiring_closed -> mulr_closed. Proof. by case. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
semiring_closedM
oner_eq0: (1 == 0 :> R) = false. Proof. exact: negbTE oner_neq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
oner_eq0
lastr_eq0(s : seq R) x : x != 0 -> (last x s == 0) = (last 1 s == 0). Proof. by case: s => [|y s] /negPf // ->; rewrite oner_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
lastr_eq0
lreg_neq0x : lreg x -> x != 0. Proof. by move=> reg_x; rewrite -[x]mulr1 mulrI_eq0 ?oner_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
lreg_neq0
pFrobenius_autp of p \in pchar R := fun x => x ^+ p.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
pFrobenius_aut
pcharf0: p%:R = 0 :> R. Proof. by apply/eqP; case/andP: pcharFp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
pcharf0
pcharf_prime: prime p. Proof. by case/andP: pcharFp. Qed. Hint Resolve pcharf_prime : core.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
pcharf_prime
mulrn_pcharx : x *+ p = 0. Proof. by rewrite -mulr_natl pcharf0 mul0r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrn_pchar
natr_mod_pcharn : (n %% p)%:R = n%:R :> R. Proof. by rewrite {2}(divn_eq n p) natrD mulrnA mulrn_pchar add0r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
natr_mod_pchar
dvdn_pcharfn : (p %| n)%N = (n%:R == 0 :> R). Proof. apply/idP/eqP=> [/dvdnP[n' ->]|n0]; first by rewrite natrM pcharf0 mulr0. apply/idPn; rewrite -prime_coprime // => /eqnP pn1. have [a _ /dvdnP[b]] := Bezoutl n (prime_gt0 pcharf_prime). move/(congr1 (fun m => m%:R : R))/eqP. by rewrite natrD !natrM pcharf0 n0 !mulr0 pn1 addr0 oner_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
dvdn_pcharf
pcharf_eq: pchar R =i (p : nat_pred). Proof. move=> q; apply/andP/eqP=> [[q_pr q0] | ->]; last by rewrite pcharf0. by apply/eqP; rewrite eq_sym -dvdn_prime2 // dvdn_pcharf. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
pcharf_eq
bin_lt_pcharf_0k : 0 < k < p -> 'C(p, k)%:R = 0 :> R. Proof. by move=> lt0kp; apply/eqP; rewrite -dvdn_pcharf prime_dvd_bin. Qed. Local Notation "x ^f" := (pFrobenius_aut pcharFp x).
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
bin_lt_pcharf_0