fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
orthogonal_freeS : pairwise_orthogonal form S -> free S. Proof. case/pairwise_orthogonalP=> [/=/andP[notS0 uniqS] oSS]. rewrite -(in_tupleE S); apply/freeP => a aS0 i. have S_i: S`_i \in S by apply: mem_nth. have /eqP: '[S`_i, 0] = 0 := linear0r _ _. rewrite -{2}aS0 raddf_sum /= (bigD1 i) //= big1 => [|j neq_ji]; last 1 first. by rewrite linearZ /= oSS ?mulr0 ?mem_nth // eq_sym nth_uniq. rewrite addr0 linearZ mulf_eq0 conjC_eq0 dnorm_eq0. by case/pred2P=> // Si0; rewrite -Si0 S_i in notS0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthogonal_free
filter_pairwise_orthogonalS p : pairwise_orthogonal form S -> pairwise_orthogonal form (filter p S). Proof. move=> orthoS; apply: sub_pairwise_orthogonal (orthoS). exact: mem_subseq (filter_subseq p S). exact/filter_uniq/free_uniq/orthogonal_free. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
filter_pairwise_orthogonal
orthonormal_freeS : orthonormal form S -> free S. Proof. by move/orthonormal_orthogonal/orthogonal_free. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthonormal_free
CauchySchwarz(u v : U) : `|'[u, v]| ^+ 2 <= '[u] * '[v] ?= iff ~~ free [:: u; v]. Proof. rewrite free_cons span_seq1 seq1_free -negb_or negbK orbC. have [-> | nz_v] /= := altP (v =P 0). by apply/leifP; rewrite /= !linear0r normCK mul0r mulr0. without loss ou: u / '[u, v] = 0. move=> IHo; pose a := '[u, v] / '[v]; pose u1 := u - a *: v. have ou: '[u1, v] = 0. rewrite linearBl/=. rewrite linearZl_LR. by rewrite divfK ?dnorm_eq0 ?subrr. rewrite (canRL (subrK _) (erefl u1)) rpredDr ?rpredZ ?memv_line //. rewrite linearDl /= ou add0r. rewrite linearZl_LR/= normrM (ger0_norm (dnorm_ge0 _ _)). rewrite exprMn mulrA -dnormZ hnormDd/=; last by rewrite linearZr_LR/= ou mulr0. have:= IHo _ ou. by rewrite mulrDl -leifBLR subrr ou normCK mul0r. rewrite ou normCK mul0r; split; first by rewrite mulr_ge0. rewrite eq_sym mulf_eq0 orbC dnorm_eq0 (negPf nz_v) /=. apply/idP/idP=> [|/vlineP[a {2}->]]; last by rewrite linearZr_LR/= ou mulr0. by rewrite dnorm_eq0 => /eqP->; apply: rpred0. Qed.
Theorem
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
CauchySchwarz
CauchySchwarz_sqrtu v : `|'[u, v]| <= sqrtC '[u] * sqrtC '[v] ?= iff ~~ free [:: u; v]. Proof. rewrite -(sqrCK (normr_ge0 _)) -sqrtCM ?nnegrE//. rewrite (mono_in_leif (@ler_sqrtC _)) 1?rpredM//= ?nnegrE//=. exact: CauchySchwarz. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
CauchySchwarz_sqrt
orthoPphi psi : reflect ('[phi, psi] = 0) (orthogonal form [:: phi] [:: psi]). Proof. by rewrite /orthogonal /= !andbT; apply: eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthoP
orthoPlphi S : reflect {in S, forall psi, '[phi, psi] = 0} (orthogonal form [:: phi] S). Proof. by rewrite [orthogonal form _ S]andbT /=; apply: (iffP allP) => ophiS ? /ophiS/eqP. Qed. Arguments orthoPl {phi S}.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthoPl
orthogonal_sym: symmetric (orthogonal form). Proof. apply: symmetric_from_pre => R S /orthogonalP oRS. by apply/orthogonalP=> phi psi Rpsi Sphi; rewrite hermC /= oRS ?rmorph0 ?mulr0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthogonal_sym
orthoPrS psi : reflect {in S, forall phi, '[phi, psi] = 0} (orthogonal form S [:: psi]). Proof. rewrite orthogonal_sym. by apply: (iffP orthoPl) => oSpsi phi Sphi; rewrite hermC /= oSpsi //= conjC0 mulr0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthoPr
orthogonal_catlR1 R2 S : orthogonal form (R1 ++ R2) S = orthogonal form R1 S && orthogonal form R2 S. Proof. exact: all_cat. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthogonal_catl
orthogonal_catrR S1 S2 : orthogonal form R (S1 ++ S2) = orthogonal form R S1 && orthogonal form R S2. Proof. by rewrite !(orthogonal_sym R) orthogonal_catl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthogonal_catr
eq_pairwise_orthogonalR S : perm_eq R S -> pairwise_orthogonal form R = pairwise_orthogonal form S. Proof. apply: catCA_perm_subst R S => R S S'. rewrite !pairwise_orthogonal_cat !orthogonal_catr (orthogonal_sym R S) -!andbA. by do !bool_congr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
eq_pairwise_orthogonal
eq_orthonormalS0 S : perm_eq S0 S -> orthonormal form S0 = orthonormal form S. Proof. move=> eqRS; rewrite !orthonormalE (eq_all_r (perm_mem eqRS)). by rewrite (eq_pairwise_orthogonal eqRS). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
eq_orthonormal
orthogonal_opplS R : orthogonal form (map -%R S) R = orthogonal form S R. Proof. by rewrite -!(orthogonal_sym R) orthogonal_oppr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthogonal_oppl
triangle_lerifu v : sqrtC '[u + v] <= sqrtC '[u] + sqrtC '[v] ?= iff ~~ free [:: u; v] && (0 <= coord [tuple v] 0 u). Proof. rewrite -(mono_in_leif ler_sqr) ?rpredD ?nnegrE ?sqrtC_ge0//. rewrite andbC sqrrD !sqrtCK addrAC dnormD (mono_leif (lerD2l _))/=. rewrite -mulr_natr -[_ + _](divfK (negbT (pnatr_eq0 C 2))) -/('Re _). rewrite (mono_leif (ler_pM2r _)) ?ltr0n//. have := leif_trans (leif_Re_Creal '[u, v]) (CauchySchwarz_sqrt u v). rewrite ReE; congr (_ <= _ ?= iff _); apply: andb_id2r. rewrite free_cons span_seq1 seq1_free -negb_or negbK orbC. have [-> | nz_v] := altP (v =P 0); first by rewrite linear0 coord0. case/vlineP=> [x ->]; rewrite linearZl linearZ/= pmulr_lge0 ?dnorm_gt0 //=. by rewrite (coord_free 0) ?seq1_free // eqxx mulr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
triangle_lerif
span_orthogonalS1 S2 phi1 phi2 : orthogonal form S1 S2 -> phi1 \in <<S1>>%VS -> phi2 \in <<S2>>%VS -> '[phi1, phi2] = 0. Proof. move/orthogonalP=> oS12; do 2!move/(@coord_span _ _ _ (in_tuple _))->. rewrite linear_sumlz big1 // => i _; rewrite linear_sumr big1 // => j _. by rewrite linearZlr/= oS12 ?mem_nth ?mulr0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
span_orthogonal
orthogonal_splitS beta : {X : U & X \in <<S>>%VS & {Y :U | [/\ beta = X + Y, '[X, Y] = 0 & orthogonal form [:: Y] S]}}. Proof. suffices [X S_X [Y -> oYS]]: {X : _ & X \in <<S>>%VS & {Y | beta = X + Y & orthogonal form [:: Y] S}}. - exists X => //; exists Y. by rewrite hermC /= (span_orthogonal oYS) ?memv_span1 ?conjC0 // mulr0. elim: S beta => [|phi S IHS] beta. by exists 0; last exists beta; rewrite ?mem0v ?add0r. have [[UU S_U [V -> oVS]] [X S_X [Y -> oYS]]] := (IHS phi, IHS beta). pose Z := '[Y, V] / '[V] *: V; exists (X + Z). rewrite /Z -{4}(addKr UU V) scalerDr scalerN addrA addrC span_cons. by rewrite memv_add ?memvB ?memvZ ?memv_line. exists (Y - Z); first by rewrite addrCA !addrA addrK addrC. apply/orthoPl=> psi; rewrite !inE => /predU1P[-> | Spsi]; last first. by rewrite linearBl linearZl_LR /= (orthoPl oVS _ Spsi) mulr0 subr0 (orthoPl oYS). rewrite linearBl !linearDr /= (span_orthogonal oYS) // ?memv_span ?mem_head //. rewrite !linearZl_LR /= (span_orthogonal oVS _ S_U) ?mulr0 ?memv_span ?mem_head //. have [-> | nzV] := eqVneq V 0; first by rewrite linear0r !mul0r subrr. by rewrite divfK ?dnorm_eq0 ?subrr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthogonal_split
normf1:= fun u => form1 u u.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
normf1
normf2:= fun u => form2 u u.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
normf2
isometry_of_dnormS tauS : pairwise_orthogonal form1 S -> pairwise_orthogonal form2 tauS -> map normf2 tauS = map normf1 S -> {tau : {linear U1 -> U2} | map tau S = tauS & {in <<S>>%VS &, isometry form2 form1 tau}}. Proof. move=> oS oT eq_nST; have freeS := orthogonal_free oS. have eq_sz: size tauS = size S by have:= congr1 size eq_nST; rewrite !size_map. have [tau defT] := linear_of_free S tauS; rewrite -[S]/(tval (in_tuple S)). exists tau => [|u v /coord_span-> /coord_span->]; rewrite ?raddf_sum ?defT //=. apply: eq_bigr => i _ /=; rewrite !linearZ/= !linear_sumlz; congr (_ * _). apply: eq_bigr => j _ /=; rewrite linearZ !linearZl; congr (_ * _). rewrite -!(nth_map 0 0 tau) ?{}defT //; have [-> | neq_ji] := eqVneq j i. by rewrite /= -[RHS](nth_map 0 0 normf1) -?[LHS](nth_map 0 0 normf2) ?eq_sz // eq_nST. have{oS} [/=/andP[_ uS] oS] := pairwise_orthogonalP oS. have{oT} [/=/andP[_ uT] oT] := pairwise_orthogonalP oT. by rewrite oS ?oT ?mem_nth ?nth_uniq ?eq_sz. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
isometry_of_dnorm
isometry_of_freeS f : free S -> {in S &, isometry form2 form1 f} -> {tau : {linear U1 -> U2} | {in S, tau =1 f} & {in <<S>>%VS &, isometry form2 form1 tau}}. Proof. move=> freeS If; have defS := free_span freeS. have [tau /(_ freeS (size_map f S))Dtau] := linear_of_free S (map f S). have {}Dtau: {in S, tau =1 f}. by move=> _ /(nthP 0)[i ltiS <-]; rewrite -!(nth_map 0 0) ?Dtau. exists tau => // _ _ /defS[a -> _] /defS[b -> _] /=. rewrite 2!{1}linear_sum /= !{1}linear_sumlz /=; apply/eq_big_seq=> xi1 Sxi1. rewrite !{1}linear_sumr; apply/eq_big_seq=> xi2 Sxi2 /=. by rewrite !linearZ /= !linearZl !Dtau //= If. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
isometry_of_free
isometry_raddf_inj(tau : {additive U1 -> U2}) : {in U1 &, isometry form2 form1 tau} -> {in U1 &, forall u v, u - v \in U1} -> {in U1 &, injective tau}. Proof. move=> Itau linU phi psi Uphi Upsi /eqP; rewrite -subr_eq0 -raddfB. by rewrite -(dnorm_eq0 form2) Itau ?linU // dnorm_eq0 subr_eq0 => /eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
isometry_raddf_inj
form_of_matrixm M (U V : 'M_(m, n)) := \tr (U *m M *m (V ^t theta)).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
form_of_matrix
matrix_of_form(form : 'rV[R]_n -> 'rV[R]_n -> R) : 'M[R]_n := \matrix_(i, j) form 'e_i 'e_j. Implicit Type form : {bilinear 'rV[R]_n -> 'rV[R]_n -> R | *%R & theta \; *%R}.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
matrix_of_form
matrix_of_formEform i j : matrix_of_form form i j = form 'e_i 'e_j. Proof. by rewrite mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
matrix_of_formE
Definition_ U := @GRing.isLinear.Build _ _ _ _ (form_of_matrix theta M U) (form_of_matrix_is_linear U).
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
Definition
form_of_matrixrU := (form_of_matrix theta M)^~U. Let form_of_matrixr_is_linear U : linear_for *%R (form_of_matrixr U). Proof. rewrite /form_of_matrixr /form_of_matrix => k v w. by rewrite -linearP /= !mulmxDl -!scalemxAl. Qed. HB.instance Definition _ U := @GRing.isLinear.Build _ _ _ _ (form_of_matrixr U) (form_of_matrixr_is_linear U).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
form_of_matrixr
form_of_matrixr_rev:= [revop form_of_matrixr of form_of_matrix theta M]. *)
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
form_of_matrixr_rev
form_of_matrix_is_bilinear: bilinear_for (GRing.Scale.Law.clone _ _ ( *%R ) _) (GRing.Scale.Law.clone _ _ (theta \; *%R ) _) (@form_of_matrix theta m M). Proof. split=> [u'|u] a x y /=. - by rewrite /form_of_matrix !mulmxDl linearD/= -!scalemxAl linearZ. - rewrite /form_of_matrix -linearZ/= -linearD/= [in LHS]linearD/= map_mxD. rewrite mulmxDr; congr (\tr (_ + _)). rewrite scalemxAr; congr (_ *m _). by rewrite linearZ/= map_mxZ. Qed. HB.instance Definition _ := bilinear_isBilinear.Build R _ _ _ (GRing.Scale.Law.clone _ _ ( *%R ) _) (GRing.Scale.Law.clone _ _ (theta \; *%R ) _) (@form_of_matrix theta m M) form_of_matrix_is_bilinear.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
form_of_matrix_is_bilinear
rV_formeei j : '['e_i :'rV__, 'e_j] = M i j. Proof. rewrite /form_of_matrix -rowE -map_trmx map_delta_mx -[M in LHS]trmxK. by rewrite -tr_col -trmx_mul -rowE trace_mx11 !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
rV_formee
form_of_matrixK: matrix_of_form (form_of_matrix theta M) = M. Proof. by apply/matrixP => i j; rewrite !mxE rV_formee. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
form_of_matrixK
rV_form0_eq0: M = 0 -> forall u v, '[u, v] = 0. Proof. by rewrite /form_of_matrix => -> u v; rewrite mulmx0 mul0mx trace_mx11 mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
rV_form0_eq0
matrix_of_formK: form_of_matrix theta (matrix_of_form form) =2 form. Proof. set f := (X in X =2 _); have f_eq i j : f 'e_i 'e_j = form 'e_i 'e_j. by rewrite /f rV_formee mxE. move=> u v; rewrite [u]row_sum_delta [v]row_sum_delta /f. rewrite !linear_sum/=; apply: eq_bigr => j _. rewrite !linear_sumlz/=; apply: eq_bigr => i _. by rewrite !linearZlr/= -f_eq. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
matrix_of_formK
hermitianmx:= [qualify M : 'M_n | M == ((-1) ^+ eps) *: M ^t theta]. Fact hermitianmx_key : pred_key hermitianmx. Proof. by []. Qed.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
hermitianmx
hermitianmx_keyed:= KeyedQualifier hermitianmx_key.
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
hermitianmx_keyed
hermitian_matrix:= HermitianMx { mx_of_hermitian :> 'M[R]_n; _ : mx_of_hermitian \is hermitianmx }.
Structure
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
hermitian_matrix
is_hermitianmxEM : (M \is hermitianmx) = (M == (-1) ^+ eps *: M ^t theta). Proof. by rewrite qualifE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
is_hermitianmxE
is_hermitianmxPM : reflect (M = (-1) ^+ eps *: M ^t theta) (M \is hermitianmx). Proof. by rewrite is_hermitianmxE; apply/eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
is_hermitianmxP
hermitianmxE(M : hermitian_matrix) : M = ((-1) ^+ eps) *: M ^t theta :> 'M__. Proof. by apply/eqP; case: M. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
hermitianmxE
trmx_hermitian(M : hermitian_matrix) : M^T = ((-1) ^+ eps) *: M ^ theta :> 'M__. Proof. by rewrite {1}hermitianmxE linearZ /= map_trmx trmxK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
trmx_hermitian
maptrmx_hermitian: M^t theta = (-1) ^+ eps *: (M : 'M__). Proof. rewrite trmx_hermitian map_mxZ rmorph_sign -map_mx_comp. by rewrite (map_mx_id (rmorphK _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
maptrmx_hermitian
form_of_matrix_is_hermitianm x y : (@form_of_matrix theta m M) x y = (-1) ^+ eps * theta ((@form_of_matrix theta m M) y x). Proof. rewrite {1}hermitianmxE /form_of_matrix. rewrite -!(scalemxAr, scalemxAl) linearZ/=; congr (_ * _). rewrite -mxtrace_tr -trace_map_mx !(trmx_mul, map_mxM, map_trmx, trmxK). by rewrite -mulmxA -!map_mx_comp !(map_mx_id (rmorphK _)). Qed. HB.instance Definition _ m := @isHermitianSesquilinear.Build _ _ _ _ _ (@form_of_matrix_is_hermitian m). Local Notation "''[' u , v ]" := (form_of_matrix theta M u%R v%R) : ring_scope. Local Notation "''[' u ]" := '[u, u]%R : ring_scope. Local Notation "B ^!" := (orthomx theta M B) : matrix_set_scope. Local Notation "A '_|_ B" := (A%MS <= B%MS^!)%MS : matrix_set_scope.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
form_of_matrix_is_hermitian
orthomxEu v : (u '_|_ v)%MS = ('[u, v] == 0). Proof. rewrite (sameP sub_kermxP eqP) mulmxA. by rewrite [_ *m _^t _]mx11_scalar -trace_mx11 fmorph_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthomxE
hermmx_eq0P{u v} : reflect ('[u, v] = 0) (u '_|_ v)%MS. Proof. by rewrite orthomxE; apply/eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
hermmx_eq0P
orthomxPp q (A : 'M_(p, n)) (B :'M_(q, n)) : reflect (forall (u v : 'rV_n), u <= A -> v <= B -> u '_|_ v)%MS (A '_|_ B)%MS. Proof. apply: (iffP idP) => AnB. move=> u v uA vB; rewrite (submx_trans uA) // (submx_trans AnB) //. apply/sub_kermxP; have /submxP [w ->] := vB. rewrite trmx_mul map_mxM !mulmxA -[kermx _ *m _ *m _]mulmxA. by rewrite [kermx _ *m _](sub_kermxP _) // mul0mx. apply/rV_subP => u /AnB /(_ _) /sub_kermxP uMv; apply/sub_kermxP. suff: forall m (v : 'rV[R]_m), (forall i, v *m 'e_i ^t theta = 0 :> 'M_1) -> v = 0. apply => i; rewrite !mulmxA -!mulmxA -map_mxM -trmx_mul uMv //. by apply/submxP; exists 'e_i. move=> /= m v Hv; apply: (can_inj (@trmxK _ _ _)). rewrite trmx0; apply/row_matrixP=> i; rewrite row0 rowE. apply: (can_inj (@trmxK _ _ _)); rewrite trmx0 trmx_mul trmxK. by rewrite -(map_delta_mx theta) map_trmx Hv. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthomxP
orthomx_symp q (A : 'M_(p, n)) (B :'M_(q, n)) : (A '_|_ B)%MS = (B '_|_ A)%MS. Proof. gen have nC : p q A B / (A '_|_ B -> B '_|_ A)%MS; last by apply/idP/idP; apply/nC. move=> AnB; apply/orthomxP => u v ? ?; rewrite orthomxE. rewrite hermC mulf_eq0 ?fmorph_eq0 ?signr_eq0 /=. by rewrite -orthomxE (orthomxP _ _ AnB). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthomx_sym
ortho_ortho_mxp (A : 'M_(p, n)) : (A^! '_|_ A)%MS. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
ortho_ortho_mx
ortho_mx_orthop (A : 'M_(p, n)) : (A '_|_ A^!)%MS. Proof. by rewrite orthomx_sym. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
ortho_mx_ortho
rank_orthomxu : (\rank (u ^!) >= n.-1)%N. Proof. rewrite mxrank_ker -subn1 leq_sub2l //. by rewrite (leq_trans (mxrankM_maxr _ _)) // rank_leq_col. Qed. Local Notation radmx := (1%:M^!)%MS.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
rank_orthomx
radmxE: radmx = kermx M. Proof. by rewrite /orthomx /orthomx trmx1 map_mx1 mulmx1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
radmxE
orthoNmxk m (A : 'M[R]_(k, n)) (B : 'M[R]_(m, n)) : ((- A) '_|_ B)%MS = (A '_|_ B)%MS. Proof. by rewrite eqmx_opp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthoNmx
orthomxNk m (A : 'M[R]_(k, n)) (B : 'M[R]_(m, n)) : (A '_|_ (- B))%MS = (A '_|_ B)%MS. Proof. by rewrite ![(A '_|_ _)%MS]orthomx_sym orthoNmx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthomxN
orthoDmxk m p (A : 'M[R]_(k, n)) (B : 'M[R]_(m, n)) (C : 'M[R]_(p, n)) : (A + B '_|_ C)%MS = (A '_|_ C)%MS && (B '_|_ C)%MS. Proof. by rewrite addsmxE !(sameP sub_kermxP eqP) mul_col_mx col_mx_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthoDmx
orthomxDk m p (A : 'M[R]_(k, n)) (B : 'M[R]_(m, n)) (C : 'M[R]_(p, n)) : (A '_|_ B + C)%MS = (A '_|_ B)%MS && (A '_|_ C)%MS. Proof. by rewrite ![(A '_|_ _)%MS]orthomx_sym orthoDmx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthomxD
orthoZmxp m a (A : 'M[R]_(p, n)) (B : 'M[R]_(m, n)) : a != 0 -> (a *: A '_|_ B)%MS = (A '_|_ B)%MS. Proof. by move=> a_neq0; rewrite eqmx_scale. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthoZmx
orthomxZp m a (A : 'M[R]_(p, n)) (B : 'M[R]_(m, n)) : a != 0 -> (A '_|_ (a *: B))%MS = (A '_|_ B)%MS. Proof. by move=> a_neq0; rewrite ![(A '_|_ _)%MS]orthomx_sym orthoZmx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthomxZ
eqmx_orthop m (A : 'M[R]_(p, n)) (B : 'M[R]_(m, n)) : (A :=: B)%MS -> (A^! :=: B^!)%MS. Proof. move=> eqAB; apply/eqmxP. by rewrite orthomx_sym -eqAB ortho_mx_ortho orthomx_sym eqAB ortho_mx_ortho. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
eqmx_ortho
genmx_orthop (A : 'M[R]_(p, n)) : (<<A>>^! :=: A^!)%MS. Proof. exact: (eqmx_ortho (genmxE _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
genmx_ortho
symmetricmx:= (hermitianmx _ false idfun).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
symmetricmx
skewmx:= (hermitianmx _ true idfun).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
skewmx
hermsymmx:= (hermitianmx _ false conjC).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
hermsymmx
hermitian1mx_subproof{C : numClosedFieldType} n : (1%:M : 'M[C]_n) \is hermsymmx. Proof. by rewrite qualifE /= expr0 scale1r tr_scalar_mx map_scalar_mx/= conjC1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
hermitian1mx_subproof
hermitian1mx{C : numClosedFieldType} n := HermitianMx (@hermitian1mx_subproof C n).
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
hermitian1mx
eigenvalue_closed{C : numClosedFieldType} n (A : 'M[C]_n) : (n > 0)%N -> exists a, eigenvalue A a. Proof. move=> n_gt0; have /closed_rootP [a rAa] : size (char_poly A) != 1%N. by rewrite size_char_poly; case: (n) n_gt0. by exists a; rewrite eigenvalue_root_char. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
eigenvalue_closed
common_eigenvector{C : numClosedFieldType} n (As : seq 'M[C]_n) : (n > 0)%N -> {in As &, forall A B, comm_mx A B} -> exists2 v : 'rV_n, v != 0 & all (fun A => stablemx v A) As. Proof. move=> n_gt0 /all_comm_mxP; have [k sAsk] := ubnP (size As). elim: k n n_gt0 As sAsk => [//|k IHk] n n_gt0 [|A As]. exists (const_mx 1) => //; apply/negP => /eqP/rowP/(_ (Ordinal n_gt0)). by rewrite !mxE => /eqP; rewrite oner_eq0. rewrite ltnS all_comm_mx_cons => sAsk /andP[]. move=> /allP/(_ _ _)/eqP/= A_comm /all_comm_mxP As_comm. have [a a_eigen] := eigenvalue_closed A n_gt0. have [] := IHk _ _ [seq restrictmx (eigenspace A a) B | B <- As]. - by rewrite lt0n mxrank_eq0. - by rewrite size_map. - apply/all_comm_mxP; move=> _ _ /= /mapP /= [B B_in ->] /mapP /= [B' B'_in ->]. rewrite -?conjmxM ?inE ?stablemx_row_base ?comm_mx_stable_eigenspace//; by [rewrite As_comm | apply: As_comm | apply: A_comm]. move=> v vN0 /allP /= vP; exists (v *m (row_base (eigenspace A a))). by rewrite mulmx_free_eq0 ?row_base_free. apply/andP; split. by apply/eigenvectorP; exists a; rewrite mulmx_sub // eq_row_base. apply/allP => B B_in; rewrite -stablemx_restrict ?vP //. by apply/mapP; exists B. by rewrite comm_mx_stable_eigenspace //; exact: A_comm. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
common_eigenvector
common_eigenvector2{C : numClosedFieldType}n (A B : 'M[C]_n) : (n > 0)%N -> A *m B = B *m A -> exists2 v : 'rV_n, v != 0 & (stablemx v A) && (stablemx v B). Proof. move=> n_gt0 AB_comm; have [] := @common_eigenvector _ _ [:: A; B] n_gt0. by move=> A' B'; rewrite !inE => /orP [] /eqP-> /orP [] /eqP->. by move=> v v_neq0 /allP vP; exists v; rewrite ?vP ?(mem_head, in_cons, orbT). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
common_eigenvector2
realmx:= (mxOver Num.real).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
realmx
trmxCK{C : numClosedFieldType} m n (A : 'M[C]_(m, n)) : A ^t* ^t* = A. Proof. by apply/matrixP=> i j; rewrite !mxE conjCK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
trmxCK
realmxCA : A \is a realmx -> A ^ conjC = A. Proof. by move=> ?; apply/matrixP => x y; rewrite mxE; exact/CrealP/mxOverP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
realmxC
realmxDA B : A \is a realmx -> B \is a realmx -> A + B \is a realmx. Proof. rewrite !qualifE/= => /'forall_forallP realA /'forall_forallP realB. by apply/'forall_forallP => i j; rewrite mxE realD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
realmxD
Remx_rect: {in realmx &, forall A B, (A + 'i *: B) ^ (@Re _) = A}. Proof. move=> A B Areal Breal; apply/matrixP=> i j; rewrite !mxE. by rewrite Re_rect // (mxOverP _ _). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
Remx_rect
Immx_rect: {in realmx &, forall A B, (A + 'i *: B) ^ (@Im _) = B}. Proof. move=> /= A B Areal Breal; apply/matrixP=> i j; rewrite !mxE. by rewrite Im_rect // (mxOverP _ _). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
Immx_rect
eqmx_ReiImA B A' B' : A \is a realmx -> B \is a realmx -> A' \is a realmx -> B' \is a realmx -> (A + 'i *: B) = (A' + 'i *: B') -> (A, B) = (A', B'). Proof. move=> ARe BRe A'Im B'Im eqAB. have /(congr1 (fun A => A ^ (@Im _))) := eqAB. have /(congr1 (fun A => A ^ (@Re _))) := eqAB. by rewrite !Remx_rect// !Immx_rect// => -> ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
eqmx_ReiIm
realsym_hermsym{C : numClosedFieldType} {n} (A : 'M[C]_n) : A \is symmetricmx -> A \is a realmx -> A \is hermsymmx. Proof. move=> Asym Areal; apply/is_hermitianmxP. by rewrite (trmx_hermitian (HermitianMx Asym))/= !scale1r ?realmxC ?map_mx_id. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
realsym_hermsym
real_similar{C : numClosedFieldType} {n} (A B : 'M[C]_n) : similar_in unitmx A B -> A \is a realmx -> B \is a realmx -> similar_in [predI realmx & unitmx] A B. Proof. case=> [P /=]; pose Pr := P ^ (@Re _); pose Pi := P ^ (@Im _). have Pr_real : Pr \is a realmx by apply/mxOverP=> i j; rewrite !mxE Creal_Re. have Pi_real : Pi \is a realmx by apply/mxOverP=> i j; rewrite !mxE Creal_Im. pose Q x := P ^ (@Re _) + x *: P ^ (@Im _). have -> : P = Q 'i by apply/matrixP=> i j; rewrite !mxE -Crect. move=> Qi_unit eq_AP_PB Areal Breal. pose p := \det (Pr ^ polyC + 'X *: Pi ^ polyC). have horner_evaliC x : horner_eval (x : C) \o polyC =1 id := fun=> hornerC _ _. have Qunit x : Q x \in unitmx = (p.[x] != 0). rewrite /p -horner_evalE -det_map_mx map_mxD map_mxZ/= horner_evalE hornerX. by rewrite -![(_ ^ polyC) ^ _]map_mx_comp !map_mx_id// unitmxE unitfE. have p_neq0 : p != 0. by move: Qi_unit; rewrite Qunit; apply: contra_neq => ->; rewrite hornerE. have [a a_real rootNa] : exists2 a, a \is Num.real & ~~ root p a. have rs_uniq : uniq [seq (i%:R : C) | i <- iota 0 (size p)]. by rewrite map_inj_uniq ?iota_uniq //; apply: mulrIn; rewrite oner_eq0. have := contraNN (fun x => max_poly_roots p_neq0 x rs_uniq). rewrite size_map size_iota ltnn => /(_ isT) /allPn[a a_in rootNpa]. by exists a => //; by move: a_in => /mapP [i _ ->]; rewrite realn. exists (Q a). rewrite inE Qunit rootNa andbT. rewrite /Q/=. by rewrite realmxD// mxOverZ. apply/similarP; rewrite ?Qunit//; move: eq_AP_PB ...
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
real_similar
unitarymx{m n} := [qualify X : 'M[C]_(m, n) | X *m X ^t* == 1%:M]. Fact unitarymx_key m n : pred_key (@unitarymx m n). Proof. by []. Qed.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
unitarymx
unitarymx_keyedm n := KeyedQualifier (unitarymx_key m n).
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
unitarymx_keyed
unitarymxPm n {M : 'M[C]_(m, n)} : reflect (M *m M^t* = 1%:M) (M \is unitarymx). Proof. by apply: (iffP eqP). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
unitarymxP
mulmxtVKm1 m2 n (A : 'M[C]_(m1, n)) (B : 'M[C]_(n, m2)) : B \is unitarymx -> A *m B *m B^t* = A. Proof. by move=> B_unitary; rewrite -mulmxA (unitarymxP _) ?mulmx1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
mulmxtVK
unitarymx_unitn (M : 'M[C]_n) : M \is unitarymx -> M \in unitmx. Proof. by move=> /unitarymxP /mulmx1_unit []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
unitarymx_unit
invmx_unitaryn (M : 'M[C]_n) : M \is unitarymx -> invmx M = M^t*. Proof. move=> Munitary; apply: (@row_full_inj _ _ _ _ M). by rewrite row_full_unit unitarymx_unit. by rewrite mulmxV ?unitarymx_unit ?(unitarymxP _). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
invmx_unitary
mulmxKtVm1 m2 n (A : 'M[C]_(m1, n)) (B : 'M[C]_(m2, n)) : B \is unitarymx -> m2 = n -> A *m B^t* *m B = A. Proof. move=> B_unitary m2E; case: _ / (esym m2E) in B B_unitary *. by rewrite -invmx_unitary // mulmxKV //; exact: unitarymx_unit. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
mulmxKtV
mxrank_unitarym n (M : 'M[C]_(m, n)) : M \is unitarymx -> \rank M = m. Proof. rewrite qualifE => /eqP /(congr1 mxrank); rewrite mxrank1 => rkM. apply/eqP; rewrite eqn_leq rank_leq_row /= -[X in (X <= _)%N]rkM. by rewrite mxrankM_maxl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
mxrank_unitary
mul_unitarymxm n p (A : 'M[C]_(m, n)) (B : 'M[C]_(n, p)) : A \is unitarymx -> B \is unitarymx -> A *m B \is unitarymx. Proof. move=> Aunitary Bunitary; apply/unitarymxP; rewrite trmx_mul map_mxM. by rewrite mulmxA -[A *m _ *m _]mulmxA !(unitarymxP _, mulmx1). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
mul_unitarymx
pinvmx_unitaryn (M : 'M[C]_n) : M \is unitarymx -> pinvmx M = M^t*. Proof. by move=> Munitary; rewrite pinvmxE ?unitarymx_unit// invmx_unitary. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
pinvmx_unitary
conjymxn (P M : 'M[C]_n) : P \is unitarymx -> conjmx P M = P *m M *m P^t*. Proof. by move=> Munitary; rewrite conjumx ?invmx_unitary ?unitarymx_unit. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
conjymx
trmx_unitaryn (M : 'M[C]_n) : (M ^T \is unitarymx) = (M \is unitarymx). Proof. apply/unitarymxP/unitarymxP; rewrite -?map_trmx -trmx_mul. by rewrite -trmx1 => /trmx_inj /mulmx1C->; rewrite trmx1. by move=> /mulmx1C->; rewrite trmx1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
trmx_unitary
conjC_unitarym n (M : 'M[C]_(m, n)) : (M ^ conjC \is unitarymx) = (M \is unitarymx). Proof. apply/unitarymxP/unitarymxP; rewrite -?map_mxM ?map_trmx; last first. by move=> ->; rewrite map_mx1. by rewrite -[1%:M](map_mx1 conjC) => /map_mx_inj ->; rewrite map_mx1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
conjC_unitary
trmxC_unitaryn (M : 'M[C]_n) : (M ^t* \is unitarymx) = (M \is unitarymx). Proof. by rewrite conjC_unitary trmx_unitary. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
trmxC_unitary
normalmx:= [qualify M : 'M[C]_n | M *m M ^t* == M ^t* *m M]. Fact normalmx_key : pred_key normalmx. Proof. by []. Qed.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
normalmx
normalmx_keyed:= KeyedQualifier normalmx_key.
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
normalmx_keyed
normalmxP{M : 'M[C]_n} : reflect (M *m M ^t* = M ^t* *m M) (M \is normalmx). Proof. exact: eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
normalmxP
hermitian_normalmx(A : 'M[C]_n) : A \is hermsymmx -> A \is normalmx. Proof. move=> Ahermi; apply/normalmxP. by rewrite (trmx_hermitian (HermitianMx Ahermi)) scale1r map_mxCK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
hermitian_normalmx
symmetric_normalmx(A : 'M[C]_n) : A \is symmetricmx -> A \is a realmx -> A \is normalmx. Proof. by move=> Asym Areal; rewrite hermitian_normalmx// realsym_hermsym. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
symmetric_normalmx
dotmxn (u v : 'rV[C]_n) := dotmx_def u%R v%R.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
dotmx
Definition_ n := Bilinear.on (@dotmx n). to be sufficient to equip dotmx with the bilinear structure but needed to use .copy in the end as in: *) HB.instance Definition _ n := Bilinear.copy (@dotmx n) dotmx_def. Local Notation "''[' u , v ]" := (dotmx u v) : ring_scope. Local Notation "''[' u ]" := '[u, u]%R : ring_scope. HB.instance Definition _ n := Hermitian.copy (@dotmx n) dotmx_def.
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
Definition
dotmxEn (u v : 'rV[C]_n) : '[u, v] = ( u *m v ^t* ) 0 0. Proof. by rewrite /dotmx /form_of_matrix mulmx1 /= trace_mx11. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
dotmxE
row_unitarymxPm n {M : 'M[C]_(m, n)} : reflect (forall i j, '[row i M, row j M] = (i == j)%:R) (M \is unitarymx). Proof. apply: (iffP eqP) => [Mo i j|Mo]. have /matrixP/(_ i j) := Mo; rewrite !mxE => <-. by rewrite dotmxE !mxE; apply: eq_bigr => /= k _; rewrite !mxE. apply/matrixP=> i j; rewrite !mxE; have := Mo i j; rewrite dotmxE !mxE => <-. by apply: eq_bigr => /= k _; rewrite !mxE. Qed. Fact dotmx_is_dotmx n (u : 'rV[C]_n) : u != 0 -> 0 < '[u]. Proof. move=> u_neq0; rewrite dotmxE mxE. suff /existsP[i ui_neq0] : [exists i, u 0 i != 0]. rewrite (bigD1 i) //= ltr_wpDr// ?sumr_ge0// ?mxE ?mul_conjC_gt0//. by move=> j _; rewrite !mxE mul_conjC_ge0. apply: contraNT u_neq0; rewrite negb_exists => /forallP uNN0. by apply/eqP/rowP=> j; rewrite mxE; apply/eqP; rewrite -[_ == _]negbK uNN0. Qed. HB.instance Definition _ n := isDotProduct.Build _ _ (@dotmx n) (@dotmx_is_dotmx n). Local Notation "B ^!" := (orthomx conjC (mx_of_hermitian (hermitian1mx _)) B) : matrix_set_scope. Local Notation "A '_|_ B" := (A%MS <= B^!)%MS : bool_scope.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
row_unitarymxP
orthomx1Em n p (A : 'M[C]_(m, n)) (B : 'M_(p, n)) : (A '_|_ B)%MS = (A *m B^t* == 0). Proof. by apply/sub_kermxP/eqP; rewrite !mul1mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
orthomx1E
orthomx1Pm n p {A : 'M[C]_(m, n)} {B : 'M_(p, n)} : reflect (A *m B^t* = 0) (A '_|_ B). Proof. by rewrite orthomx1E; exact/eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
orthomx1P