fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
orthomx_disjn p q (A : 'M[C]_(p, n)) (B :'M_(q, n)) : A '_|_ B -> (A :&: B = 0)%MS. Proof. move=> nAB; apply/eqP/rowV0Pn => [[v]]; rewrite sub_capmx => /andP [vA vB]. apply/negP; rewrite negbK. by rewrite -(dnorm_eq0 (@dotmx n)) -orthomxE (orthomxP _ _ _ nAB). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
orthomx_disj
orthomx_ortho_disjn p (A : 'M[C]_(p, n)) : (A :&: A^! = 0)%MS. Proof. exact/orthomx_disj/ortho_mx_ortho. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
orthomx_ortho_disj
rank_orthop n (A : 'M[C]_(p, n)) : \rank A^! = (n - \rank A)%N. Proof. by rewrite mxrank_ker mul1mx mxrank_map mxrank_tr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
rank_ortho
add_rank_orthop n (A : 'M[C]_(p, n)) : (\rank A + \rank A^!)%N = n. Proof. by rewrite rank_ortho subnKC ?rank_leq_col. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
add_rank_ortho
addsmx_orthop n (A : 'M[C]_(p, n)) : (A + A^! :=: 1%:M)%MS. Proof. apply/eqmxP/andP; rewrite submx1; split=> //. rewrite -mxrank_leqif_sup ?submx1 ?mxrank1 ?(mxdirectP _) /= ?add_rank_ortho //. by rewrite mxdirect_addsE /= ?mxdirectE ?orthomx_ortho_disj !eqxx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
addsmx_ortho
ortho_idp n (A : 'M[C]_(p, n)) : (A^!^! :=: A)%MS. Proof. apply/eqmx_sym/eqmxP. by rewrite -mxrank_leqif_eq 1?orthomx_sym // !rank_ortho subKn // ?rank_leq_col. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
ortho_id
submx_orthop m n (U : 'M[C]_(p, n)) (V : 'M_(m, n)) : (U^! <= V^!)%MS = (V <= U)%MS. Proof. by rewrite orthomx_sym ortho_id. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
submx_ortho
proj_orthop n (U : 'M[C]_(p, n)) := proj_mx <<U>>%MS U^!%MS.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
proj_ortho
sub_adds_genmx_ortho(p m n : nat) (U : 'M[C]_(p, n)) (W : 'M_(m, n)) : (W <= <<U>> + U^!)%MS. Proof. by rewrite !(adds_eqmx (genmxE _) (eqmx_refl _)) addsmx_ortho submx1. Qed. Local Hint Resolve sub_adds_genmx_ortho : core.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
sub_adds_genmx_ortho
cap_genmx_orthop n (U : 'M[C]_(p, n)) : (<<U>> :&: U^!)%MS = 0. Proof. apply/eqmx0P; rewrite !(cap_eqmx (genmxE _) (eqmx_refl _)). by rewrite orthomx_ortho_disj; exact/eqmx0P. Qed. Local Hint Resolve cap_genmx_ortho : core.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
cap_genmx_ortho
proj_ortho_subp m n (U : 'M_(p, n)) (W : 'M_(m, n)) : (W *m proj_ortho U <= U)%MS. Proof. by rewrite (submx_trans (proj_mx_sub _ _ _)) // genmxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
proj_ortho_sub
proj_ortho_compl_subp m n (U : 'M_(p, n)) (W : 'M_(m, n)) : (W - W *m proj_ortho U <= U^!)%MS. Proof. by rewrite proj_mx_compl_sub // addsmx_ortho submx1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
proj_ortho_compl_sub
proj_ortho_idp m n (U : 'M_(p, n)) (W : 'M_(m, n)) : (W <= U)%MS -> W *m proj_ortho U = W. Proof. by move=> WU; rewrite proj_mx_id ?genmxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
proj_ortho_id
proj_ortho_0p m n (U : 'M_(p, n)) (W : 'M_(m, n)) : (W <= U^!)%MS -> W *m proj_ortho U = 0. Proof. by move=> WUo; rewrite proj_mx_0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
proj_ortho_0
add_proj_orthop m n (U : 'M_(p, n)) (W : 'M_(m, n)) : W *m proj_ortho U + W *m proj_ortho U^!%MS = W. Proof. rewrite -[W in LHS](@add_proj_mx _ _ _ <<U>>%MS U^!%MS W)//. rewrite !mulmxDl proj_ortho_id ?proj_ortho_sub //. rewrite proj_ortho_0 ?proj_mx_sub // addr0. rewrite proj_ortho_0 ?ortho_id ?proj_ortho_sub // add0r. by rewrite proj_ortho_id ?proj_mx_sub// add_proj_mx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
add_proj_ortho
proj_ortho_projm n (U : 'M_(m, n)) : let P := proj_ortho U in P *m P = P. Proof. by rewrite /= proj_mx_proj. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
proj_ortho_proj
proj_orthoEp n (U : 'M_(p, n)) : (proj_ortho U :=: U)%MS. Proof. apply/eqmxP/andP; split; first by rewrite -proj_ortho_proj proj_ortho_sub. by rewrite -[X in (X <= _)%MS](proj_ortho_id (submx_refl U)) mulmx_sub. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
proj_orthoE
orthomx_proj_mx_orthop p' m m' n (A : 'M_(p, n)) (A' : 'M_(p', n)) (W : 'M_(m, n)) (W' : 'M_(m', n)) : A '_|_ A' -> W *m proj_ortho A '_|_ W' *m proj_ortho A'. Proof. rewrite orthomx_sym => An. rewrite mulmx_sub // orthomx_sym (eqmx_ortho _ (proj_orthoE _)). by rewrite (submx_trans _ An) // proj_ortho_sub. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
orthomx_proj_mx_ortho
schmidt_subproofm n (A : 'M[C]_(m, n)) : (m <= n)%N -> exists2 B : 'M_(m, n), B \is unitarymx & [forall i : 'I_m, (row i A <= (\sum_(k < m | (k <= i)%N) <<row k B>>))%MS && ('[row i A, row i B] >= 0) ]. Proof. elim: m A => [|m IHm]. exists (pid_mx n); first by rewrite qualifE !thinmx0. by apply/forallP=> -[]. rewrite -addn1 => A leq_Sm_n. have lemSm : (m <= m + 1)%N by rewrite addn1. have ltmSm : (m < m + 1)%N by rewrite addn1. have lemn : (m <= n)%N by rewrite ltnW // -addn1. have [B Bortho] := IHm (usubmx A) lemn. move=> /forallP /= subAB. have [v /and4P [vBn v_neq0 dAv_ge0 dAsub]] : exists v, [&& B '_|_ v, v != 0, '[dsubmx A, v] >= 0 & (dsubmx A <= B + v)%MS]. have := add_proj_ortho B (dsubmx A). set BoSn := (_ *m proj_ortho _^!%MS) => pBE. have [BoSn_eq0|BoSn_neq0] := eqVneq BoSn 0. rewrite BoSn_eq0 addr0 in pBE. have /rowV0Pn [v vBn v_neq0] : B^!%MS != 0. rewrite -mxrank_eq0 rank_ortho -lt0n subn_gt0. by rewrite mxrank_unitary // -addn1. rewrite orthomx_sym in vBn. exists v; rewrite vBn v_neq0 -pBE. rewrite ['[_, _]](hermmx_eq0P _ _) ?lexx //=. rewrite (submx_trans (proj_ortho_sub _ _)) //. by rewrite -{1}[B]addr0 addmx_sub_adds ?sub0mx. by rewrite (submx_trans _ vBn) // proj_ortho_sub. pose c := (sqrtC '[BoSn])^-1; have c_gt0 : c > 0. by rewrite invr_gt0 sqrtC_gt0 lt_def ?dnorm_eq0 ?dnorm_ge0 BoSn_neq0. exists BoSn; apply/and4P; split => //. - by rewrite orthomx_sym ?proj_ortho_sub // /gtr_eqF. - rewrite ...
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
schmidt_subproof
schmidtm n (A : 'M[C]_(m, n)) := if (m <= n)%N =P true is ReflectT le_mn then projT1 (sig2_eqW (schmidt_subproof A le_mn)) else A.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
schmidt
schmidt_unitarymxm n (A : 'M[C]_(m, n)) : (m <= n)%N -> schmidt A \is unitarymx. Proof. by rewrite /schmidt; case: eqP => // ?; case: sig2_eqW. Qed. Hint Resolve schmidt_unitarymx : core.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
schmidt_unitarymx
row_schmidt_subm n (A : 'M[C]_(m, n)) i : (row i A <= (\sum_(k < m | (k <= i)%N) <<row k (schmidt A)>>))%MS. Proof. rewrite /schmidt; case: eqP => // ?. by case: sig2_eqW => ? ? /= /forallP /(_ i) /andP[]. by apply/(sumsmx_sup i) => //; rewrite genmxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
row_schmidt_sub
form1_row_schmidtm n (A : 'M[C]_(m, n)) i : '[row i A, row i (schmidt A)] >= 0. Proof. rewrite /schmidt; case: eqP => // ?; rewrite ?dnorm_ge0 //. by case: sig2_eqW => ? ? /= /forallP /(_ i) /andP[]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
form1_row_schmidt
schmidt_subm n (A : 'M[C]_(m, n)) : (A <= schmidt A)%MS. Proof. apply/row_subP => i; rewrite (submx_trans (row_schmidt_sub _ _)) //. by apply/sumsmx_subP => /= j le_ji; rewrite genmxE row_sub. Qed. Hint Resolve schmidt_sub : core.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
schmidt_sub
eqmx_schmidt_fullm n (A : 'M[C]_(m, n)) : row_full A -> (schmidt A :=: A)%MS. Proof. move=> Afull; apply/eqmx_sym/eqmxP; rewrite -mxrank_leqif_eq //. by rewrite eqn_leq mxrankS //= (@leq_trans n) ?rank_leq_col ?col_leq_rank. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
eqmx_schmidt_full
eqmx_schmidt_freem n (A : 'M[C]_(m, n)) : row_free A -> (schmidt A :=: A)%MS. Proof. move=> Afree; apply/eqmx_sym/eqmxP; rewrite -mxrank_leqif_eq //. by rewrite eqn_leq mxrankS //= (@leq_trans m) ?rank_leq_row // ?row_leq_rank. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
eqmx_schmidt_free
schmidt_completem n (V : 'M[C]_(m, n)) := col_mx (schmidt (row_base V)) (schmidt (row_base V^!%MS)).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
schmidt_complete
schmidt_complete_unitarymxm n (V : 'M[C]_(m, n)) : schmidt_complete V \is unitarymx. Proof. apply/unitarymxP; rewrite tr_col_mx map_row_mx mul_col_row. rewrite !(unitarymxP _) ?schmidt_unitarymx ?rank_leq_col //. move=> [:nsV]; rewrite !(orthomx1P _) -?scalar_mx_block //; [abstract: nsV|]; last by rewrite orthomx_sym. by do 2!rewrite eqmx_schmidt_free ?eq_row_base ?row_base_free // orthomx_sym. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
schmidt_complete_unitarymx
cotrigonalizationn (As : seq 'M[C]_n) : {in As &, forall A B, comm_mx A B} -> cotrigonalizable_in (@unitarymx C n n) As. Proof. elim: n {-2}n (leqnn n) As => [|N IHN] n. rewrite leqn0 => /eqP n_eq0. exists 1%:M; first by rewrite qualifE mul1mx trmx1 map_mx1. apply/allP => ? ?; apply/is_trig_mxP => i j. by suff: False by []; move: i; rewrite n_eq0 => -[]. rewrite leq_eqVlt => /predU1P [n_eqSN|/IHN//]. have /andP [n_gt0 n_small] : (n > 0)%N && (n - 1 <= N)%N. by rewrite n_eqSN /= subn1. move=> As As_comm; have [v vN0 /allP /= vP] := common_eigenvector n_gt0 As_comm. suff: exists2 P : 'M[C]_(\rank v + \rank v^!, n), P \is unitarymx & all (fun A => is_trig_mx (P *m A *m ( P^t* ))) As. rewrite add_rank_ortho // => -[P P_unitary] /=; rewrite -invmx_unitary//. by under eq_all do rewrite -conjumx ?unitarymx_unit//; exists P. pose S := schmidt_complete v. pose r A := S *m A *m S^t*. have vSvo X : stablemx v X -> schmidt (row_base v) *m X *m schmidt (row_base v^!%MS) ^t* = 0. move=> /eigenvectorP [a v_in]. rewrite (eigenspaceP (_ : (_ <= _ a))%MS); last first. by rewrite eqmx_schmidt_free ?row_base_free ?eq_row_base. rewrite -scalemxAl (orthomx1P _) ?scaler0 //. by do 2!rewrite eqmx_schmidt_free ?row_base_free ?eq_row_base // orthomx_sym. have drrE X : drsubmx (r X) = schmidt (row_base v^!%MS) *m X *m schmidt (row_base v^!%MS) ^t*. by rewrite /r mul_col_mx tr_col_mx map_row_mx mul_col_row block_mxKdr. have vSv X a : (v <= eigenspace X a)%MS -> schmidt (row_base v ...
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
cotrigonalization
Schurn (A : 'M[C]_n) : (n > 0)%N -> trigonalizable_in (@unitarymx C n n) A. Proof. case: n => [//|n] in A * => _; have [] := @cotrigonalization _ [:: A]. by move=> ? ? /=; rewrite !in_cons !orbF => /eqP-> /eqP->. by move=> P P_unitary /=; rewrite andbT=> A_trigo; exists P. Qed.
Theorem
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
Schur
cotrigonalization2n (A B : 'M[C]_n) : A *m B = B *m A -> exists2 P : 'M[C]_n, P \is unitarymx & similar_trig P A && similar_trig P B. Proof. move=> AB_comm; have [] := @cotrigonalization _ [:: A; B]. by move=> ??; rewrite !inE => /orP[]/eqP->/orP[]/eqP->. move=> P Punitary /allP /= PP; exists P => //. by rewrite !PP ?(mem_head, in_cons, orbT). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
cotrigonalization2
orthomx_spectral_subproofn {A : 'M[C]_n} : reflect (exists2 sp : 'M_n * 'rV_n, sp.1 \is unitarymx & A = invmx sp.1 *m diag_mx sp.2 *m sp.1) (A \is normalmx). Proof. apply: (iffP normalmxP); last first. move=> [[/= P D] P_unitary ->]. rewrite !trmx_mul !map_mxM !mulmxA invmx_unitary //. rewrite !trmxCK ![_ *m P *m _]mulmxtVK //. by rewrite -[X in X *m P]mulmxA tr_diag_mx map_diag_mx diag_mxC mulmxA. move=> /cotrigonalization2 [P Punitary /andP[]] PA PATC. have Punit := unitarymx_unit Punitary. suff: similar_diag P A. move=> /similar_diagPex[D] PAD; exists (P, D) => //=. by rewrite -conjVmx//; exact/similarLR. apply/similar_diagPp => // i j; case: ltngtP => // [lt_ij|lt_ji] _. by have /is_trig_mxP-> := PA. have /is_trig_mxP -/(_ j i lt_ji)/eqP := PATC. rewrite !conjumx// invmx_unitary// -[P as X in X *m _]trmxCK. by rewrite -!map_mxM -!trmx_mul mulmxA 2!mxE conjC_eq0 => /eqP. Qed.
Theorem
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
orthomx_spectral_subproof
spectralmxn (A : 'M[C]_n) : 'M[C]_n := if @orthomx_spectral_subproof _ A is ReflectT P then (projT1 (sig2_eqW P)).1 else 1%:M.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
spectralmx
spectral_diagn (A : 'M[C]_n) : 'rV_n := if @orthomx_spectral_subproof _ A is ReflectT P then (projT1 (sig2_eqW P)).2 else 0.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
spectral_diag
spectral_unitarymxn (A : 'M[C]_n) : spectralmx A \is unitarymx. Proof. rewrite /spectralmx; case: orthomx_spectral_subproof; last first. by move=> _; apply/unitarymxP; rewrite trmx1 map_mx1 mulmx1. by move=> ?; case: sig2_eqW. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
spectral_unitarymx
spectral_unitn (A : 'M[C]_n) : spectralmx A \in unitmx. Proof. exact/unitarymx_unit/spectral_unitarymx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
spectral_unit
orthomx_spectralP{n} {A : 'M[C]_n} (P := spectralmx A) (sp := spectral_diag A) : reflect (A = invmx P *m diag_mx sp *m P) (A \is normalmx). Proof. rewrite /P /sp /spectralmx /spectral_diag. case: orthomx_spectral_subproof. by move=> Psp; case: sig2_eqW => //=; constructor. move=> /orthomx_spectral_subproof Ann; constructor; apply/eqP. apply: contra Ann; rewrite invmx1 mul1mx mulmx1 => /eqP->. suff -> : diag_mx 0 = 0 by rewrite qualifE trmx0 (map_mx0 conjC). by move=> ? ?; apply/matrixP=> i j; rewrite !mxE mul0rn. Qed.
Theorem
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
orthomx_spectralP
hermitian_spectral_diag_realn (A : 'M[C]_n) : A \is hermsymmx -> spectral_diag A \is a realmx. Proof. move=> Ahermi; have /hermitian_normalmx /orthomx_spectralP A_eq := Ahermi. have /(congr1 ( fun X => X^t* )) := A_eq. rewrite invmx_unitary ?spectral_unitarymx //. rewrite !trmx_mul !map_mxM map_trmx trmxK -map_mx_comp. rewrite tr_diag_mx map_diag_mx (map_mx_id (@conjCK _)). rewrite -[in RHS]invmx_unitary ?spectral_unitarymx //. have := is_hermitianmxP _ _ _ Ahermi; rewrite expr0 scale1r => <-. rewrite {1}A_eq mulmxA => /(congr1 (mulmx^~ (invmx (spectralmx A)))). rewrite !mulmxK ?spectral_unit//. move=> /(congr1 (mulmx (spectralmx A))); rewrite !mulKVmx ?spectral_unit//. move=> eq_A_conjA; apply/mxOverP => i j; rewrite ord1 {i}. have /matrixP /(_ j j) := eq_A_conjA; rewrite !mxE eqxx !mulr1n. by move=> /esym/CrealP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq div fintype bigop ssralg finset fingroup zmodp", "From mathcomp Require Import poly polydiv order ssrnum matrix mxalgebra vector", "From mathcomp Require Import mxpoly mxred sesquilinear" ]
algebra/spectral.v
hermitian_spectral_diag_real
addrA: associative (@add V). Proof. exact: addrA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addrA
addrC: commutative (@add V). Proof. exact: addrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addrC
add0r: left_id (@zero V) add. Proof. exact: add0r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
add0r
addr0: right_id (@zero V) add. Proof. exact: addr0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addr0
addrCA: @left_commutative V V +%R. Proof. exact: addrCA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addrCA
addrAC: @right_commutative V V +%R. Proof. exact: addrAC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addrAC
addrACA: @interchange V +%R +%R. Proof. exact: addrACA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addrACA
mulr0nx : x *+ 0 = 0. Proof. exact: mulr0n. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulr0n
mulr1nx : x *+ 1 = x. Proof. exact: mulr1n. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulr1n
mulr2nx : x *+ 2 = x + x. Proof. exact: mulr2n. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulr2n
mulrSx n : x *+ n.+1 = x + (x *+ n). Proof. exact: mulrS. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrS
mulrSrx n : x *+ n.+1 = x *+ n + x. Proof. exact: mulrSr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrSr
mulrbx (b : bool) : x *+ b = (if b then x else 0). Proof. exact: mulrb. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrb
mul0rnn : 0 *+ n = 0 :> V. Proof. exact: mul0rn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mul0rn
mulrnDln : {morph (fun x => x *+ n) : x y / x + y}. Proof. exact: mulrnDl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrnDl
mulrnDrx m n : x *+ (m + n) = x *+ m + x *+ n. Proof. exact: mulrnDr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrnDr
mulrnAx m n : x *+ (m * n) = x *+ m *+ n. Proof. exact: mulrnA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrnA
mulrnACx m n : x *+ m *+ n = x *+ n *+ m. Proof. exact: mulrnAC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrnAC
iter_addrn x y : iter n (+%R x) y = x *+ n + y. Proof. exact: iter_addr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
iter_addr
iter_addr_0n x : iter n (+%R x) 0 = x *+ n. Proof. exact: iter_addr_0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
iter_addr_0
sumrMnlI r P (F : I -> V) n : \sum_(i <- r | P i) F i *+ n = (\sum_(i <- r | P i) F i) *+ n. Proof. exact: sumrMnl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
sumrMnl
sumrMnrx I r P (F : I -> nat) : \sum_(i <- r | P i) x *+ F i = x *+ (\sum_(i <- r | P i) F i). Proof. exact: sumrMnr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
sumrMnr
sumr_const(I : finType) (A : pred I) x : \sum_(i in A) x = x *+ #|A|. Proof. exact: sumr_const. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
sumr_const
sumr_const_natm n x : \sum_(n <= i < m) x = x *+ (m - n). Proof. exact: sumr_const_nat. Qed. #[deprecated(since="mathcomp 2.4.0", note="Use Algebra.nmod_closed instead.")]
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
sumr_const_nat
addr_closed:= nmod_closed.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addr_closed
addNr: @left_inverse V V V 0 -%R +%R. Proof. exact: addNr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addNr
addrN: @right_inverse V V V 0 -%R +%R. Proof. exact: addrN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addrN
subrr:= addrN.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subrr
addKr: @left_loop V V -%R +%R. Proof. exact: addKr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addKr
addNKr: @rev_left_loop V V -%R +%R. Proof. exact: addNKr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addNKr
addrK: @right_loop V V -%R +%R. Proof. exact: addrK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addrK
addrNK: @rev_right_loop V V -%R +%R. Proof. exact: addrNK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addrNK
subrK:= addrNK.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subrK
subrKCx y : x + (y - x) = y. Proof. by rewrite addrC subrK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subrKC
subKrx : involutive (fun y => x - y). Proof. exact: subKr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subKr
addrI: @right_injective V V V +%R. Proof. exact: addrI. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addrI
addIr: @left_injective V V V +%R. Proof. exact: addIr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addIr
subrI: right_injective (fun x y => x - y). Proof. exact: subrI. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subrI
subIr: left_injective (fun x y => x - y). Proof. exact: subIr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subIr
opprK: @involutive V -%R. Proof. exact: opprK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
opprK
oppr_inj: @injective V V -%R. Proof. exact: oppr_inj. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
oppr_inj
oppr0: -0 = 0 :> V. Proof. exact: oppr0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
oppr0
oppr_eq0x : (- x == 0) = (x == 0). Proof. exact: oppr_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
oppr_eq0
subr0x : x - 0 = x. Proof. exact: subr0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subr0
sub0rx : 0 - x = - x. Proof. exact: sub0r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
sub0r
opprBx y : - (x - y) = y - x. Proof. exact: opprB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
opprB
opprD: {morph -%R: x y / x + y : V}. Proof. exact: opprD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
opprD
addrKAz x y : (x + z) - (z + y) = x - y. Proof. exact: addrKA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addrKA
subrKAz x y : (x - z) + (z + y) = x + y. Proof. exact: subrKA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subrKA
addr0_eqx y : x + y = 0 -> - x = y. Proof. exact: addr0_eq. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addr0_eq
subr0_eqx y : x - y = 0 -> x = y. Proof. exact: subr0_eq. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subr0_eq
subr_eqx y z : (x - z == y) = (x == y + z). Proof. exact: subr_eq. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subr_eq
subr_eq0x y : (x - y == 0) = (x == y). Proof. exact: subr_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
subr_eq0
addr_eq0x y : (x + y == 0) = (x == - y). Proof. exact: addr_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
addr_eq0
eqr_oppx y : (- x == - y) = (x == y). Proof. exact: eqr_opp. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
eqr_opp
eqr_oppLRx y : (- x == y) = (x == - y). Proof. exact: eqr_oppLR. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
eqr_oppLR
mulNrnx n : (- x) *+ n = x *- n. Proof. exact: mulNrn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulNrn
mulrnBln : {morph (fun x => x *+ n) : x y / x - y}. Proof. exact: mulrnBl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrnBl
mulrnBrx m n : n <= m -> x *+ (m - n) = x *+ m - x *+ n. Proof. exact: mulrnBr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
mulrnBr
sumrNI r P (F : I -> V) : (\sum_(i <- r | P i) - F i = - (\sum_(i <- r | P i) F i)). Proof. exact: sumrN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
sumrN
sumrBI r (P : pred I) (F1 F2 : I -> V) : \sum_(i <- r | P i) (F1 i - F2 i) = \sum_(i <- r | P i) F1 i - \sum_(i <- r | P i) F2 i. Proof. exact: sumrB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
sumrB
telescope_sumrn m (f : nat -> V) : n <= m -> \sum_(n <= k < m) (f k.+1 - f k) = f m - f n. Proof. exact: telescope_sumr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div seq", "From mathcomp Require Import choice fintype finfun bigop prime binomial", "From mathcomp Require Export nmodule" ]
algebra/ssralg.v
telescope_sumr