fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
trmx_sesqui: M^T = (-1) ^+ eps *: M ^ theta. Proof. rewrite [in LHS](sesquiP _) // -mul_scalar_mx trmx_mul. by rewrite tr_scalar_mx mul_mx_scalar map_trmx trmxK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
trmx_sesqui
maptrmx_sesqui: M^t theta = (-1) ^+ eps *: M. Proof. by rewrite trmx_sesqui map_mxZ rmorph_sign -map_mx_comp eq_map_mx_id. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
maptrmx_sesqui
formCu v : '[u, v] = (-1) ^+ eps * theta '[v, u]. Proof. rewrite /form [M in LHS](sesquiP _) // -mulmxA !mxE rmorph_sum mulr_sumr. apply: eq_bigr => /= i _; rewrite !(mxE, mulr_sumr, mulr_suml, rmorph_sum). apply: eq_bigr => /= j _; rewrite !mxE !rmorphM mulrCA -!mulrA. by congr (_ * _); rewrite mulrA mulrC /= thetaK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
formC
form_eq0Cu v : ('[u, v] == 0) = ('[v, u] == 0). Proof. by rewrite formC mulf_eq0 signr_eq0 /= fmorph_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
form_eq0C
orthom (B : 'M_(m, n)) := orthomx theta M B. Local Notation "B ^_|_" := (ortho B) : ring_scope. Local Notation "A '_|_ B" := (A%MS <= B^_|_)%MS : ring_scope.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
ortho
normalEu v : (u '_|_ v) = ('[u, v] == 0). Proof. by rewrite (sameP sub_kermxP eqP) mulmxA [_ *m _^t _]mx11_scalar fmorph_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
normalE
form_eq0P{u v} : reflect ('[u, v] = 0) (u '_|_ v). Proof. by rewrite normalE; apply/eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
form_eq0P
normalPp q (A : 'M_(p, n)) (B :'M_(q, n)) : reflect (forall (u v : 'rV_n), (u <= A)%MS -> (v <= B)%MS -> u '_|_ v) (A '_|_ B). Proof. apply: (iffP idP) => AnB. move=> u v uA vB; rewrite (submx_trans uA) // (submx_trans AnB) //. apply/sub_kermxP; have /submxP [w ->] := vB. rewrite trmx_mul map_mxM !mulmxA -[kermx _ *m _ *m _]mulmxA. by rewrite [kermx _ *m _](sub_kermxP _) // mul0mx. apply/rV_subP => u /AnB /(_ _) /sub_kermxP uMv; apply/sub_kermxP. suff: forall m (v : 'rV[R]_m), (forall i, v *m 'e_i ^t theta = 0 :> 'M_1) -> v = 0. apply => i; rewrite !mulmxA -!mulmxA -map_mxM -trmx_mul uMv //. by apply/submxP; exists 'e_i. move=> /= m v Hv; apply: (can_inj (@trmxK _ _ _)). rewrite trmx0; apply/row_matrixP=> i; rewrite row0 rowE. apply: (can_inj (@trmxK _ _ _)); rewrite trmx0 trmx_mul trmxK. by rewrite -(map_delta_mx theta) map_trmx Hv. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
normalP
normalCp q (A : 'M_(p, n)) (B : 'M_(q, n)) : (A '_|_ B) = (B '_|_ A). Proof. gen have nC : p q A B / A '_|_ B -> B '_|_ A; last by apply/idP/idP; apply/nC. move=> AnB; apply/normalP => u v ? ?; rewrite normalE. rewrite formC mulf_eq0 ?fmorph_eq0 ?signr_eq0 /=. by rewrite -normalE (normalP _ _ AnB). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
normalC
normal_ortho_mxp (A : 'M_(p, n)) : ((A^_|_) '_|_ A). Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
normal_ortho_mx
normal_mx_orthop (A : 'M_(p, n)) : (A '_|_ (A^_|_)). Proof. by rewrite normalC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
normal_mx_ortho
rank_normalu : (\rank (u ^_|_) >= n.-1)%N. Proof. rewrite mxrank_ker -subn1 leq_sub2l //. by rewrite (leq_trans (mxrankM_maxr _ _)) // rank_leq_col. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
rank_normal
rad:= 1%:M^_|_.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
rad
rad_ker: rad = kermx M. Proof. by rewrite /rad /ortho /orthomx trmx1 map_mx1 mulmx1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
rad_ker
formDdu v : u '_|_ v -> '[u + v] = '[u] + '[v]. Proof. move=> uNv; rewrite formDl !formDr ['[v, u]]formC. by rewrite ['[u, v]](form_eq0P _) // rmorph0 mulr0 addr0 add0r. Qed.
Theorem
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
formDd
formZa u : '[a *: u]= (a * theta a) * '[u]. Proof. by rewrite formZl formZr mulrA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
formZ
formNu : '[- u] = '[u]. Proof. by rewrite formNr formNl opprK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
formN
form_signm u : '[(-1) ^+ m *: u] = '[u]. Proof. by rewrite -signr_odd scaler_sign; case: odd; rewrite ?formN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
form_sign
formDu v : let d := '[u, v] in '[u + v] = '[u] + '[v] + (d + (-1) ^+ eps * theta d). Proof. by rewrite formDl !formDr ['[v, _]]formC [_ + '[v]]addrC addrACA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
formD
formBu v : let d := '[u, v] in '[u - v] = '[u] + '[v] - (d + (-1) ^+ eps * theta d). Proof. by rewrite formD formN !formNr rmorphN mulrN -opprD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
formB
formBdu v : u '_|_ v -> '[u - v] = '[u] + '[v]. Proof. by move=> uTv; rewrite formDd ?formN // normalE formNr oppr_eq0 -normalE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
formBd
symmetric_form:= (false, idfun).-sesqui.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
symmetric_form
skew:= (true, idfun).-sesqui.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
skew
hermitian:= (false, conjC).-sesqui. HB.mixin Record isDotProduct (R : numDomainType) (U : lmodType R) (op : U -> U -> R) := { neq0_dnorm_gt0 : forall u, u != 0 -> 0 < op u u }. HB.structure Definition Dot (R : numDomainType) (U : lmodType R) (theta : R -> R) := {op of isDotProduct R U op & @Hermitian R U false theta op}.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
hermitian
Definition_ (R : numDomainType) (U : lmodType R) (theta : R -> R) (f : {dot U for theta}) (u : U) := @GRing.isZmodMorphism.Build _ _ (f u) (@zmod_morphismr_subproof _ _ _ _ _ _ f u). #[non_forgetful_inheritance] HB.instance Definition _ (R : numDomainType) (U : lmodType R) (theta : R -> R) (f : {dot U for theta}) (u : U) := @GRing.isScalable.Build _ _ _ _ (f u) (@linearr_subproof _ _ _ _ _ _ f u).
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
Definition
base: class_of >-> Hermitian.class_of.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
base
apply: map >-> Funclass.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
apply
DotfM := (pack fM idfun).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
Dot
is_dot:= Dot.axiom.*)
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
is_dot
is_skew(R : nzRingType) (eps : bool) (theta : R -> R) (U : lmodType R) (form : {hermitian U for eps & theta}) := (eps = true) /\ (theta =1 id).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
is_skew
is_sym(R : nzRingType) (eps : bool) (theta : R -> R) (U : lmodType R) (form : {hermitian U for eps & theta}) := (eps = false) /\ (theta =1 id).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
is_sym
is_hermsym(R : nzRingType) (eps : bool) (theta : R -> R) (U : lmodType R) (form : {hermitian U for eps & theta}) := (eps = false).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
is_hermsym
hermCu v : '[u, v] = (-1) ^+ eps * theta '[v, u]. Proof. by move: form => [? [[? ? ? ?] []]] /=. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
hermC
hnormNu : '[- u] = '[u]. Proof. by rewrite linearNl linearNr opprK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
hnormN
hnorm_signn u : '[(-1) ^+ n *: u] = '[u]. Proof. by rewrite -signr_odd scaler_sign; case: (odd n); rewrite ?hnormN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
hnorm_sign
hnormDu v : let d := '[u, v] in '[u + v] = '[u] + '[v] + (d + (-1) ^+ eps * theta d). Proof. by rewrite /= addrAC -hermC linearDl 2!linearDr !addrA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
hnormD
hnormBu v : let d := '[u, v] in '[u - v] = '[u] + '[v] - (d + (-1) ^+ eps * theta d). Proof. by rewrite /= hnormD hnormN linearNr addrA rmorphN mulrN opprD addrA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
hnormB
hnormDdu v : '[u, v] = 0 -> '[u + v] = '[u] + '[v]. Proof. by move=> ouv; rewrite hnormD ouv rmorph0 mulr0 !addr0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
hnormDd
hnormBdu v : '[u, v] = 0 -> '[u - v] = '[u] + '[v]. Proof. by move=> ouv; rewrite hnormDd ?hnormN// linearNr [X in - X]ouv oppr0. Qed. Local Notation "u '_|_ v" := ('[u, v] == 0) : ring_scope.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
hnormBd
ortho_rec(s1 s2 : seq U) := all [pred u | all [pred v | u '_|_ v] s2] s1.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
ortho_rec
pair_ortho_rec(s : seq U) := if s is v :: s' then ortho_rec [:: v] s' && pair_ortho_rec s' else true.
Fixpoint
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
pair_ortho_rec
pairwise_orthogonals := (0 \notin s) && pair_ortho_rec s.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
pairwise_orthogonal
orthogonals1 s2 := (@ortho_rec s1 s2). Arguments orthogonal : simpl never.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthogonal
orthogonal_consu us vs : orthogonal (u :: us) vs = orthogonal [:: u] vs && orthogonal us vs. Proof. by rewrite /orthogonal /= andbT. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthogonal_cons
orthonormals := all [pred v | '[v] == 1] s && pair_ortho_rec s.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthonormal
orthonormal_not0S : orthonormal S -> 0 \notin S. Proof. by case/andP=> /allP S1 _; rewrite (contra (S1 _)) //= linear0r eq_sym oner_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthonormal_not0
orthonormalES : orthonormal S = all [pred phi | '[phi] == 1] S && pairwise_orthogonal S. Proof. by rewrite -(andb_idl (@orthonormal_not0 S)) andbCA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthonormalE
orthonormal_orthogonalS : orthonormal S -> pairwise_orthogonal S. Proof. by rewrite orthonormalE => /andP[_]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthonormal_orthogonal
isometrytau := forall u v, form1 (tau u) (tau v) = form2 u%R v%R.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
isometry
isometry_from_tomD tau mR := prop_in2 mD (inPhantom (isometry tau)) /\ prop_in1 mD (inPhantom (forall u, in_mem (tau u) mR)). Local Notation "{ 'in' D , 'isometry' tau , 'to' R }" := (isometry_from_to (mem D) tau (mem R)) (format "{ 'in' D , 'isometry' tau , 'to' R }") : type_scope.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
isometry_from_to
herm_eq0Cu v : ('[u, v] == 0) = ('[v, u] == 0). Proof. by rewrite hermC mulf_eq0 signr_eq0 /= fmorph_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
herm_eq0C
orthovV := (\bigcap_(i < \dim V) lker (alpha (vbasis V)`_i))%VS. Local Notation "U '_|_ V" := (U <= orthov V)%VS : vspace_scope.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthov
mem_orthovPnV u : reflect (exists2 v, v \in V & '[u, v] != 0) (u \notin orthov V). Proof. apply: (iffP idP) => [u_orthovV|[v /coord_vbasis-> uvNorthov]]; last first. apply/subv_bigcapP => uP. rewrite linear_sumr big1 ?eqxx//= in uvNorthov. move=> i _; have := uP i isT. by rewrite -memvE memv_ker lfunE/= linearZr/= => /eqP/= ->; rewrite mulr0. suff /existsP [i ui_neq0] : [exists i : 'I_(\dim V), '[u, (vbasis V)`_i] != 0]. by exists (vbasis V)`_i => //; rewrite vbasis_mem ?mem_nth ?size_tuple. apply: contraNT u_orthovV; rewrite negb_exists => /forallP ui_eq0. apply/subv_bigcapP => i _. by rewrite -memvE memv_ker lfunE /= -[_ == _]negbK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
mem_orthovPn
mem_orthovPV u : reflect {in V, forall v, '[u, v] = 0} (u \in orthov V). Proof. apply: (iffP idP) => [/mem_orthovPn orthovNu v vV|/(_ _ _)/eqP orthov_u]. by apply/eqP/negP=> /negP Northov_uv; apply: orthovNu; exists v. by apply/mem_orthovPn => -[v /orthov_u->]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
mem_orthovP
orthov1Eu : orthov <[u]> = lker (alpha u). Proof. apply/eqP; rewrite eqEsubv; apply/andP. split; apply/subvP=> v; rewrite memv_ker lfunE /=. by move=> /mem_orthovP-> //; rewrite ?memv_line. move=> vu_eq0; apply/mem_orthovP => w /vlineP[k->]. by apply/eqP; rewrite linearZ mulf_eq0 vu_eq0 orbT. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthov1E
orthovPU V : reflect {in U & V, forall u v, '[u, v] = 0} (U '_|_ V)%VS. Proof. apply: (iffP subvP); last by move=> H ??; apply/mem_orthovP=> ??; apply: H. by move=> /(_ _ _)/mem_orthovP; move=> H ????; apply: H. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthovP
orthov_symU V : (U '_|_ V)%VS = (V '_|_ U)%VS. Proof. by apply/orthovP/orthovP => eq0 ????; apply/eqP; rewrite herm_eq0C eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthov_sym
mem_orthov1v u : (u \in orthov <[v]>) = ('[u, v] == 0). Proof. by rewrite orthov1E memv_ker lfunE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
mem_orthov1
orthov11u v : (<[u]> '_|_ <[v]>)%VS = ('[u, v] == 0). Proof. exact: mem_orthov1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthov11
mem_orthov1_symv u : (u \in orthov <[v]>) = (v \in orthov <[u]>). Proof. exact: orthov_sym. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
mem_orthov1_sym
orthov0: orthov 0 = fullv. Proof. apply/eqP; rewrite eqEsubv subvf. apply/subvP => x _; rewrite mem_orthov1. by rewrite linear0r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthov0
mem_orthov_symV u : (u \in orthov V) = (V <= orthov <[u]>)%VS. Proof. exact: orthov_sym. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
mem_orthov_sym
leq_dim_orthov1u V : ((\dim V).-1 <= \dim (V :&: orthov <[u]>))%N. Proof. rewrite -(limg_ker_dim (alpha u) V) -orthov1E. have := dimvS (subvf (alpha u @: V)); rewrite dimvf addnC. by case: (\dim _) => [|[]] // _; rewrite leq_pred. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
leq_dim_orthov1
dim_img_form_eq1u V : u \notin orthov V -> \dim (alpha u @: V)%VS = 1%N. Proof. move=> /mem_orthovPn [v vV Northov_uv]; apply/eqP; rewrite eqn_leq /=. rewrite -[1%N as X in (_ <= X)%N](dimvf [the vectType F of F^o]) dimvS ?subvf//=. have := @dimvS _ _ <['[v, u] : F^o]> (alpha u @: V). rewrite -memvE dim_vline herm_eq0C Northov_uv; apply. by apply/memv_imgP; exists v; rewrite ?memvf// !lfunE /=. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
dim_img_form_eq1
eq_dim_orthov1u V : u \notin orthov V -> (\dim V).-1 = \dim (V :&: orthov <[u]>). Proof. rewrite -(limg_ker_dim (alpha u) V) => /dim_img_form_eq1->. by rewrite -orthov1E addn1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
eq_dim_orthov1
dim_img_form_eq0u V : u \in orthov V -> \dim (alpha u @: V)%VS = 0%N. Proof. by move=> uV; apply/eqP; rewrite dimv_eq0 -lkerE -orthov1E orthov_sym. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
dim_img_form_eq0
neq_dim_orthov1u V : (\dim V > 0)%N -> u \in orthov V -> ((\dim V).-1 < \dim (V :&: orthov <[u]>))%N. Proof. move=> V_gt0; rewrite -(limg_ker_dim (alpha u) V) -orthov1E => u_in. rewrite dim_img_form_eq0 // addn0 (capv_idPl _) 1?orthov_sym //. by case: (\dim _) V_gt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
neq_dim_orthov1
leqif_dim_orthov1u V : (\dim V > 0)%N -> ((\dim V).-1 <= \dim (V :&: orthov <[u]>) ?= iff (u \notin orthov V))%N. Proof. move=> Vr_gt0; apply/leqifP. by case: (boolP (u \in _)) => /= [/neq_dim_orthov1->|/eq_dim_orthov1->]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
leqif_dim_orthov1
leqif_dim_orthov1_fullu : (n > 0)%N -> ((\dim {:vT}).-1 <= \dim (orthov <[u]>) ?= iff (u \notin orthov fullv))%N. Proof. by move=> n_gt0; have := @leqif_dim_orthov1 u fullv; rewrite capfv; apply. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
leqif_dim_orthov1_full
orthogonal1Pu v : reflect ('[u, v] = 0) (orthogonal form [:: u] [:: v]). Proof. by rewrite /orthogonal /= !andbT; apply: eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthogonal1P
orthogonalPus vs : reflect {in us & vs, forall u v, '[u, v] = 0} (orthogonal form us vs). Proof. apply: (iffP allP) => ousvs u => [v /ousvs/allP opus /opus/eqP // | /ousvs opus]. by apply/allP=> v /= /opus->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthogonalP
orthogonal_opprS R : orthogonal form S (map -%R R) = orthogonal form S R. Proof. wlog suffices IH: S R / orthogonal form S R -> orthogonal form S (map -%R R). by apply/idP/idP=> /IH; rewrite ?mapK //; apply: opprK. move/orthogonalP=> oSR; apply/orthogonalP=> xi1 _ Sxi1 /mapP[xi2 Rxi2 ->]. by rewrite linearNr /= oSR ?oppr0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthogonal_oppr
orthogonalEus vs : (orthogonal form us vs) = (<<us>> '_|_ <<vs>>)%VS. Proof. apply/orthogonalP/orthovP => uvsP u v; last first. by move=> uus vvs; rewrite uvsP // memv_span. rewrite -[us]in_tupleE -[vs]in_tupleE => /coord_span-> /coord_span->. rewrite linear_sumr big1 //= => i _. rewrite linear_sumlz big1 //= => j _. by rewrite linearZlr/= uvsP ?mulr0// mem_nth. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthogonalE
orthovEU V : (U '_|_ V)%VS = orthogonal form (vbasis U) (vbasis V). Proof. by rewrite orthogonalE !(span_basis (vbasisP _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthovE
radv:= (orthov fullv).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
radv
orthoDvU V W : (U + V '_|_ W)%VS = (U '_|_ W)%VS && (V '_|_ W)%VS. Proof. by rewrite subv_add. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthoDv
orthovDU V W : (U '_|_ V + W)%VS = (U '_|_ V)%VS && (U '_|_ W)%VS. Proof. by rewrite ![(U '_|_ _)%VS]orthov_sym orthoDv. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthovD
nondegenerate:= radv == 0%VS.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
nondegenerate
is_psymplectic:= [/\ nondegenerate, is_skew form & 2 \in [pchar F] -> forall u, '[u, u] = 0].
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
is_psymplectic
is_porthogonal:= [/\ nondegenerate, is_sym form & 2 \in [pchar F] -> forall u, '[u, u] = 0].
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
is_porthogonal
is_unitary:= nondegenerate /\ (is_hermsym form).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
is_unitary
is_symplectic:= is_psymplectic (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use is_porthogonal instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
is_symplectic
is_orthogonal:= is_porthogonal (only parsing). Arguments orthogonalP {F eps theta vT form us vs}. Arguments orthovP {F eps theta vT form U V}. Arguments mem_orthovPn {F eps theta vT form V u}. Arguments mem_orthovP {F eps theta vT form V u}.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
is_orthogonal
dnorm_geiff0u : 0 <= '[u] ?= iff (u == 0). Proof. by apply/leifP; have [->|uN0] := altP eqP; rewrite ?linear0r ?neq0_dnorm_gt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
dnorm_geiff0
dnorm_ge0u : 0 <= '[u]. Proof. by rewrite dnorm_geiff0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
dnorm_ge0
dnorm_eq0u : ('[u] == 0) = (u == 0). Proof. by rewrite -dnorm_geiff0 eq_sym. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
dnorm_eq0
dnorm_gt0u : (0 < '[u]) = (u != 0). Proof. by rewrite lt_def dnorm_eq0 dnorm_ge0 andbT. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
dnorm_gt0
sqrt_dnorm_ge0u : 0 <= sqrtC '[u]. Proof. by rewrite sqrtC_ge0 dnorm_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
sqrt_dnorm_ge0
sqrt_dnorm_eq0u : (sqrtC '[u] == 0) = (u == 0). Proof. by rewrite sqrtC_eq0 dnorm_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
sqrt_dnorm_eq0
sqrt_dnorm_gt0u : (sqrtC '[u] > 0) = (u != 0). Proof. by rewrite sqrtC_gt0 dnorm_gt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
sqrt_dnorm_gt0
dnormZa u : '[a *: u]= `|a| ^+ 2 * '[u]. Proof. by rewrite linearZl_LR linearZr_LR/= mulrA normCK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
dnormZ
dnormDu v : let d := '[u, v] in '[u + v] = '[u] + '[v] + (d + d^*). Proof. by rewrite hnormD mul1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
dnormD
dnormBu v : let d := '[u, v] in '[u - v] = '[u] + '[v] - (d + d^*). Proof. by rewrite hnormB mul1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
dnormB
pairwise_orthogonalPS : reflect (uniq (0 :: S) /\ {in S &, forall phi psi, phi != psi -> '[phi, psi] = 0}) (pairwise_orthogonal form S). Proof. rewrite /pairwise_orthogonal /=; case notS0: (~~ _); last by right; case. elim: S notS0 => [|phi S IH] /=; first by left. rewrite inE eq_sym andbT => /norP[nz_phi {}/IH IH]. have [opS | not_opS] := allP; last first. right=> [[/andP[notSp _] opS]]; case: not_opS => psi Spsi /=. by rewrite opS ?mem_head 1?mem_behead // (memPnC notSp). rewrite (contra (opS _)) /= ?dnorm_eq0 //. apply: (iffP IH) => [] [uniqS oSS]; last first. by split=> //; apply: sub_in2 oSS => psi Spsi; apply: mem_behead. split=> // psi xi; rewrite !inE => /predU1P[-> // | Spsi]. by case/predU1P=> [-> | /opS] /eqP. case/predU1P=> [-> _ | Sxi /oSS-> //]. apply/eqP; rewrite hermC. by move: (opS psi Spsi) => /= /eqP ->; rewrite rmorph0 mulr0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
pairwise_orthogonalP
pairwise_orthogonal_catR S : pairwise_orthogonal form (R ++ S) = [&& pairwise_orthogonal form R, pairwise_orthogonal form S & orthogonal form R S]. Proof. rewrite /pairwise_orthogonal mem_cat negb_or -!andbA; do !bool_congr. elim: R => [|phi R /= ->]; rewrite ?andbT// all_cat -!andbA /=. by do !bool_congr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
pairwise_orthogonal_cat
orthonormal_catR S : orthonormal form (R ++ S) = [&& orthonormal form R, orthonormal form S & orthogonal form R S]. Proof. rewrite !orthonormalE pairwise_orthogonal_cat all_cat -!andbA. by do !bool_congr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthonormal_cat
orthonormalPS : reflect (uniq S /\ {in S &, forall phi psi, '[phi, psi] = (phi == psi)%:R}) (orthonormal form S). Proof. rewrite orthonormalE; have [/= normS | not_normS] := allP; last first. by right=> [[_ o1S]]; case: not_normS => phi Sphi; rewrite /= o1S ?eqxx. apply: (iffP (pairwise_orthogonalP S)) => [] [uniqS oSS]. split=> // [|phi psi]; first by case/andP: uniqS. by have [-> _ /normS/eqP | /oSS] := altP eqP. split=> // [|phi psi Sphi Spsi /negbTE]; last by rewrite oSS // => ->. by rewrite /= (contra (normS _)) // linear0r eq_sym oner_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthonormalP
sub_orthonormalS1 S2 : {subset S1 <= S2} -> uniq S1 -> orthonormal form S2 -> orthonormal form S1. Proof. move=> sS12 uniqS1 /orthonormalP[_ oS1]. by apply/orthonormalP; split; last apply: sub_in2 sS12 _ _. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
sub_orthonormal
orthonormal2Pphi psi : reflect [/\ '[phi, psi] = 0, '[phi] = 1 & '[psi] = 1] (orthonormal form [:: phi; psi]). Proof. rewrite /orthonormal /= !andbT andbC. by apply: (iffP and3P) => [] []; do 3!move/eqP->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthonormal2P
sub_pairwise_orthogonalS1 S2 : {subset S1 <= S2} -> uniq S1 -> pairwise_orthogonal form S2 -> pairwise_orthogonal form S1. Proof. move=> sS12 uniqS1 /pairwise_orthogonalP[/andP[notS2_0 _] oS2]. apply/pairwise_orthogonalP; rewrite /= (contra (sS12 0)) //. by split=> //; apply: sub_in2 oS2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
sub_pairwise_orthogonal