fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
mul1q: left_id one mul. Proof. by move=> x; rewrite -[x]reprK !piE mul1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq ssralg generic_quotient" ]
algebra/ring_quotient.v
mul1q
mulq_addl: left_distributive mul +%R. Proof. move=> x y z; rewrite -[x]reprK -[y]reprK -[z]reprK. by apply/eqP; rewrite piE /= mulrDl equiv_refl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq ssralg generic_quotient" ]
algebra/ring_quotient.v
mulq_addl
nonzero1q: one != 0. Proof. by rewrite piE equivE subr0 idealr1. Qed. #[export] HB.instance Definition _ := GRing.Zmodule_isComNzRing.Build (quot idealI) mulqA mulqC mul1q mulq_addl nonzero1q. #[export] HB.instance Definition _ := @isNzRingQuotient.Build R (equiv idealI) 0 -%R +%R 1%R *%R (quot idealI) (lock _) pi_mul.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq ssralg generic_quotient" ]
algebra/ring_quotient.v
nonzero1q
rquot_IdomainAxiom(x y : {quot I}): x * y = 0 -> (x == 0) || (y == 0). Proof. by move=> /eqP; rewrite -[x]reprK -[y]reprK !piE !equivE !subr0 prime_idealrM. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat", "From mathcomp Require Import seq ssralg generic_quotient" ]
algebra/ring_quotient.v
rquot_IdomainAxiom
eq_map_mx_id(R : nzRingType) m n (M : 'M[R]_(m, n)) (f : R -> R) : f =1 id -> M ^ f = M. Proof. by move=> /eq_map_mx->; rewrite map_mx_id. Qed. HB.mixin Record isInvolutive (R : nzRingType) (f : R -> R) := { involutive_subproof : involutive f }.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
eq_map_mx_id
DefinitionInvolutiveRMorphism (R : nzRingType) := { f of @GRing.RMorphism R R f & @isInvolutive R f }.
HB.structure
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
Definition
Definition_ := isInvolutive.Build _ _ idfunK.
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
Definition
rmorphK(f : involutive_rmorphism R) : involutive f. Proof. by move: f => [? [? ? []]]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
rmorphK
Definition_ := isInvolutive.Build _ conjC conjCfun_involutive.
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
Definition
map_mxCK{C : numClosedFieldType} m n (A : 'M[C]_(m, n)) : (A ^ conjC) ^ conjC = A. Proof. by apply/matrixP=> i j; rewrite !mxE conjCK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
map_mxCK
RecordisBilinear (R : nzRingType) (U U' : lmodType R) (V : zmodType) (s : R -> V -> V) (s' : R -> V -> V) (f : U -> U' -> V) := { zmod_morphisml_subproof : forall u', zmod_morphism (f ^~ u') ; zmod_morphismr_subproof : forall u, zmod_morphism (f u) ; linearl_subproof : forall u', scalable_for s (f ^~ u') ; linearr_subproof : forall u, scalable_for s' (f u) }. #[short(type="bilinear")] HB.structure Definition Bilinear (R : nzRingType) (U U' : lmodType R) (V : zmodType) (s : R -> V -> V) (s' : R -> V -> V) := {f of isBilinear R U U' V s s' f}.
HB.mixin
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
Record
bilinear_for(R : nzRingType) (U U' : lmodType R) (V : zmodType) (s : GRing.Scale.law R V) (s' : GRing.Scale.law R V) (f : U -> U' -> V) := ((forall u', GRing.linear_for (s : R -> V -> V) (f ^~ u')) * (forall u, GRing.linear_for s' (f u)))%type. HB.factory Record bilinear_isBilinear (R : nzRingType) (U U' : lmodType R) (V : zmodType) (s : GRing.Scale.law R V) (s' : GRing.Scale.law R V) (f : U -> U' -> V) := { bilinear_subproof : bilinear_for s s' f }. HB.builders Context R U U' V s s' f of bilinear_isBilinear R U U' V s s' f. HB.instance Definition _ := isBilinear.Build R U U' V s s' f (fun u' => zmod_morphism_linear (bilinear_subproof.1 u')) (fun u => zmod_morphism_linear (bilinear_subproof.2 u)) (fun u' => scalable_linear (bilinear_subproof.1 u')) (fun u => scalable_linear (bilinear_subproof.2 u)). HB.end.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
bilinear_for
mapUUV:= (@Bilinear.type R U U' V s s').
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
mapUUV
map_class:= mapUUV.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
map_class
map_at_left(a : R) := mapUUV.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
map_at_left
map_at_right(b : R) := mapUUV.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
map_at_right
map_at_both(a b : R) := mapUUV.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
map_at_both
map_for_lefta s_a := MapForLeft {map_for_left_map : mapUUV; _ : s a = s_a }.
Structure
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
map_for_left
map_for_rightb s'_b := MapForRight {map_for_right_map : mapUUV; _ : s' b = s'_b }.
Structure
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
map_for_right
map_for_botha b s_a s'_b := MapForBoth {map_for_both_map : mapUUV; _ : s a = s_a ; _ : s' b = s'_b }.
Structure
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
map_for_both
unify_map_at_lefta (f : map_at_left a) := MapForLeft f (erefl (s a)).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
unify_map_at_left
unify_map_at_rightb (f : map_at_right b) := MapForRight f (erefl (s' b)).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
unify_map_at_right
unify_map_at_botha b (f : map_at_both a b) := MapForBoth f (erefl (s a)) (erefl (s' b)).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
unify_map_at_both
wrapped:= Wrap {unwrap : mapUUV}.
Structure
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
wrapped
wrap(f : map_class) := Wrap f.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
wrap
Definition_ (R : nzRingType) (U U' : lmodType R) (V : zmodType) (s : R -> V -> V) (s' : R -> V -> V) (f : {bilinear U -> U' -> V | s & s'}) (u : U) := @GRing.isZmodMorphism.Build U' V (f u) (@zmod_morphismr_subproof _ _ _ _ _ _ f u). #[non_forgetful_inheritance] HB.instance Definition _ (R : nzRingType) (U U' : lmodType R) (V : zmodType) (s : R -> V -> V) (s' : R -> V -> V) (f : @bilinear R U U' V s s') (u : U) := @GRing.isScalable.Build _ _ _ _ (f u) (@linearr_subproof _ _ _ _ _ _ f u).
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
Definition
applyr_headt (f : U -> U' -> V) u v := let: tt := t in f v u.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
applyr_head
applyr:= (applyr_head tt).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
applyr
Bilinear.map_for_left_map : Bilinear.map_for_left >-> Bilinear.type.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
Bilinear
Bilinear.map_for_right_map : Bilinear.map_for_right >-> Bilinear.type.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
Bilinear
Bilinear.map_for_both_map : Bilinear.map_for_both >-> Bilinear.type.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
Bilinear
Bilinear.unify_map_at_left : Bilinear.map_at_left >-> Bilinear.map_for_left.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
Bilinear
Bilinear.unify_map_at_right : Bilinear.map_at_right >-> Bilinear.map_for_right.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
Bilinear
Bilinear.unify_map_at_both : Bilinear.map_at_both >-> Bilinear.map_for_both.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
Bilinear
Bilinear.unify_map_at_left.
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
Bilinear
Bilinear.unify_map_at_right.
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
Bilinear
Bilinear.unify_map_at_both.
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
Bilinear
Bilinear.unwrap : Bilinear.wrapped >-> Bilinear.type.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
Bilinear
Bilinear.wrap : Bilinear.map_class >-> Bilinear.wrapped.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
Bilinear
Bilinear.wrap.
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
Bilinear
linear0r: f z 0 = 0. Proof. by rewrite raddf0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
linear0r
linearNr: {morph f z : x / - x}. Proof. exact: raddfN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
linearNr
linearDr: {morph f z : x y / x + y}. Proof. exact: raddfD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
linearDr
linearBr: {morph f z : x y / x - y}. Proof. exact: raddfB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
linearBr
linearMnrn : {morph f z : x / x *+ n}. Proof. exact: raddfMn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
linearMnr
linearMNnrn : {morph f z : x / x *- n}. Proof. exact: raddfMNn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
linearMNnr
linear_sumrI r (P : pred I) E : f z (\sum_(i <- r | P i) E i) = \sum_(i <- r | P i) f z (E i). Proof. exact: raddf_sum. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
linear_sumr
linearZr_LR: scalable_for s' (f z). Proof. exact: linearZ_LR. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
linearZr_LR
linearPra : {morph f z : u v / a *: u + v >-> s' a u + v}. Proof. exact: linearP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
linearPr
applyrEx : applyr f x =1 f^~ x. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
applyrE
Definition_ := GRing.isZmodMorphism.Build _ _ (applyr f z) (@zmod_morphisml_subproof _ _ _ _ _ _ f z). HB.instance Definition _ := GRing.isScalable.Build _ _ _ _ (applyr f z) (@linearl_subproof _ _ _ _ _ _ f z).
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
Definition
linear0l: f 0 z = 0. Proof. by rewrite -applyrE raddf0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
linear0l
linearNl: {morph f^~ z : x / - x}. Proof. by move=> ?; rewrite -applyrE raddfN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
linearNl
linearDl: {morph f^~ z : x y / x + y}. Proof. by move=> ? ?; rewrite -applyrE raddfD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
linearDl
linearBl: {morph f^~ z : x y / x - y}. Proof. by move=> ? ?; rewrite -applyrE raddfB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
linearBl
linearMnln : {morph f^~ z : x / x *+ n}. Proof. by move=> ?; rewrite -applyrE raddfMn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
linearMnl
linearMNnln : {morph f^~ z : x / x *- n}. Proof. by move=> ?; rewrite -applyrE raddfMNn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
linearMNnl
linear_sumlzI r (P : pred I) E : f (\sum_(i <- r | P i) E i) z = \sum_(i <- r | P i) f (E i) z. Proof. by rewrite -applyrE raddf_sum. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
linear_sumlz
linearZl_LR: scalable_for s (f ^~ z). Proof. by move=> ? ?; rewrite -applyrE linearZ_LR. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
linearZl_LR
linearPla : {morph f^~ z : u v / a *: u + v >-> s a u + v}. Proof. by move=> ? ?; rewrite -applyrE linearP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
linearPl
linearZlz (c : S) (a : R) (h_c := h c) (f : Bilinear.map_for_left U U' s s' a h_c) u : f (a *: u) z = h_c (Bilinear.wrap f u z). Proof. by rewrite linearZl_LR; case: f => f /= ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
linearZl
linearZrz c' b (h'_c' := h' c') (f : Bilinear.map_for_right U U' s s' b h'_c') u : f z (b *: u) = h'_c' (Bilinear.wrap f z u). Proof. by rewrite linearZr_LR; case: f => f /= ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
linearZr
linearZlrc c' a b (h_c := h c) (h'_c' := h' c') (f : Bilinear.map_for_both U U' s s' a b h_c h'_c') u v : f (a *: u) (b *: v) = h_c (h'_c' (Bilinear.wrap f u v)). Proof. by rewrite linearZl_LR linearZ_LR; case: f => f /= -> ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
linearZlr
linearZrlc c' a b (h_c := h c) (h'_c' := h' c') (f : Bilinear.map_for_both U U' s s' a b h_c h'_c') u v : f (a *: u) (b *: v) = h'_c' (h_c (Bilinear.wrap f u v)). Proof. by rewrite linearZ_LR/= linearZl_LR; case: f => f /= -> ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
linearZrl
rev_mulmx(R : nzRingType) m n p := [revop mulmxr of @mulmx R m n p]. *)
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
rev_mulmx
mulmx_is_bilinear(R : comNzRingType) m n p : bilinear_for (GRing.Scale.Law.clone _ _ *:%R _) (GRing.Scale.Law.clone _ _ *:%R _) (@mulmx R m n p). Proof. split=> [u'|u] a x y /=. - by rewrite mulmxDl scalemxAl. - by rewrite mulmxDr scalemxAr. Qed. HB.instance Definition _ (R : comNzRingType) m n p := bilinear_isBilinear.Build R [the lmodType R of 'M[R]_(m, n)] [the lmodType R of 'M[R]_(n, p)] [the zmodType of 'M[R]_(m, p)] _ _ (@mulmx R m n p) (mulmx_is_bilinear R m n p).
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
mulmx_is_bilinear
formu v := (u *m M *m (v ^t theta)) 0 0. Local Notation "''[' u , v ]" := (form u%R v%R) : ring_scope. Local Notation "''[' u ]" := '[u, u] : ring_scope.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
form
form0lu : '[0, u] = 0. Proof. by rewrite /form !mul0mx mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
form0l
form0ru : '[u, 0] = 0. Proof. by rewrite /form trmx0 map_mx0 mulmx0 mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
form0r
formDlu v w : '[u + v, w] = '[u, w] + '[v, w]. Proof. by rewrite /form !mulmxDl mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
formDl
formDru v w : '[u, v + w] = '[u, v] + '[u, w]. Proof. by rewrite /form linearD !map_mxD !mulmxDr mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
formDr
formZra u v : '[u, a *: v] = theta a * '[u, v]. Proof. by rewrite /form !(linearZ, map_mxZ) /= mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
formZr
formZla u v : '[a *: u, v] = a * '[u, v]. Proof. by do !rewrite /form -[_ *: _ *m _]/(mulmxr _ _) linearZ /=; rewrite mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
formZl
formNlu v : '[- u, v] = - '[u, v]. Proof. by rewrite -scaleN1r formZl mulN1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
formNl
formNru v : '[u, - v] = - '[u, v]. Proof. by rewrite -scaleN1r formZr rmorphN1 mulN1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
formNr
formeei j : '['e_i, 'e_j] = M i j. Proof. rewrite /form -rowE -map_trmx map_delta_mx -[M in LHS]trmxK. by rewrite -tr_col -trmx_mul -rowE !mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
formee
form0_eq0: M = 0 -> forall u v, '[u, v] = 0. Proof. by rewrite/form=> -> u v; rewrite mulmx0 mul0mx mxE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
form0_eq0
RecordisHermitianSesquilinear (R : nzRingType) (U : lmodType R) (eps : bool) (theta : R -> R) (f : U -> U -> R) := { hermitian_subproof : forall x y : U, f x y = (-1) ^+ eps * theta (f y x) }. HB.structure Definition Hermitian (R : nzRingType) (U : lmodType R) (eps : bool) (theta : R -> R) := {f of @Bilinear R U U _ ( *%R ) (theta \; *%R) f & @isHermitianSesquilinear R U eps theta f}.
HB.mixin
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
Record
Definition_ (R : nzRingType) (U : lmodType R) (eps : bool) (theta : R -> R) (f : {hermitian U for eps & theta}) (u : U) := @GRing.isZmodMorphism.Build _ _ (f u) (@zmod_morphismr_subproof _ _ _ _ _ _ f u). #[non_forgetful_inheritance] HB.instance Definition _ (R : nzRingType) (U : lmodType R) (eps : bool) (theta : R -> R) (f : {hermitian U for eps & theta}) (u : U) := @GRing.isScalable.Build _ _ _ _ (f u) (@linearr_subproof _ _ _ _ _ _ f u).
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
Definition
axiom(f : U -> U -> R) := forall x y : U, f x y = (-1) ^+ eps * theta (f y x).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
axiom
class_of(f : U -> U -> R) : Prop := Class { base : Bilinear.class_of ( *%R) (theta \; *%R) f; mixin : axiom f }.*)
Record
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
class_of
linearr(u : U) := Linear (base class u).
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
linearr
additivel(u' : U) := @GRing.Additive.Pack _ _ (Phant (U -> R)) (applyr cF u') (Bilinear.basel (base class) u').
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
additivel
linearl(u' : U) := @GRing.Linear.Pack _ _ _ _ (Phant (U -> R)) (applyr cF u') (Bilinear.basel (base class) u').
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
linearl
bilinear:= @Bilinear.Pack _ _ _ _ _ _ (Phant (U -> U -> R)) cF (base class).*)
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
bilinear
base: class_of >-> bilmorphism_for.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
base
apply: map >-> Funclass.
Coercion
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
apply
hermitian_for:= Hermitian.axiom.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
hermitian_for
HermitianfM := (pack (Phant _) fM idfun).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
Hermitian
additiver.
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
additiver
linearr.
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
linearr
additivel.
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
additivel
linearl.
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
linearl
bilinear.
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
bilinear
hermapplyr:= (@applyr_head _ _ _ _ tt).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
hermapplyr
orthomx{R : fieldType} (theta : R -> R) n m M (B : 'M_(m, n)) : 'M_n := kermx (M *m (B ^t theta)).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
orthomx
sesqui:= [qualify M : 'M_n | M == ((-1) ^+ eps_theta.1) *: M ^t eps_theta.2]. Fact sesqui_key : pred_key sesqui. Proof. by []. Qed.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
sesqui
sesqui_keyed:= KeyedQualifier sesqui_key.
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
sesqui_keyed
sesquiE: (M \is (eps, theta).-sesqui) = (M == (-1) ^+ eps *: M ^t theta). Proof. by rewrite qualifE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
sesquiE
sesquiP: reflect (M = (-1) ^+ eps *: M ^t theta) (M \is (eps, theta).-sesqui). Proof. by rewrite sesquiE; exact/eqP. Qed. Hypotheses (thetaK : involutive theta) (M_sesqui : M \is (eps, theta).-sesqui).
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple bigop ssralg finset fingroup", "From mathcomp Require Import zmodp poly order ssrnum matrix mxalgebra vector" ]
algebra/sesquilinear.v
sesquiP