fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
qpolyC_is_zmod_morphism: zmod_morphism (qpolyC h). Proof. by move=> x y; rewrite qpolyCD qpolyCN. Qed. #[deprecated(since="mathcomp 2.5.0", note="use `qpolyC_is_zmod_morphism` instead")]
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype tuple bigop binomial finset finfun ssralg", "From mathcomp Require Import countalg finalg poly polydiv perm fingroup matrix", "From mathcomp Require Import mxalgebra mxpoly vector countalg" ]
algebra/qpoly.v
qpolyC_is_zmod_morphism
qpolyC_is_additive:= qpolyC_is_zmod_morphism.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype tuple bigop binomial finset finfun ssralg", "From mathcomp Require Import countalg finalg poly polydiv perm fingroup matrix", "From mathcomp Require Import mxalgebra mxpoly vector countalg" ]
algebra/qpoly.v
qpolyC_is_additive
qpolyC_is_monoid_morphism: monoid_morphism (qpolyC h). Proof. by split=> // x y; rewrite qpolyCM. Qed. #[deprecated(since="mathcomp 2.5.0", note="use `qpolyC_is_monoid_morphism` instead")]
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype tuple bigop binomial finset finfun ssralg", "From mathcomp Require Import countalg finalg poly polydiv perm fingroup matrix", "From mathcomp Require Import mxalgebra mxpoly vector countalg" ]
algebra/qpoly.v
qpolyC_is_monoid_morphism
qpolyC_is_multiplicative:= (fun g => (g.2,g.1)) qpolyC_is_monoid_morphism. HB.instance Definition _ := GRing.isZmodMorphism.Build A {poly %/ h} (qpolyC h) qpolyC_is_zmod_morphism. HB.instance Definition _ := GRing.isMonoidMorphism.Build A {poly %/ h} (qpolyC h) qpolyC_is_monoid_morphism.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype tuple bigop binomial finset finfun ssralg", "From mathcomp Require Import countalg finalg poly polydiv perm fingroup matrix", "From mathcomp Require Import mxalgebra mxpoly vector countalg" ]
algebra/qpoly.v
qpolyC_is_multiplicative
qpoly_scalek (p : {poly %/ h}) : {poly %/ h} := (k *: p)%R. Fact qpoly_scaleA a b p : qpoly_scale a (qpoly_scale b p) = qpoly_scale (a * b) p. Proof. by apply/val_eqP; rewrite /= scalerA. Qed. Fact qpoly_scale1l : left_id 1%R qpoly_scale. Proof. by move=> p; apply/val_eqP; rewrite /= scale1r. Qed. Fact qpoly_scaleDr a : {morph qpoly_scale a : p q / (p + q)%R}. Proof. by move=> p q; apply/val_eqP; rewrite /= scalerDr. Qed. Fact qpoly_scaleDl p : {morph qpoly_scale^~ p : a b / a + b}%R. Proof. by move=> a b; apply/val_eqP; rewrite /= scalerDl. Qed. Fact qpoly_scaleAl a p q : qpoly_scale a (p * q) = (qpoly_scale a p * q). Proof. by apply/val_eqP; rewrite /= -scalerAl rmodpZ // monic_mk_monic. Qed. Fact qpoly_scaleAr a p q : qpoly_scale a (p * q) = p * (qpoly_scale a q). Proof. by apply/val_eqP; rewrite /= -scalerAr rmodpZ // monic_mk_monic. Qed. HB.instance Definition _ := GRing.Lmodule_isLalgebra.Build A {poly__ A} qpoly_scaleAl. HB.instance Definition _ := GRing.Lalgebra.on {poly %/ h}. HB.instance Definition _ := GRing.Lalgebra_isAlgebra.Build A {poly__ A} qpoly_scaleAr. HB.instance Definition _ := GRing.Algebra.on {poly %/ h}.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype tuple bigop binomial finset finfun ssralg", "From mathcomp Require Import countalg finalg poly polydiv perm fingroup matrix", "From mathcomp Require Import mxalgebra mxpoly vector countalg" ]
algebra/qpoly.v
qpoly_scale
poly_of_qpolyZ(p : {poly %/ h}) a : a *: p = a *: (p : {poly A}) :> {poly A}. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype tuple bigop binomial finset finfun ssralg", "From mathcomp Require Import countalg finalg poly polydiv perm fingroup matrix", "From mathcomp Require Import mxalgebra mxpoly vector countalg" ]
algebra/qpoly.v
poly_of_qpolyZ
char_qpoly:= (pchar_qpoly) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype tuple bigop binomial finset finfun ssralg", "From mathcomp Require Import countalg finalg poly polydiv perm fingroup matrix", "From mathcomp Require Import mxalgebra mxpoly vector countalg" ]
algebra/qpoly.v
char_qpoly
qpoly_inv(p : {poly %/ h}) := if coprimep hQ p then let v : {poly %/ h} := in_qpoly h (egcdp hQ p).2 in ((lead_coef (v * p)) ^-1 *: v) else p.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype tuple bigop binomial finset finfun ssralg", "From mathcomp Require Import countalg finalg poly polydiv perm fingroup matrix", "From mathcomp Require Import mxalgebra mxpoly vector countalg" ]
algebra/qpoly.v
qpoly_inv
qpoly_mulVz(p : {poly %/ h}) : coprimep hQ p -> (qpoly_inv p * p = 1)%R. Proof. have hQM := monic_mk_monic h. move=> hCp; apply: val_inj; rewrite /qpoly_inv /in_qpoly hCp /=. have p_neq0 : p != 0%R. apply/eqP=> pZ; move: hCp; rewrite pZ. rewrite coprimep0 -size_poly_eq1. by case: size (size_mk_monic_gt1 h) => [|[]]. have F : (egcdp hQ p).1 * hQ + (egcdp hQ p).2 * p %= 1. apply: eqp_trans _ (_ : gcdp hQ p %= _). rewrite eqp_sym. by case: (egcdpP (mk_monic_neq0 h) p_neq0). by rewrite -size_poly_eq1. rewrite rmodp_mulml // -scalerAl rmodpZ // rmodp_mulml //. rewrite -[rmodp]/rmodp -!Pdiv.IdomainMonic.modpE //. have := eqp_modpl hQ F. rewrite modpD // modp_mull add0r // . rewrite [(1 %% _)%R]modp_small => // [egcdE|]; last first. by rewrite size_polyC oner_eq0 size_mk_monic_gt1. rewrite {2}(eqpfP egcdE) lead_coefC divr1 alg_polyC scale_polyC mulVf //. rewrite lead_coef_eq0. apply/eqP => egcdZ. by move: egcdE; rewrite -size_poly_eq1 egcdZ size_polyC eq_sym eqxx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype tuple bigop binomial finset finfun ssralg", "From mathcomp Require Import countalg finalg poly polydiv perm fingroup matrix", "From mathcomp Require Import mxalgebra mxpoly vector countalg" ]
algebra/qpoly.v
qpoly_mulVz
qpoly_mulzV(p : {poly %/ h}) : coprimep hQ p -> (p * (qpoly_inv p) = 1)%R. Proof. by move=> hCp; rewrite /= mulrC qpoly_mulVz. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype tuple bigop binomial finset finfun ssralg", "From mathcomp Require Import countalg finalg poly polydiv perm fingroup matrix", "From mathcomp Require Import mxalgebra mxpoly vector countalg" ]
algebra/qpoly.v
qpoly_mulzV
qpoly_intro_unit(p q : {poly %/ h}) : (q * p = 1)%R -> coprimep hQ p. Proof. have hQM := monic_mk_monic h. case; rewrite -[rmodp]/rmodp -!Pdiv.IdomainMonic.modpE // => qp1. have:= coprimep1 hQ. rewrite -coprimep_modr -[1%R]qp1 !coprimep_modr coprimepMr; by case/andP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype tuple bigop binomial finset finfun ssralg", "From mathcomp Require Import countalg finalg poly polydiv perm fingroup matrix", "From mathcomp Require Import mxalgebra mxpoly vector countalg" ]
algebra/qpoly.v
qpoly_intro_unit
qpoly_inv_out(p : {poly %/ h}) : ~~ coprimep hQ p -> qpoly_inv p = p. Proof. by rewrite /qpoly_inv => /negPf->. Qed. HB.instance Definition _ := GRing.ComNzRing_hasMulInverse.Build {poly__ _} qpoly_mulVz qpoly_intro_unit qpoly_inv_out. HB.instance Definition _ := GRing.ComUnitAlgebra.on {poly %/ h}.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype tuple bigop binomial finset finfun ssralg", "From mathcomp Require Import countalg finalg poly polydiv perm fingroup matrix", "From mathcomp Require Import mxalgebra mxpoly vector countalg" ]
algebra/qpoly.v
qpoly_inv_out
irreducible_poly_coprime(A : idomainType) (p q : {poly A}) : irreducible_poly p -> coprimep p q = ~~(p %| q)%R. Proof. case => H1 H2; apply/coprimepP/negP. move=> sPq H. by have := sPq p (dvdpp _) H; rewrite -size_poly_eq1; case: size H1 => [|[]]. move=> pNDq d dDp dPq. rewrite -size_poly_eq1; case: eqP => // /eqP /(H2 _) => /(_ dDp) dEp. by case: pNDq; rewrite -(eqp_dvdl _ dEp). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype tuple bigop binomial finset finfun ssralg", "From mathcomp Require Import countalg finalg poly polydiv perm fingroup matrix", "From mathcomp Require Import mxalgebra mxpoly vector countalg" ]
algebra/qpoly.v
irreducible_poly_coprime
rat: Set := Rat { valq : (int * int); _ : (0 < valq.2) && coprime `|valq.1| `|valq.2| }. Bind Scope ring_scope with rat. Delimit Scope rat_scope with Q.
Record
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
rat
ratz(n : int) := @Rat (n, 1) (coprimen1 _).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
ratz
rat_isSub:= Eval hnf in [isSub for valq]. HB.instance Definition _ := rat_isSub. #[hnf] HB.instance Definition _ := [Equality of rat by <:]. HB.instance Definition _ := [Countable of rat by <:].
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
rat_isSub
numqx := (valq x).1.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
numq
denqx := (valq x).2. Arguments numq : simpl never. Arguments denq : simpl never.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
denq
denq_gt0x : 0 < denq x. Proof. by rewrite /denq; case: x=> [[a b] /= /andP []]. Qed. #[global] Hint Resolve denq_gt0 : core.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
denq_gt0
denq_ge0x := ltW (denq_gt0 x).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
denq_ge0
denq_lt0x : (denq x < 0) = false. Proof. by rewrite lt_gtF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
denq_lt0
denq_neq0x : denq x != 0. Proof. by rewrite /denq gt_eqF ?denq_gt0. Qed. #[global] Hint Resolve denq_neq0 : core.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
denq_neq0
denq_eq0x : (denq x == 0) = false. Proof. exact: negPf (denq_neq0 _). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
denq_eq0
coprime_num_denx : coprime `|numq x| `|denq x|. Proof. by rewrite /numq /denq; case: x=> [[a b] /= /andP []]. Qed. Fact RatK x P : @Rat (numq x, denq x) P = x. Proof. by move: x P => [[a b] P'] P; apply: val_inj. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
coprime_num_den
fracq_subdefx := if x.2 != 0 then let g := gcdn `|x.1| `|x.2| in ((-1) ^ ((x.2 < 0) (+) (x.1 < 0)) * (`|x.1| %/ g)%:Z, (`|x.2| %/ g)%:Z) else (0, 1). Arguments fracq_subdef /.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
fracq_subdef
fracq_opt_subdef(x : int * int) := if (0 < x.2) && coprime `|x.1| `|x.2| then x else fracq_subdef x.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
fracq_opt_subdef
fracq_opt_subdefEx : fracq_opt_subdef x = fracq_subdef x. Proof. rewrite /fracq_opt_subdef; case: ifP => //; case: x => n d /= /andP[d_gt0 cnd]. rewrite /fracq_subdef gt_eqF//= lt_gtF//= (eqP cnd) !divn1 abszEsg gtz0_abs//. rewrite mulrA sgz_def mulrnAr -signr_addb addbb expr0. by have [->|] := eqVneq n 0; rewrite (mulr0, mul1r). Qed. Fact fracq_subproof x (y := fracq_opt_subdef x) : (0 < y.2) && (coprime `|y.1| `|y.2|). Proof. rewrite {}/y fracq_opt_subdefE /=; have [] //= := eqVneq x.2 0. case: x => [/= n d]; rewrite -absz_gt0 => dN0. have ggt0 : (0 < gcdn `|n| `|d|)%N by rewrite gcdn_gt0 dN0 orbT. rewrite ltz_nat divn_gt0// dvdn_leq ?dvdn_gcdr//=. rewrite abszM abszX abszN1 exp1n mul1n absz_nat. rewrite /coprime -(@eqn_pmul2r (gcdn `|n| `|d|))// mul1n. by rewrite muln_gcdl !divnK ?(dvdn_gcdl, dvdn_gcdr). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
fracq_opt_subdefE
fracq_opt_subdef_idx : fracq_opt_subdef (fracq_opt_subdef x) = fracq_subdef x. Proof. rewrite [fracq_opt_subdef (_ x)]/fracq_opt_subdef. by rewrite fracq_subproof fracq_opt_subdefE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
fracq_opt_subdef_id
fracq'((n', d')) : rat := match d', n' with | Posz 0 as d, _ as n => Rat (fracq_subproof (1, 0)) | _ as d, Posz _ as n | _ as d, _ as n => Rat (fracq_subproof (fracq_opt_subdef (n, d))) end. Arguments fracq : simpl never.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
fracq
Irat_prf:= Ifracq_subproof : (int * int) -> Irat_prf.
Variant
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
Irat_prf
Irat:= IRat : (int * int) -> Irat_prf -> Irat.
Variant
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
Irat
parse(x : Number.number) : option Irat := let parse_pos i f := let nf := Decimal.nb_digits f in let d := (10 ^ nf)%nat in let n := (Nat.of_uint i * d + Nat.of_uint f)%nat in valq (fracq (Posz n, Posz d)) in let parse i f := match i with | Decimal.Pos i => parse_pos i f | Decimal.Neg i => let (n, d) := parse_pos i f in ((- n)%R, d) end in match x with | Number.Decimal (Decimal.Decimal i f) => let nd := parse i f in Some (IRat nd (Ifracq_subproof nd)) | Number.Decimal (Decimal.DecimalExp _ _ _) => None | Number.Hexadecimal _ => None end.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
parse
print(r : Irat) : option Number.number := let print_pos n d := if d == 1%nat then Some (Nat.to_uint n, Decimal.Nil) else let d2d5 := match prime_decomp d with | [:: (2, d2); (5, d5)] => Some (d2, d5) | [:: (2, d2)] => Some (d2, O) | [:: (5, d5)] => Some (O, d5) | _ => None end in match d2d5 with | Some (d2, d5) => let f := (2 ^ (d5 - d2) * 5 ^ (d2 - d5))%nat in let (i, f) := edivn (n * f) (d * f) in Some (Nat.to_uint i, Nat.to_uint f) | None => None end in let print_IRat nd := match nd with | (Posz n, Posz d) => match print_pos n d with | Some (i, f) => Some (Decimal.Pos i, f) | None => None end | (Negz n, Posz d) => match print_pos n.+1 d with | Some (i, f) => Some (Decimal.Neg i, f) | None => None end | (_, Negz _) => None end in match r with | IRat nd _ => match print_IRat nd with | Some (i, f) => Some (Number.Decimal (Decimal.Decimal i f)) | None => None end end. Number Notation rat parse print (via Irat
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
print
val_fracqx : val (fracq x) = fracq_subdef x. Proof. by case: x => [[n|n] [[|[|d]]|d]]//=; rewrite !fracq_opt_subdef_id. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
val_fracq
num_fracqx : numq (fracq x) = if x.2 != 0 then (-1) ^ ((x.2 < 0) (+) (x.1 < 0)) * (`|x.1| %/ gcdn `|x.1| `|x.2|)%:Z else 0. Proof. by rewrite /numq val_fracq/=; case: ifP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
num_fracq
den_fracqx : denq (fracq x) = if x.2 != 0 then (`|x.2| %/ gcdn `|x.1| `|x.2|)%:Z else 1. Proof. by rewrite /denq val_fracq/=; case: ifP. Qed. Fact ratz_frac n : ratz n = fracq (n, 1). Proof. by apply: val_inj; rewrite val_fracq/= gcdn1 !divn1 abszE mulr_sign_norm. Qed. Fact valqK x : fracq (valq x) = x. Proof. move: x => [[n d] /= Pnd]; apply: val_inj; rewrite ?val_fracq/=. move: Pnd; rewrite /coprime /fracq /= => /andP[] hd -/eqP hnd. by rewrite lt_gtF ?gt_eqF //= hnd !divn1 mulz_sign_abs abszE gtr0_norm. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
den_fracq
scalq'(n, d) := sgr d * (gcdn `|n| `|d|)%:Z.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
scalq
scalq_defx : scalq x = sgr x.2 * (gcdn `|x.1| `|x.2|)%:Z. Proof. by case: x. Qed. Fact scalq_eq0 x : (scalq x == 0) = (x.2 == 0). Proof. case: x => n d; rewrite scalq_def /= mulf_eq0 sgr_eq0 /= eqz_nat. rewrite -[gcdn _ _ == 0]negbK -lt0n gcdn_gt0 ?absz_gt0 [X in ~~ X]orbC. by case: sgrP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
scalq_def
sgr_scalqx : sgr (scalq x) = sgr x.2. Proof. rewrite scalq_def sgrM sgr_id -[(gcdn _ _)%:Z]intz sgr_nat. by rewrite -lt0n gcdn_gt0 ?absz_gt0 orbC; case: sgrP; rewrite // mul0r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
sgr_scalq
signr_scalqx : (scalq x < 0) = (x.2 < 0). Proof. by rewrite -!sgr_cp0 sgr_scalq. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
signr_scalq
scalqEx : x.2 != 0 -> scalq x = (-1) ^+ (x.2 < 0)%R * (gcdn `|x.1| `|x.2|)%:Z. Proof. by rewrite scalq_def; case: sgrP. Qed. Fact valq_frac x : x.2 != 0 -> x = (scalq x * numq (fracq x), scalq x * denq (fracq x)). Proof. move=> x2_neq0; rewrite scalqE//; move: x2_neq0. case: x => [n d] /= d_neq0; rewrite num_fracq den_fracq/= ?d_neq0. rewrite mulr_signM -mulrA -!PoszM addKb. do 2!rewrite muln_divCA ?(dvdn_gcdl, dvdn_gcdr) // divnn. by rewrite gcdn_gt0 !absz_gt0 d_neq0 orbT !muln1 !mulz_sign_abs. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
scalqE
zeroq:= 0%Q.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
zeroq
oneq:= 1%Q. Fact frac0q x : fracq (0, x) = zeroq. Proof. apply: val_inj; rewrite //= val_fracq/= div0n !gcd0n !mulr0 !divnn. by have [//|x_neq0] := eqVneq; rewrite absz_gt0 x_neq0. Qed. Fact fracq0 x : fracq (x, 0) = zeroq. Proof. exact/eqP. Qed.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
oneq
fracq_spec(x : int * int) : int * int -> rat -> Type := | FracqSpecN of x.2 = 0 : fracq_spec x (x.1, 0) zeroq | FracqSpecP k fx of k != 0 : fracq_spec x (k * numq fx, k * denq fx) fx. Fact fracqP x : fracq_spec x x (fracq x). Proof. case: x => n d /=; have [d_eq0 | d_neq0] := eqVneq d 0. by rewrite d_eq0 fracq0; constructor. by rewrite {2}[(_, _)]valq_frac //; constructor; rewrite scalq_eq0. Qed.
Variant
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
fracq_spec
rat_eqEx y : (x == y) = (numq x == numq y) && (denq x == denq y). Proof. rewrite -val_eqE [val x]surjective_pairing [val y]surjective_pairing /=. by rewrite xpair_eqE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
rat_eqE
sgr_denqx : sgr (denq x) = 1. Proof. by apply/eqP; rewrite sgr_cp0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
sgr_denq
normr_denqx : `|denq x| = denq x. Proof. by rewrite gtr0_norm. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
normr_denq
absz_denqx : `|denq x|%N = denq x :> int. Proof. by rewrite abszE normr_denq. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
absz_denq
rat_eqx y : (x == y) = (numq x * denq y == numq y * denq x). Proof. symmetry; rewrite rat_eqE andbC. have [->|] /= := eqVneq (denq _); first by rewrite (inj_eq (mulIf _)). apply: contraNF => /eqP hxy; rewrite -absz_denq -[eqbRHS]absz_denq. rewrite eqz_nat /= eqn_dvd. rewrite -(@Gauss_dvdr _ `|numq x|) 1?coprime_sym ?coprime_num_den // andbC. rewrite -(@Gauss_dvdr _ `|numq y|) 1?coprime_sym ?coprime_num_den //. by rewrite -!abszM hxy -{1}hxy !abszM !dvdn_mull ?dvdnn. Qed. Fact fracq_eq x y : x.2 != 0 -> y.2 != 0 -> (fracq x == fracq y) = (x.1 * y.2 == y.1 * x.2). Proof. case: fracqP=> //= u fx u_neq0 _; case: fracqP=> //= v fy v_neq0 _; symmetry. rewrite [eqbRHS]mulrC mulrACA [eqbRHS]mulrACA. by rewrite [denq _ * _]mulrC (inj_eq (mulfI _)) ?mulf_neq0 // rat_eq. Qed. Fact fracq_eq0 x : (fracq x == zeroq) = (x.1 == 0) || (x.2 == 0). Proof. move: x=> [n d] /=; have [->|d0] := eqVneq d 0. by rewrite fracq0 eqxx orbT. by rewrite -[zeroq]valqK orbF fracq_eq ?d0 //= mulr1 mul0r. Qed. Fact fracqMM x n d : x != 0 -> fracq (x * n, x * d) = fracq (n, d). Proof. move=> x_neq0; apply/eqP. have [->|d_neq0] := eqVneq d 0; first by rewrite mulr0 !fracq0. by rewrite fracq_eq ?mulf_neq0 //= mulrCA mulrA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
rat_eq
addq_subdef(x y : int * int) := let: (x1, x2) := x in let: (y1, y2) := y in match x2, y2 with | Posz 1, Posz 1 => match x1, y1 with | Posz 0, _ => (y1, 1) | _, Posz 0 => (x1, 1) | Posz n, Posz 1 => (Posz n.+1, 1) | Posz 1, Posz n => (Posz n.+1, 1) | _, _ => (x1 + y1, 1) end | Posz 1, _ => (x1 * y2 + y1, y2) | _, Posz 1 => (x1 + y1 * x2, x2) | _, _ => (x1 * y2 + y1 * x2, x2 * y2) end.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
addq_subdef
addq'(Rat x xP) '(Rat y yP) := fracq (addq_subdef x y).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
addq
addq_defx y : addq x y = fracq (addq_subdef (valq x) (valq y)). Proof. by case: x; case: y. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
addq_def
addq_subdefEx y : addq_subdef x y = (x.1 * y.2 + y.1 * x.2, x.2 * y.2). Proof. case: x y => [x1 [[|[|x2]]|x2]] [y1 [[|[|y2]]|y2]]/=; rewrite ?Monoid.simpm//. by case: x1 y1 => [[|[|m]]|m] [[|[|n]]|n]; rewrite ?Monoid.simpm// -PoszD addn1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
addq_subdefE
oppq_subdef(x : int * int) := (- x.1, x.2).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
oppq_subdef
oppq'(Rat x xP) := fracq (oppq_subdef x).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
oppq
oppq_defx : oppq x = fracq (oppq_subdef (valq x)). Proof. by case: x. Qed. Fact addq_subdefC : commutative addq_subdef. Proof. by move=> x y; rewrite !addq_subdefE addrC [x.2 * _]mulrC. Qed. Fact addq_subdefA : associative addq_subdef. Proof. move=> x y z; rewrite !addq_subdefE. by rewrite !mulrA !mulrDl addrA ![_ * x.2]mulrC !mulrA. Qed. Fact addq_frac x y : x.2 != 0 -> y.2 != 0 -> (addq (fracq x) (fracq y)) = fracq (addq_subdef x y). Proof. case: fracqP => // u fx u_neq0 _; case: fracqP => // v fy v_neq0 _. rewrite addq_def !addq_subdefE /=. rewrite ![(_ * numq _) * _]mulrACA [(_ * denq _) * _]mulrACA. by rewrite [v * _]mulrC -mulrDr fracqMM ?mulf_neq0. Qed. Fact ratzD : {morph ratz : x y / x + y >-> addq x y}. Proof. by move=> x y; rewrite !ratz_frac addq_frac// addq_subdefE/= !mulr1. Qed. Fact oppq_frac x : oppq (fracq x) = fracq (oppq_subdef x). Proof. rewrite /oppq_subdef; case: fracqP => /= [|u fx u_neq0]. by rewrite fracq0. by rewrite oppq_def -mulrN fracqMM. Qed. Fact ratzN : {morph ratz : x / - x >-> oppq x}. Proof. by move=> x /=; rewrite !ratz_frac // /add /= !mulr1. Qed. Fact addqC : commutative addq. Proof. by move=> x y; rewrite !addq_def /= addq_subdefC. Qed. Fact addqA : associative addq. Proof. move=> x y z; rewrite -[x]valqK -[y]valqK -[z]valqK.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
oppq_def
mulq_subdef(x y : int * int) := let: (x1, x2) := x in let: (y1, y2) := y in match x2, y2 with | Posz 1, Posz 1 => (x1 * y1, 1) | Posz 1, _ => (x1 * y1, y2) | _, Posz 1 => (x1 * y1, x2) | _, _ => (x1 * y1, x2 * y2) end.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
mulq_subdef
mulq'(Rat x xP) '(Rat y yP) := fracq (mulq_subdef x y).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
mulq
mulq_defx y : mulq x y = fracq (mulq_subdef (valq x) (valq y)). Proof. by case: x; case: y. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
mulq_def
mulq_subdefEx y : mulq_subdef x y = (x.1 * y.1, x.2 * y.2). Proof. by case: x y => [x1 [[|[|x2]]|x2]] [y1 [[|[|y2]]|y2]]/=; rewrite ?Monoid.simpm. Qed. Fact mulq_subdefC : commutative mulq_subdef. Proof. by move=> x y; rewrite !mulq_subdefE mulrC [_ * x.2]mulrC. Qed. Fact mul_subdefA : associative mulq_subdef. Proof. by move=> x y z; rewrite !mulq_subdefE !mulrA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
mulq_subdefE
invq_subdef(x : int * int) := (x.2, x.1).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
invq_subdef
invq'(Rat x xP) := fracq (invq_subdef x).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
invq
invq_defx : invq x = fracq (invq_subdef (valq x)). Proof. by case: x. Qed. Fact mulq_frac x y : (mulq (fracq x) (fracq y)) = fracq (mulq_subdef x y). Proof. rewrite mulq_def !mulq_subdefE; case: (fracqP x) => /= [|u fx u_neq0]. by rewrite !mul0r !mul1r fracq0 frac0q. case: (fracqP y) => /= [|v fy v_neq0]. by rewrite !mulr0 !mulr1 fracq0 frac0q. by rewrite ![_ * (v * _)]mulrACA [RHS]fracqMM ?mulf_neq0. Qed. Fact ratzM : {morph ratz : x y / x * y >-> mulq x y}. Proof. by move=> x y /=; rewrite !ratz_frac //= !mulr1. Qed. Fact invq_frac x : x.1 != 0 -> x.2 != 0 -> invq (fracq x) = fracq (invq_subdef x). Proof. by rewrite invq_def; case: (fracqP x) => // k ? k0; rewrite fracqMM. Qed. Fact mulqC : commutative mulq. Proof. by move=> x y; rewrite !mulq_def mulq_subdefC. Qed. Fact mulqA : associative mulq. Proof. by move=> x y z; rewrite -[x]valqK -[y]valqK -[z]valqK !mulq_frac mul_subdefA. Qed. Fact mul1q : left_id oneq mulq. Proof. move=> x; rewrite -[x]valqK -[oneq]valqK; rewrite mulq_frac !mulq_subdefE. by rewrite !mul1r -surjective_pairing. Qed. Fact mulq_addl : left_distributive mulq addq. Proof. move=> x y z; rewrite -[x]valqK -[y]valqK -[z]valqK /=. rewrite !(mulq_frac, addq_frac, mulq_subdefE, addq_subdefE) ?mulf_neq0 ?denq_neq0 //=. apply/eqP; rewrite fracq_eq ?mulf_neq0 ?denq_neq0 //= !mulrDl; apply/eqP. by rewrite !mulrA ![_ * (valq z).1]mulrC !mulrA ![_ * (valq x).2]mulrC !mulrA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
invq_def
numq_eq0x : (numq x == 0) = (x == 0). Proof. rewrite -[x]valqK fracq_eq0; case: fracqP=> /= [|k {}x k0]. by rewrite eqxx orbT. by rewrite !mulf_eq0 (negPf k0) /= denq_eq0 orbF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
numq_eq0
subq(x y : rat) : rat := (addq x (oppq y)).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
subq
divq(x y : rat) : rat := (mulq x (invq y)). Infix "+" := addq : rat_scope.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
divq
ratzEn : ratz n = n%:Q. Proof. elim: n=> [|n ihn|n ihn]; first by rewrite mulr0z ratz_frac. by rewrite intS mulrzDr ratzD ihn. by rewrite intS opprD mulrzDr ratzD ihn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
ratzE
numq_intn : numq n%:Q = n. Proof. by rewrite -ratzE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
numq_int
denq_intn : denq n%:Q = 1. Proof. by rewrite -ratzE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
denq_int
rat0: 0%:Q = 0. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
rat0
rat1: 1%:Q = 1. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
rat1
numqNx : numq (- x) = - numq x. Proof. rewrite [- _]oppq_def/= num_fracq. case: x => -[a b]; rewrite /numq/= => /andP[b_gt0]. rewrite /coprime => /eqP cab. by rewrite lt_gtF ?gt_eqF // {2}abszN cab divn1 mulz_sign_abs. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
numqN
denqNx : denq (- x) = denq x. Proof. rewrite [- _]oppq_def den_fracq. case: x => -[a b]; rewrite /denq/= => /andP[b_gt0]. by rewrite /coprime=> /eqP cab; rewrite gt_eqF // abszN cab divn1 gtz0_abs. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
denqN
fracqEx : fracq x = x.1%:Q / x.2%:Q. Proof. move: x => [m n] /=; apply/val_inj; rewrite val_fracq/=. case: eqVneq => //= [->|n_neq0]; first by rewrite rat0 invr0 mulr0. rewrite -[m%:Q]valqK -[n%:Q]valqK. rewrite [_^-1]invq_frac ?denq_neq0 ?numq_eq0 ?intq_eq0//=. rewrite [X in valq X]mulq_frac val_fracq /invq_subdef !mulq_subdefE/=. by rewrite -!/(numq _) -!/(denq _) !numq_int !denq_int mul1r mulr1 n_neq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
fracqE
divq_num_denx : (numq x)%:Q / (denq x)%:Q = x. Proof. by rewrite -{3}[x]valqK [valq _]surjective_pairing /= fracqE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
divq_num_den
divq_spec(n d : int) : int -> int -> rat -> Type := | DivqSpecN of d = 0 : divq_spec n d n 0 0 | DivqSpecP k x of k != 0 : divq_spec n d (k * numq x) (k * denq x) x.
Variant
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
divq_spec
divqPn d : divq_spec n d n d (n%:Q / d%:Q). Proof. set x := (n, d); rewrite -[n]/x.1 -[d]/x.2 -fracqE. by case: fracqP => [_|k fx k_neq0] /=; constructor. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
divqP
rat_spec : rat -> int -> int -> Type := Rat_spec (n : int) (d : nat) & coprime `|n| d.+1 : rat_spec (n%:Q / d.+1%:Q) n d.+1.
Variant
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
rat_spec
ratPx : rat_spec x (numq x) (denq x). Proof. rewrite -{1}[x](divq_num_den); case hd: denq => [p|n]. have: 0 < p%:Z by rewrite -hd denq_gt0. case: p hd=> //= n hd; constructor; rewrite -?hd ?divq_num_den //. by rewrite -[n.+1]/`|n.+1|%N -hd coprime_num_den. by move: (denq_gt0 x); rewrite hd. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
ratP
coprimeq_numn d : coprime `|n| `|d| -> numq (n%:~R / d%:~R) = sgr d * n. Proof. move=> cnd /=; have <- := fracqE (n, d). rewrite num_fracq/= (eqP (cnd : _ == 1)) divn1. have [|d_gt0|d_lt0] := sgrP d; by rewrite (mul0r, mul1r, mulN1r) //= ?[_ ^ _]signrN ?mulNr mulz_sign_abs. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
coprimeq_num
coprimeq_denn d : coprime `|n| `|d| -> denq (n%:~R / d%:~R) = (if d == 0 then 1 else `|d|). Proof. move=> cnd; have <- := fracqE (n, d). by rewrite den_fracq/= (eqP (cnd : _ == 1)) divn1; case: d {cnd}; case. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
coprimeq_den
denqVz(i : int) : i != 0 -> denq (i%:~R^-1) = `|i|. Proof. move=> h; rewrite -div1r -[1]/(1%:~R). by rewrite coprimeq_den /= ?coprime1n // (negPf h). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
denqVz
numqEx : (numq x)%:~R = x * (denq x)%:~R. Proof. by rewrite -{2}[x]divq_num_den divfK // intq_eq0 denq_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
numqE
denqPx : {d | denq x = d.+1}. Proof. by rewrite /denq; case: x => [[_ [[|d]|]] //= _]; exists d. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
denqP
normq'(Rat x _) : rat := `|x.1|%:~R / (x.2)%:~R.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
normq
le_rat'(Rat x _) '(Rat y _) := x.1 * y.2 <= y.1 * x.2.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
le_rat
lt_rat'(Rat x _) '(Rat y _) := x.1 * y.2 < y.1 * x.2.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
lt_rat
normqEx : normq x = `|numq x|%:~R / (denq x)%:~R. Proof. by case: x. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
normqE
le_ratEx y : le_rat x y = (numq x * denq y <= numq y * denq x). Proof. by case: x; case: y. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
le_ratE
lt_ratEx y : lt_rat x y = (numq x * denq y < numq y * denq x). Proof. by case: x; case: y. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
lt_ratE
gt_rat0x : lt_rat 0 x = (0 < numq x). Proof. by rewrite lt_ratE mul0r mulr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
gt_rat0
lt_rat0x : lt_rat x 0 = (numq x < 0). Proof. by rewrite lt_ratE mul0r mulr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
lt_rat0
ge_rat0x : le_rat 0 x = (0 <= numq x). Proof. by rewrite le_ratE mul0r mulr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
ge_rat0
le_rat0x : le_rat x 0 = (numq x <= 0). Proof. by rewrite le_ratE mul0r mulr1. Qed. Fact le_rat0D x y : le_rat 0 x -> le_rat 0 y -> le_rat 0 (x + y). Proof. rewrite !ge_rat0 => hnx hny. have hxy: (0 <= numq x * denq y + numq y * denq x). by rewrite addr_ge0 ?mulr_ge0. rewrite [_ + _]addq_def /numq /= -!/(denq _) ?mulf_eq0 ?denq_eq0. rewrite val_fracq/=; case: ifP => //=. by rewrite ?addq_subdefE !mulr_ge0// !le_gtF ?mulr_ge0 ?denq_ge0//=. Qed. Fact le_rat0M x y : le_rat 0 x -> le_rat 0 y -> le_rat 0 (x * y). Proof. rewrite !ge_rat0 => hnx hny. have hxy: (0 <= numq x * denq y + numq y * denq x). by rewrite addr_ge0 ?mulr_ge0. rewrite [_ * _]mulq_def /numq /= -!/(denq _) ?mulf_eq0 ?denq_eq0. rewrite val_fracq/=; case: ifP => //=. by rewrite ?mulq_subdefE !mulr_ge0// !le_gtF ?mulr_ge0 ?denq_ge0//=. Qed. Fact le_rat0_anti x : le_rat 0 x -> le_rat x 0 -> x = 0. Proof. by move=> hx hy; apply/eqP; rewrite -numq_eq0 eq_le -ge_rat0 -le_rat0 hx hy. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
le_rat0
sgr_numq_div(n d : int) : sgr (numq (n%:Q / d%:Q)) = sgr n * sgr d. Proof. set x := (n, d); rewrite -[n]/x.1 -[d]/x.2 -fracqE. case: fracqP => [|k fx k_neq0] /=; first by rewrite mulr0. by rewrite !sgrM mulrACA -expr2 sqr_sg k_neq0 sgr_denq mulr1 mul1r. Qed. Fact subq_ge0 x y : le_rat 0 (y - x) = le_rat x y. Proof. symmetry; rewrite ge_rat0 !le_ratE -subr_ge0. case: ratP => nx dx cndx; case: ratP => ny dy cndy. rewrite -!mulNr addf_div ?intq_eq0 // !mulNr -!rmorphM -rmorphB /=. symmetry; rewrite !leNgt -sgr_cp0 sgr_numq_div mulrC gtr0_sg //. by rewrite mul1r sgr_cp0. Qed. Fact le_rat_total : total le_rat. Proof. by move=> x y; rewrite !le_ratE; apply: le_total. Qed. Fact numq_sign_mul (b : bool) x : numq ((-1) ^+ b * x) = (-1) ^+ b * numq x. Proof. by case: b; rewrite ?(mul1r, mulN1r) // numqN. Qed. Fact numq_div_lt0 n d : n != 0 -> d != 0 -> (numq (n%:~R / d%:~R) < 0)%R = (n < 0)%R (+) (d < 0)%R. Proof. move=> n0 d0; rewrite -sgr_cp0 sgr_numq_div !sgr_def n0 d0. by rewrite !mulr1n -signr_addb; case: (_ (+) _). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
sgr_numq_div
normr_num_divn d : `|numq (n%:~R / d%:~R)| = numq (`|n|%:~R / `|d|%:~R). Proof. rewrite (normrEsg n) (normrEsg d) !rmorphM /= invfM mulrACA !sgr_def. have [->|n_neq0] := eqVneq; first by rewrite mul0r mulr0. have [->|d_neq0] := eqVneq; first by rewrite invr0 !mulr0. rewrite !intr_sign invr_sign -signr_addb numq_sign_mul -numq_div_lt0 //. by apply: (canRL (signrMK _)); rewrite mulz_sign_abs. Qed. Fact norm_ratN x : normq (- x) = normq x. Proof. by rewrite !normqE numqN denqN normrN. Qed. Fact ge_rat0_norm x : le_rat 0 x -> normq x = x. Proof. rewrite ge_rat0; case: ratP=> [] // n d cnd n_ge0. by rewrite normqE /= normr_num_div ?ger0_norm // divq_num_den. Qed. Fact lt_rat_def x y : (lt_rat x y) = (y != x) && (le_rat x y). Proof. by rewrite lt_ratE le_ratE lt_def rat_eq. Qed. HB.instance Definition _ := Num.IntegralDomain_isLeReal.Build rat le_rat0D le_rat0M le_rat0_anti subq_ge0 (@le_rat_total 0) norm_ratN ge_rat0_norm lt_rat_def.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
normr_num_div
numq_ge0x : (0 <= numq x) = (0 <= x). Proof. by case: ratP => n d cnd; rewrite ?pmulr_lge0 ?invr_gt0 (ler0z, ltr0z). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
numq_ge0
numq_le0x : (numq x <= 0) = (x <= 0). Proof. by rewrite -oppr_ge0 -numqN numq_ge0 oppr_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
numq_le0
numq_gt0x : (0 < numq x) = (0 < x). Proof. by rewrite !ltNge numq_le0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
numq_gt0
numq_lt0x : (numq x < 0) = (x < 0). Proof. by rewrite !ltNge numq_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import prime fintype finfun bigop order tuple ssralg", "From mathcomp Require Import countalg div ssrnum ssrint archimedean poly zmodp", "From mathcomp Require Import polydiv intdiv matrix mxalgebra vector" ]
algebra/rat.v
numq_lt0