fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
divpKd p : d %| p -> p %/ d * d = p. Proof. case: (eqVneq d 0) => [-> /dvd0pP -> | dn0]; first by rewrite mulr0. by apply: IdomainUnit.divpK; rewrite unitfE lead_coef_eq0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divpK
divpKCd p : d %| p -> d * (p %/ d) = p. Proof. by move=> ?; rewrite mulrC divpK. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divpKC
dvdp_eq_divd p q : d != 0 -> d %| p -> (q == p %/ d) = (q * d == p). Proof. by move=> dn0; apply: IdomainUnit.dvdp_eq_div; rewrite unitfE lead_coef_eq0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_eq_div
dvdp_eq_muld p q : d != 0 -> d %| p -> (p == q * d) = (p %/ d == q). Proof. by move=> dn0 dv_d_p; rewrite eq_sym -dvdp_eq_div // eq_sym. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_eq_mul
divp_mulAd p q : d %| q -> p * (q %/ d) = p * q %/ d. Proof. case: (eqVneq d 0) => [-> /dvd0pP -> | dn0]; first by rewrite !divp0 mulr0. by apply: IdomainUnit.divp_mulA; rewrite unitfE lead_coef_eq0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divp_mulA
divp_mulACd m n : d %| m -> m %/ d * n = m * n %/ d. Proof. by move=> hdm; rewrite mulrC (mulrC m); apply: divp_mulA. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divp_mulAC
divp_mulCAd p q : d %| p -> d %| q -> p * (q %/ d) = q * (p %/ d). Proof. by move=> hdp hdq; rewrite mulrC divp_mulAC // divp_mulA. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divp_mulCA
expp_subd m n : d != 0 -> m >= n -> (d ^+ (m - n))%N = d ^+ m %/ d ^+ n. Proof. by move=> dn0 /subnK=> {2}<-; rewrite exprD mulpK // expf_neq0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
expp_sub
divp_pmul2ld q p : d != 0 -> q != 0 -> d * p %/ (d * q) = p %/ q. Proof. by move=> dn0 qn0; apply: IdomainUnit.divp_pmul2l; rewrite unitfE lead_coef_eq0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divp_pmul2l
divp_pmul2rd p q : d != 0 -> p != 0 -> q * d %/ (p * d) = q %/ p. Proof. by move=> dn0 qn0; rewrite -!(mulrC d) divp_pmul2l. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divp_pmul2r
divp_divlr p q : q %/ p %/ r = q %/ (p * r). Proof. have [-> | rn0] := eqVneq r 0; first by rewrite mulr0 !divp0. have [-> | pn0] := eqVneq p 0; first by rewrite mul0r !divp0 div0p. by apply: IdomainUnit.divp_divl; rewrite unitfE lead_coef_eq0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divp_divl
divpACd p q : q %/ d %/ p = q %/ p %/ d. Proof. by rewrite !divp_divl // mulrC. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divpAC
edivp_defp q : edivp p q = (0, p %/ q, p %% q). Proof. rewrite Idomain.edivp_def; congr (_, _, _); rewrite /scalp 2!unlock /=. have [-> | qn0] := eqVneq; first by rewrite lead_coef0 unitr0. by rewrite unitfE lead_coef_eq0 qn0 /=; case: (redivp_rec _ _ _ _) => [[]]. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
edivp_def
divpEp q : p %/ q = (lead_coef q)^-(rscalp p q) *: (rdivp p q). Proof. have [-> | qn0] := eqVneq q 0; first by rewrite rdivp0 divp0 scaler0. by rewrite Idomain.divpE unitfE lead_coef_eq0 qn0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divpE
modpEp q : p %% q = (lead_coef q)^-(rscalp p q) *: (rmodp p q). Proof. have [-> | qn0] := eqVneq q 0. by rewrite rmodp0 modp0 /rscalp unlock eqxx lead_coef0 expr0 invr1 scale1r. by rewrite Idomain.modpE unitfE lead_coef_eq0 qn0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
modpE
scalpEp q : scalp p q = 0. Proof. have [-> | qn0] := eqVneq q 0; first by rewrite scalp0. by rewrite Idomain.scalpE unitfE lead_coef_eq0 qn0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
scalpE
dvdpEp q : p %| q = rdvdp p q. Proof. exact: Idomain.dvdpE. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdpE
edivp_specm d : nat * {poly F} * {poly F} -> Type := EdivpSpec n q r of m = q * d + r & (d != 0) ==> (size r < size d) : edivp_spec m d (n, q, r).
Variant
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
edivp_spec
edivpPm d : edivp_spec m d (edivp m d). Proof. rewrite edivp_def; constructor; first exact: divp_eq. by apply/implyP=> dn0; rewrite ltn_modp. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
edivpP
edivp_eqd q r : size r < size d -> edivp (q * d + r) d = (0, q, r). Proof. move=> srd; apply: Idomain.edivp_eq; rewrite // unitfE lead_coef_eq0. by rewrite -size_poly_gt0; apply: leq_trans srd. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
edivp_eq
modp_mulp q m : (p * (q %% m)) %% m = (p * q) %% m. Proof. by rewrite [in RHS](divp_eq q m) mulrDr modpD mulrA modp_mull add0r. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
modp_mul
horner_modp q x : root q x -> (p %% q).[x] = p.[x]. Proof. by rewrite [in RHS](divp_eq p q) !hornerE => /eqP->; rewrite mulr0 add0r. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
horner_mod
dvdpPp q : reflect (exists qq, p = qq * q) (q %| p). Proof. have [-> | qn0] := eqVneq q 0; last first. by apply: IdomainUnit.dvdpP; rewrite unitfE lead_coef_eq0. by rewrite dvd0p; apply: (iffP eqP) => [->| [? ->]]; [exists 1|]; rewrite mulr0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdpP
Bezout_eq1_coprimepPp q : reflect (exists u, u.1 * p + u.2 * q = 1) (coprimep p q). Proof. apply: (iffP idP)=> [hpq|]; last first. by case=> -[u v] /= e; apply/Bezout_coprimepP; exists (u, v); rewrite e eqpxx. case/Bezout_coprimepP: hpq => [[u v]] /=. case/eqpP=> [[c1 c2]] /andP /= [c1n0 c2n0] e. exists (c2^-1 *: (c1 *: u), c2^-1 *: (c1 *: v)); rewrite /= -!scalerAl. by rewrite -!scalerDr e scalerA mulVf // scale1r. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
Bezout_eq1_coprimepP
dvdp_gdcorp q : q != 0 -> p %| (gdcop q p) * (q ^+ size p). Proof. rewrite /gdcop => nz_q; have [n hsp] := ubnPleq (size p). elim: n => [|n IHn] /= in p hsp *; first by rewrite (negPf nz_q) mul0r dvdp0. have [_ | ncop_pq] := ifPn; first by rewrite dvdp_mulr. have g_gt1: 1 < size (gcdp p q). rewrite ltn_neqAle eq_sym ncop_pq size_poly_gt0 gcdp_eq0. by rewrite negb_and nz_q orbT. have [-> | nz_p] := eqVneq p 0. by rewrite div0p exprSr mulrA dvdp_mulr // IHn // size_poly0. have le_d_p: size (p %/ gcdp p q) < size p. rewrite size_divp -?size_poly_eq0 -(subnKC g_gt1) // add2n /=. by rewrite polySpred // ltnS subSS leq_subr. rewrite -[p in p %| _](divpK (dvdp_gcdl p q)) exprSr mulrA. by rewrite dvdp_mul ?IHn ?dvdp_gcdr // -ltnS (leq_trans le_d_p). Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_gdcor
reducible_cubic_rootp q : size p <= 4 -> 1 < size q < size p -> q %| p -> {r | root p r}. Proof. move=> p_le4 /andP[]; rewrite leq_eqVlt eq_sym. have [/poly2_root[x qx0] _ _ | _ /= q_gt2 p_gt_q] := size q =P 2. by exists x; rewrite -!dvdp_XsubCl in qx0 *; apply: (dvdp_trans qx0). case/dvdpP/sig_eqW=> r def_p; rewrite def_p. suffices /poly2_root[x rx0]: size r = 2 by exists x; rewrite rootM rx0. have /norP[nz_r nz_q]: ~~ [|| r == 0 | q == 0]. by rewrite -mulf_eq0 -def_p -size_poly_gt0 (leq_ltn_trans _ p_gt_q). rewrite def_p size_mul // -subn1 leq_subLR ltn_subRL in p_gt_q p_le4. by apply/eqP; rewrite -(eqn_add2r (size q)) eqn_leq (leq_trans p_le4). Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
reducible_cubic_root
cubic_irreduciblep : 1 < size p <= 4 -> (forall x, ~~ root p x) -> irreducible_poly p. Proof. move=> /andP[p_gt1 p_le4] root'p; split=> // q sz_q_neq1 q_dv_p. have nz_p: p != 0 by rewrite -size_poly_gt0 ltnW. have nz_q: q != 0 by apply: contraTneq q_dv_p => ->; rewrite dvd0p. have q_gt1: size q > 1 by rewrite ltn_neqAle eq_sym sz_q_neq1 size_poly_gt0. rewrite -dvdp_size_eqp // eqn_leq dvdp_leq //= leqNgt; apply/negP=> p_gt_q. by have [|x /idPn//] := reducible_cubic_root p_le4 _ q_dv_p; rewrite q_gt1. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
cubic_irreducible
mupx q := [arg max_(n > (ord0 : 'I_(size q).+1) | ('X - x%:P) ^+ n %| q) n] : nat.
Definition
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
mup
mup_geqx q n : q != 0 -> (n <= mup x q)%N = (('X - x%:P) ^+ n %| q). Proof. move=> q_neq0; rewrite /mup; symmetry. case: arg_maxnP; rewrite ?expr0 ?dvd1p//= => i i_dvd gti. case: ltnP => [|/dvdp_exp2l/dvdp_trans]; last exact. apply: contraTF => dvdq; rewrite -leqNgt. suff n_small : (n < (size q).+1)%N by exact: (gti (Ordinal n_small)). by rewrite ltnS ltnW// -(size_exp_XsubC _ x) dvdp_leq. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
mup_geq
mup_leqx q n : q != 0 -> (mup x q <= n)%N = ~~ (('X - x%:P) ^+ n.+1 %| q). Proof. by move=> qN0; rewrite leqNgt mup_geq. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
mup_leq
mup_ltnx q n : q != 0 -> (mup x q < n)%N = ~~ (('X - x%:P) ^+ n %| q). Proof. by move=> qN0; rewrite ltnNge mup_geq. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
mup_ltn
XsubC_dvdx q : q != 0 -> ('X - x%:P %| q) = (0 < mup x q)%N. Proof. by move=> /mup_geq-/(_ _ 1%N)/esym; apply. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
XsubC_dvd
mup_XsubCXn x y : mup x (('X - y%:P) ^+ n) = (if (y == x) then n else 0)%N. Proof. have Xxn0 : ('X - y%:P) ^+ n != 0 by rewrite ?expf_neq0 ?polyXsubC_eq0. apply/eqP; rewrite eqn_leq mup_leq ?mup_geq//. have [->|Nxy] := eqVneq x y. by rewrite /= dvdpp ?dvdp_Pexp2l ?size_XsubC ?ltnn. by rewrite dvd1p dvdp_XsubCl /root horner_exp !hornerE expf_neq0// subr_eq0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
mup_XsubCX
mupNrootx q : ~~ root q x -> mup x q = 0%N. Proof. move=> qNx; have qN0 : q != 0 by apply: contraNneq qNx => ->; rewrite root0. by move: qNx; rewrite -dvdp_XsubCl XsubC_dvd// lt0n negbK => /eqP. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
mupNroot
mupMrx q1 q2 : ~~ root q1 x -> mup x (q1 * q2) = mup x q2. Proof. move=> q1Nx; have q1N0 : q1 != 0 by apply: contraNneq q1Nx => ->; rewrite root0. have [->|q2N0] := eqVneq q2 0; first by rewrite mulr0. apply/esym/eqP; rewrite eqn_leq mup_geq ?mulf_neq0// dvdp_mull -?mup_geq//=. rewrite mup_leq ?mulf_neq0// Gauss_dvdpr -?mup_ltn//. by rewrite coprimep_expl// coprimep_sym coprimep_XsubC. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
mupMr
mupMlx q1 q2 : ~~ root q2 x -> mup x (q1 * q2) = mup x q1. Proof. by rewrite mulrC; apply/mupMr. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
mupMl
mupMx q1 q2 : q1 != 0 -> q2 != 0 -> mup x (q1 * q2) = (mup x q1 + mup x q2)%N. Proof. move=> q1N0 q2N0; apply/eqP; rewrite eqn_leq mup_leq ?mulf_neq0//. rewrite mup_geq ?mulf_neq0// exprD ?dvdp_mul; do ?by rewrite -mup_geq. have [m1 [r1]] := multiplicity_XsubC q1 x; rewrite q1N0 /= => r1Nx ->. have [m2 [r2]] := multiplicity_XsubC q2 x; rewrite q2N0 /= => r2Nx ->. rewrite !mupMr// ?mup_XsubCX eqxx/= mulrACA exprS exprD. rewrite dvdp_mul2r ?mulf_neq0 ?expf_neq0 ?polyXsubC_eq0//. by rewrite dvdp_XsubCl rootM negb_or r1Nx r2Nx. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
mupM
mu_prod_XsubCx (s : seq F) : mup x (\prod_(y <- s) ('X - y%:P)) = count_mem x s. Proof. elim: s => [|y s IHs]; rewrite (big_cons, big_nil)/=. by rewrite mupNroot// root1. rewrite mupM ?polyXsubC_eq0// ?monic_neq0 ?monic_prod_XsubC//. by rewrite IHs (@mup_XsubCX 1). Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
mu_prod_XsubC
prod_XsubC_eq(s t : seq F) : \prod_(x <- s) ('X - x%:P) = \prod_(x <- t) ('X - x%:P) -> perm_eq s t. Proof. move=> eq_prod; apply/allP => x _ /=; apply/eqP. by have /(congr1 (mup x)) := eq_prod; rewrite !mu_prod_XsubC. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
prod_XsubC_eq
redivp_mapa b : redivp a^f b^f = (rscalp a b, (rdivp a b)^f, (rmodp a b)^f). Proof. rewrite /rdivp /rscalp /rmodp !unlock map_poly_eq0 size_map_poly. have [// | q_nz] := ifPn; rewrite -(rmorph0 (map_poly f)) //. have [m _] := ubnPeq (size a); elim: m 0%N 0 a => [|m IHm] qq r a /=. rewrite -!mul_polyC !size_map_poly !lead_coef_map // -(map_polyXn f). by rewrite -!(map_polyC f) -!rmorphM -rmorphB -rmorphD; case: (_ < _). rewrite -!mul_polyC !size_map_poly !lead_coef_map // -(map_polyXn f). by rewrite -!(map_polyC f) -!rmorphM -rmorphB -rmorphD /= IHm; case: (_ < _). Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
redivp_map
edivp_mapa b : edivp a^f b^f = (0, (a %/ b)^f, (a %% b)^f). Proof. have [-> | bn0] := eqVneq b 0. rewrite (rmorph0 (map_poly f)) WeakIdomain.edivp_def !modp0 !divp0. by rewrite (rmorph0 (map_poly f)) scalp0. rewrite unlock redivp_map lead_coef_map rmorph_unit; last first. by rewrite unitfE lead_coef_eq0. rewrite modpE divpE !map_polyZ [in RHS]rmorphV ?rmorphXn // unitfE. by rewrite expf_neq0 // lead_coef_eq0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
edivp_map
scalp_mapp q : scalp p^f q^f = scalp p q. Proof. by rewrite /scalp edivp_map edivp_def. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
scalp_map
map_divpp q : (p %/ q)^f = p^f %/ q^f. Proof. by rewrite /divp edivp_map edivp_def. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
map_divp
map_modpp q : (p %% q)^f = p^f %% q^f. Proof. by rewrite /modp edivp_map edivp_def. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
map_modp
egcdp_mapp q : egcdp (map_poly f p) (map_poly f q) = (map_poly f (egcdp p q).1, map_poly f (egcdp p q).2). Proof. wlog le_qp: p q / size q <= size p. move=> IH; have [/IH// | lt_qp] := leqP (size q) (size p). have /IH := ltnW lt_qp; rewrite /egcdp !size_map_poly ltnW // leqNgt lt_qp /=. by case: (egcdp_rec _ _ _) => u v [-> ->]. rewrite /egcdp !size_map_poly {}le_qp; move: (size q) => n. elim: n => /= [|n IHn] in p q *; first by rewrite rmorph1 rmorph0. rewrite map_poly_eq0; have [_ | nz_q] := ifPn; first by rewrite rmorph1 rmorph0. rewrite -map_modp (IHn q (p %% q)); case: (egcdp_rec _ _ n) => u v /=. rewrite map_polyZ lead_coef_map -rmorphXn scalp_map rmorphB rmorphM. by rewrite -map_divp. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
egcdp_map
dvdp_mapp q : (p^f %| q^f) = (p %| q). Proof. by rewrite /dvdp -map_modp map_poly_eq0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_map
eqp_mapp q : (p^f %= q^f) = (p %= q). Proof. by rewrite /eqp !dvdp_map. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_map
gcdp_mapp q : (gcdp p q)^f = gcdp p^f q^f. Proof. wlog lt_p_q: p q / size p < size q. move=> IHpq; case: (ltnP (size p) (size q)) => [|le_q_p]; first exact: IHpq. rewrite gcdpE (gcdpE p^f) !size_map_poly ltnNge le_q_p /= -map_modp. have [-> | q_nz] := eqVneq q 0; first by rewrite rmorph0 !gcdp0. by rewrite IHpq ?ltn_modp. have [m le_q_m] := ubnP (size q); elim: m => // m IHm in p q lt_p_q le_q_m *. rewrite gcdpE (gcdpE p^f) !size_map_poly lt_p_q -map_modp. have [-> | q_nz] := eqVneq p 0; first by rewrite rmorph0 !gcdp0. by rewrite IHm ?(leq_trans lt_p_q) ?ltn_modp. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
gcdp_map
coprimep_mapp q : coprimep p^f q^f = coprimep p q. Proof. by rewrite -!gcdp_eqp1 -eqp_map rmorph1 gcdp_map. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
coprimep_map
gdcop_rec_mapp q n : (gdcop_rec p q n)^f = gdcop_rec p^f q^f n. Proof. elim: n p q => [|n IH] => /= p q. by rewrite map_poly_eq0; case: eqP; rewrite ?rmorph1 ?rmorph0. rewrite /coprimep -gcdp_map size_map_poly. by case: eqP => Hq0 //; rewrite -map_divp -IH. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
gdcop_rec_map
gdcop_mapp q : (gdcop p q)^f = gdcop p^f q^f. Proof. by rewrite /gdcop gdcop_rec_map !size_map_poly. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
gdcop_map
leq_trunc_divp:= leq_divMp.
Notation
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
leq_trunc_divp
root_coprimep(p q : {poly F}) : (forall x, root p x -> q.[x] != 0) -> coprimep p q. Proof. move=> Ncmn; rewrite -gcdp_eqp1 -size_poly_eq1; apply/closed_rootP. by case=> r; rewrite root_gcd !rootE=> /andP [/Ncmn/negPf->]. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
root_coprimep
coprimepP(p q : {poly F}) : reflect (forall x, root p x -> q.[x] != 0) (coprimep p q). Proof. by apply: (iffP idP)=> [/coprimep_root|/root_coprimep]. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
coprimepP
swapXY_defu : {poly {poly R}} := (u ^ map_poly polyC).['Y].
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
swapXY_def
swapXY:= locked_with swapXY_key swapXY_def.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
swapXY
swapXY_unlockable:= [unlockable fun swapXY].
Canonical
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
swapXY_unlockable
sizeYu : nat := \max_(i < size u) (size u`_i).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
sizeY
poly_XaYp : {poly {poly R}} := p^:P \Po ('X + 'Y).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
poly_XaY
poly_XmYp : {poly {poly R}} := p^:P \Po ('X * 'Y).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
poly_XmY
sub_annihilantp q := resultant (poly_XaY p) q^:P.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
sub_annihilant
div_annihilantp q := resultant (poly_XmY p) q^:P.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
div_annihilant
swapXY_polyCp : swapXY p%:P = p^:P. Proof. by rewrite unlock map_polyC hornerC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
swapXY_polyC
swapXY_X: swapXY 'X = 'Y. Proof. by rewrite unlock map_polyX hornerX. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
swapXY_X
swapXY_Y: swapXY 'Y = 'X. Proof. by rewrite swapXY_polyC map_polyX. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
swapXY_Y
swapXY_is_zmod_morphism: zmod_morphism swapXY. Proof. by move=> u v; rewrite unlock rmorphB !hornerE. Qed. #[warning="-deprecated-since-mathcomp-2.5.0", deprecated(since="mathcomp 2.5.0", note="use `swapXY_is_zmod_morphism` instead")]
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
swapXY_is_zmod_morphism
swapXY_is_additive:= swapXY_is_zmod_morphism. HB.instance Definition _ := GRing.isZmodMorphism.Build {poly {poly R}} {poly {poly R}} swapXY swapXY_is_zmod_morphism.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
swapXY_is_additive
coef_swapXYu i j : (swapXY u)`_i`_j = u`_j`_i. Proof. elim/poly_ind: u => [|u p IHu] in i j *; first by rewrite raddf0 !coef0. rewrite raddfD !coefD /= swapXY_polyC coef_map /= !coefC coefMX. rewrite !(fun_if (fun q : {poly R} => q`_i)) coef0 -IHu; congr (_ + _). by rewrite unlock rmorphM /= map_polyX hornerMX coefMC coefMX. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
coef_swapXY
swapXYK: involutive swapXY. Proof. by move=> u; apply/polyP=> i; apply/polyP=> j; rewrite !coef_swapXY. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
swapXYK
swapXY_map_polyCp : swapXY p^:P = p%:P. Proof. by rewrite -swapXY_polyC swapXYK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
swapXY_map_polyC
swapXY_eq0u : (swapXY u == 0) = (u == 0). Proof. by rewrite (inv_eq swapXYK) raddf0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
swapXY_eq0
swapXY_is_monoid_morphism: monoid_morphism swapXY. Proof. split=> [|u v]; first by rewrite swapXY_polyC map_polyC. apply/polyP=> i; apply/polyP=> j; rewrite coef_swapXY !coefM !coef_sum. rewrite (eq_bigr _ (fun _ _ => coefM _ _ _)) exchange_big /=. apply: eq_bigr => j1 _; rewrite coefM; apply: eq_bigr=> i1 _. by rewrite !coef_swapXY. Qed. #[warning="-deprecated-since-mathcomp-2.5.0", deprecated(since="mathcomp 2.5.0", note="use `swapXY_is_monoid_morphism` instead")]
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
swapXY_is_monoid_morphism
swapXY_is_multiplicative:= (fun g => (g.2,g.1)) swapXY_is_monoid_morphism. HB.instance Definition _ := GRing.isMonoidMorphism.Build {poly {poly R}} {poly {poly R}} swapXY swapXY_is_monoid_morphism.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
swapXY_is_multiplicative
swapXY_is_scalable: scalable_for (map_poly polyC \; *%R) swapXY. Proof. by move=> p u /=; rewrite -mul_polyC rmorphM /= swapXY_polyC. Qed. HB.instance Definition _ := GRing.isScalable.Build {poly R} {poly {poly R}} {poly {poly R}} (map_poly polyC \; *%R) swapXY swapXY_is_scalable.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
swapXY_is_scalable
swapXY_comp_polyp u : swapXY (p^:P \Po u) = p^:P \Po swapXY u. Proof. rewrite -horner_map; congr _.[_]; rewrite -!map_poly_comp /=. by apply: eq_map_poly => x; rewrite /= swapXY_polyC map_polyC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
swapXY_comp_poly
max_size_coefXYu i : size u`_i <= sizeY u. Proof. have [ltiu | /(nth_default 0)->] := ltnP i (size u); last by rewrite size_poly0. exact: (bigmax_sup (Ordinal ltiu)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
max_size_coefXY
max_size_lead_coefXYu : size (lead_coef u) <= sizeY u. Proof. by rewrite lead_coefE max_size_coefXY. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
max_size_lead_coefXY
max_size_evalXu : size u.['X] <= sizeY u + (size u).-1. Proof. rewrite horner_coef (leq_trans (size_sum _ _ _)) //; apply/bigmax_leqP=> i _. rewrite (leq_trans (size_polyMleq _ _)) // size_polyXn addnS. by rewrite leq_add ?max_size_coefXY //= -ltnS (leq_trans _ (leqSpred _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
max_size_evalX
max_size_evalCu x : size u.[x%:P] <= sizeY u. Proof. rewrite horner_coef (leq_trans (size_sum _ _ _)) //; apply/bigmax_leqP=> i _. rewrite (leq_trans (size_polyMleq _ _)) // -polyC_exp size_polyC addnC -subn1. by rewrite (leq_trans _ (max_size_coefXY _ i)) // leq_subLR leq_add2r leq_b1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
max_size_evalC
sizeYEu : sizeY u = size (swapXY u). Proof. apply/eqP; rewrite eqn_leq; apply/andP; split. apply/bigmax_leqP=> /= i _; apply/leq_sizeP => j /(nth_default 0) u_j_0. by rewrite -coef_swapXY u_j_0 coef0. apply/leq_sizeP=> j le_uY_j; apply/polyP=> i; rewrite coef_swapXY coef0. by rewrite nth_default // (leq_trans _ le_uY_j) ?max_size_coefXY. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
sizeYE
sizeY_eq0u : (sizeY u == 0) = (u == 0). Proof. by rewrite sizeYE size_poly_eq0 swapXY_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
sizeY_eq0
sizeY_mulXu : sizeY (u * 'X) = sizeY u. Proof. rewrite !sizeYE rmorphM /= swapXY_X rreg_size //. by have /monic_comreg[_ /rreg_lead] := monicX R. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
sizeY_mulX
swapXY_poly_XaYp : swapXY (poly_XaY p) = poly_XaY p. Proof. by rewrite swapXY_comp_poly rmorphD /= swapXY_X swapXY_Y addrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
swapXY_poly_XaY
swapXY_poly_XmYp : swapXY (poly_XmY p) = poly_XmY p. Proof. by rewrite swapXY_comp_poly rmorphM /= swapXY_X swapXY_Y commr_polyX. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
swapXY_poly_XmY
poly_XaY0: poly_XaY 0 = 0. Proof. by rewrite /poly_XaY rmorph0 comp_poly0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
poly_XaY0
poly_XmY0: poly_XmY 0 = 0. Proof. by rewrite /poly_XmY rmorph0 comp_poly0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
poly_XmY0
swapXY_map(R S : nzRingType) (f : {additive R -> S}) u : swapXY (u ^ map_poly f) = swapXY u ^ map_poly f. Proof. by apply/polyP=> i; apply/polyP=> j; rewrite !(coef_map, coef_swapXY). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
swapXY_map
horner_swapXYu x : (swapXY u).[x%:P] = u ^ eval x. Proof. apply/polyP=> i /=; rewrite coef_map /= /eval horner_coef coef_sum -sizeYE. rewrite (horner_coef_wide _ (max_size_coefXY u i)); apply: eq_bigr=> j _. by rewrite -polyC_exp coefMC coef_swapXY. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
horner_swapXY
horner_polyCu x : u.[x%:P] = swapXY u ^ eval x. Proof. by rewrite -horner_swapXY swapXYK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
horner_polyC
horner2_swapXYu x y : (swapXY u).[x, y] = u.[y, x]. Proof. by rewrite horner_swapXY -{1}(hornerC y x) horner_map. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
horner2_swapXY
horner_poly_XaYp v : (poly_XaY p).[v] = p \Po (v + 'X). Proof. by rewrite horner_comp !hornerE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
horner_poly_XaY
horner_poly_XmYp v : (poly_XmY p).[v] = p \Po (v * 'X). Proof. by rewrite horner_comp !hornerE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
horner_poly_XmY
size_poly_XaYp : size (poly_XaY p) = size p. Proof. by rewrite size_comp_poly2 ?size_XaddC // size_map_polyC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
size_poly_XaY
poly_XaY_eq0p : (poly_XaY p == 0) = (p == 0). Proof. by rewrite -!size_poly_eq0 size_poly_XaY. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
poly_XaY_eq0
size_poly_XmYp : size (poly_XmY p) = size p. Proof. by rewrite size_comp_poly2 ?size_XmulC ?polyX_eq0 ?size_map_polyC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
size_poly_XmY
poly_XmY_eq0p : (poly_XmY p == 0) = (p == 0). Proof. by rewrite -!size_poly_eq0 size_poly_XmY. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
poly_XmY_eq0
lead_coef_poly_XaYp : lead_coef (poly_XaY p) = (lead_coef p)%:P. Proof. rewrite lead_coef_comp ?size_XaddC // -['Y]opprK -polyCN lead_coefXsubC. by rewrite expr1n mulr1 lead_coef_map_inj //; apply: polyC_inj. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
lead_coef_poly_XaY
sub_annihilant_in_idealp q : 1 < size p -> 1 < size q -> {uv : {poly {poly R}} * {poly {poly R}} | size uv.1 < size q /\ size uv.2 < size p & forall x y, (sub_annihilant p q).[y] = uv.1.[x, y] * p.[x + y] + uv.2.[x, y] * q.[x]}. Proof. rewrite -size_poly_XaY -(size_map_polyC q) => p1_gt1 q1_gt1. have [uv /= [ub_u ub_v Dr]] := resultant_in_ideal p1_gt1 q1_gt1. exists uv => // x y; rewrite -[r in r.[y] = _](hornerC _ x%:P) Dr. by rewrite !(hornerE, horner_comp). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
sub_annihilant_in_ideal
sub_annihilantPp q x y : p != 0 -> q != 0 -> p.[x] = 0 -> q.[y] = 0 -> (sub_annihilant p q).[x - y] = 0. Proof. move=> nz_p nz_q px0 qy0. have p_gt1: size p > 1 by have /rootP/root_size_gt1-> := px0. have q_gt1: size q > 1 by have /rootP/root_size_gt1-> := qy0. have [uv /= _ /(_ y)->] := sub_annihilant_in_ideal p_gt1 q_gt1. by rewrite (addrC y) subrK px0 qy0 !mulr0 addr0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
sub_annihilantP
sub_annihilant_neq0p q : p != 0 -> q != 0 -> sub_annihilant p q != 0. Proof. rewrite resultant_eq0; set p1 := poly_XaY p => nz_p nz_q. have [nz_p1 nz_q1]: p1 != 0 /\ q^:P != 0 by rewrite poly_XaY_eq0 map_polyC_eq0. rewrite -leqNgt eq_leq //; apply/eqP/Bezout_coprimepPn=> // [[[u v]]] /=. rewrite !size_poly_gt0 -andbA => /and4P[nz_u ltuq nz_v _] Duv. have /eqP/= := congr1 (size \o (lead_coef \o swapXY)) Duv. rewrite ltn_eqF // !rmorphM !lead_coefM (leq_trans (leq_ltn_trans _ ltuq)) //=. rewrite -{2}[u]swapXYK -sizeYE swapXY_poly_XaY lead_coef_poly_XaY. by rewrite mulrC mul_polyC size_scale ?max_size_lead_coefXY ?lead_coef_eq0. rewrite swapXY_map_polyC lead_coefC size_map_polyC. set v1 := lead_coef _; have nz_v1: v1 != 0 by rewrite lead_coef_eq0 swapXY_eq0. rewrite [leqRHS]polySpred ?mulf_neq0 // size_mul //. by rewrite (polySpred nz_v1) addnC addnS polySpred // ltnS leq_addr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype choice ssrnat seq", "From mathcomp Require Import fintype tuple finfun bigop fingroup perm div", "From mathcomp Require Import ssralg zmodp matrix mxalgebra", "From mathcomp Require Import poly polydiv mxpoly binomial" ]
algebra/polyXY.v
sub_annihilant_neq0