fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
gcdp_comp_polyr p q : gcdp p q \Po r %= gcdp (p \Po r) (q \Po r). Proof. apply/andP; split. by rewrite dvdp_gcd !dvdp_comp_poly ?dvdp_gcdl ?dvdp_gcdr. case: (Bezoutp p q) => [[u v]] /andP []. move/(dvdp_comp_poly r) => Huv _. rewrite (dvdp_trans _ Huv) // comp_polyD !comp_polyM. by rewrite dvdp_add // dvdp_mull //; [ exact: dvdp_gcdl | exact: dvdp_gcdr]. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
gcdp_comp_poly
coprimep_comp_polyr p q : coprimep p q -> coprimep (p \Po r) (q \Po r). Proof. rewrite -!gcdp_eqp1 -!size_poly_eq1 -!dvdp1; move/(dvdp_comp_poly r). rewrite comp_polyC => Hgcd. by apply: dvdp_trans Hgcd; case/andP: (gcdp_comp_poly r p q). Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
coprimep_comp_poly
coprimep_addl_mulp q r : coprimep r (p * r + q) = coprimep r q. Proof. by rewrite !coprimep_def (eqp_size (gcdp_addl_mul _ _ _)). Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
coprimep_addl_mul
irreducible_polyp := (size p > 1) * (forall q, size q != 1 -> q %| p -> q %= p) : Prop.
Definition
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
irreducible_poly
irredp_neq0p : irreducible_poly p -> p != 0. Proof. by rewrite -size_poly_gt0 => [[/ltnW]]. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
irredp_neq0
apply_irredpp (irr_p : irreducible_poly p) := irr_p.2.
Definition
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
apply_irredp
apply_irredp: irreducible_poly >-> Funclass.
Coercion
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
apply_irredp
modp_XsubCp c : p %% ('X - c%:P) = p.[c]%:P. Proof. have/factor_theorem [q /(canRL (subrK _)) Dp]: root (p - p.[c]%:P) c. by rewrite /root !hornerE subrr. rewrite modpE /= lead_coefXsubC unitr1 expr1n invr1 scale1r [in LHS]Dp. rewrite RingMonic.rmodp_addl_mul_small // ?monicXsubC// size_XsubC size_polyC. by case: (p.[c] == 0). Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
modp_XsubC
coprimep_XsubCp c : coprimep p ('X - c%:P) = ~~ root p c. Proof. rewrite -coprimep_modl modp_XsubC /root -alg_polyC. have [-> | /coprimepZl->] := eqVneq; last exact: coprime1p. by rewrite scale0r /coprimep gcd0p size_XsubC. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
coprimep_XsubC
coprimep_XsubC2(a b : R) : b - a != 0 -> coprimep ('X - a%:P) ('X - b%:P). Proof. by move=> bBa_neq0; rewrite coprimep_XsubC rootE hornerXsubC. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
coprimep_XsubC2
coprimepXp : coprimep p 'X = ~~ root p 0. Proof. by rewrite -['X]subr0 coprimep_XsubC. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
coprimepX
eqp_monic: {in monic &, forall p q, (p %= q) = (p == q)}. Proof. move=> p q monic_p monic_q; apply/idP/eqP=> [|-> //]. case/eqpP=> [[a b] /= /andP[a_neq0 _] eq_pq]. apply: (@mulfI _ a%:P); first by rewrite polyC_eq0. rewrite !mul_polyC eq_pq; congr (_ *: q); apply: (mulIf (oner_neq0 _)). by rewrite -[in LHS](monicP monic_q) -(monicP monic_p) -!lead_coefZ eq_pq. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_monic
dvdp_mul_XsubCp q c : (p %| ('X - c%:P) * q) = ((if root p c then p %/ ('X - c%:P) else p) %| q). Proof. case: ifPn => [| not_pc0]; last by rewrite Gauss_dvdpr ?coprimep_XsubC. rewrite root_factor_theorem -eqp_div_XsubC mulrC => /eqP{1}->. by rewrite dvdp_mul2l ?polyXsubC_eq0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_mul_XsubC
dvdp_prod_XsubC(I : Type) (r : seq I) (F : I -> R) p : p %| \prod_(i <- r) ('X - (F i)%:P) -> {m | p %= \prod_(i <- mask m r) ('X - (F i)%:P)}. Proof. elim: r => [|i r IHr] in p *. by rewrite big_nil dvdp1; exists nil; rewrite // big_nil -size_poly_eq1. rewrite big_cons dvdp_mul_XsubC root_factor_theorem -eqp_div_XsubC. case: eqP => [{2}-> | _] /IHr[m Dp]; last by exists (false :: m). by exists (true :: m); rewrite /= mulrC big_cons eqp_mul2l ?polyXsubC_eq0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_prod_XsubC
irredp_XsubC(x : R) : irreducible_poly ('X - x%:P). Proof. split=> [|d size_d d_dv_Xx]; first by rewrite size_XsubC. have: ~ d %= 1 by apply/negP; rewrite -size_poly_eq1. have [|m /=] := @dvdp_prod_XsubC _ [:: x] id d; first by rewrite big_seq1. by case: m => [|[] [|_ _] /=]; rewrite (big_nil, big_seq1). Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
irredp_XsubC
irredp_XaddC(x : R) : irreducible_poly ('X + x%:P). Proof. by rewrite -[x]opprK rmorphN; apply: irredp_XsubC. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
irredp_XaddC
irredp_XsubCPd p : irreducible_poly p -> d %| p -> {d %= 1} + {d %= p}. Proof. move=> irred_p dvd_dp; have [] := boolP (_ %= 1); first by left. by rewrite -size_poly_eq1=> /irred_p /(_ dvd_dp); right. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
irredp_XsubCP
dvdp_exp_XsubCP(p : {poly R}) (c : R) (n : nat) : reflect (exists2 k, (k <= n)%N & p %= ('X - c%:P) ^+ k) (p %| ('X - c%:P) ^+ n). Proof. apply: (iffP idP) => [|[k lkn /eqp_dvdl->]]; last by rewrite dvdp_exp2l. move=> /Pdiv.WeakIdomain.dvdpP[[/= a q] a_neq0]. have [m [r]] := multiplicity_XsubC p c; have [->|pN0]/= := eqVneq p 0. rewrite mulr0 => _ _ /eqP; rewrite scale_poly_eq0 (negPf a_neq0)/=. by rewrite expf_eq0/= andbC polyXsubC_eq0. move=> rNc ->; rewrite mulrA => eq_qrm; exists m. have: ('X - c%:P) ^+ m %| a *: ('X - c%:P) ^+ n by rewrite eq_qrm dvdp_mull. by rewrite (eqp_dvdr _ (eqp_scale _ _))// dvdp_Pexp2l// size_XsubC. suff /eqP : size r = 1%N. by rewrite size_poly_eq1 => /eqp_mulr/eqp_trans->//; rewrite mul1r eqpxx. have : r %| a *: ('X - c%:P) ^+ n by rewrite eq_qrm mulrAC dvdp_mull. rewrite (eqp_dvdr _ (eqp_scale _ _))//. move: rNc; rewrite -coprimep_XsubC => /(coprimep_expr n) /coprimepP. by move=> /(_ _ (dvdpp _)); rewrite -size_poly_eq1 => /(_ _)/eqP. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_exp_XsubCP
divpEp : p %/ q = rdivp p q. Proof. by rewrite divpE (eqP monq) unitr1 expr1n invr1 scale1r. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divpE
modpEp : p %% q = rmodp p q. Proof. by rewrite modpE (eqP monq) unitr1 expr1n invr1 scale1r. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
modpE
scalpEp : scalp p q = 0. Proof. by rewrite scalpE (eqP monq) unitr1. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
scalpE
divp_eqp : p = (p %/ q) * q + (p %% q). Proof. by rewrite -divp_eq (eqP monq) expr1n scale1r. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divp_eq
divppp : q %/ q = 1. Proof. by rewrite divpp ?monic_neq0 // (eqP monq) expr1n. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divpp
dvdp_eqp : (q %| p) = (p == (p %/ q) * q). Proof. by rewrite dvdp_eq (eqP monq) expr1n scale1r. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_eq
dvdpPp : reflect (exists qq, p = qq * q) (q %| p). Proof. apply: (iffP idP); first by rewrite dvdp_eq; move/eqP=> e; exists (p %/ q). by case=> qq ->; rewrite dvdp_mull // dvdpp. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdpP
mulpKp : p * q %/ q = p. Proof. by rewrite mulpK ?monic_neq0 // (eqP monq) expr1n scale1r. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
mulpK
mulKpp : q * p %/ q = p. Proof. by rewrite mulrC mulpK. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
mulKp
drop_poly_divpn p : drop_poly n p = p %/ 'X^n. Proof. by rewrite RingMonic.drop_poly_rdivp divpE // monicXn. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
drop_poly_divp
take_poly_modpn p : take_poly n p = p %% 'X^n. Proof. by rewrite RingMonic.take_poly_rmodp modpE // monicXn. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
take_poly_modp
divp_eqp : p = (p %/ d) * d + (p %% d). Proof. by have := divp_eq p d; rewrite scalpE ulcd expr0 scale1r. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divp_eq
edivpPp q r : p = q * d + r -> size r < size d -> q = (p %/ d) /\ r = p %% d. Proof. move=> ep srd; have := divp_eq p; rewrite [LHS]ep. move/eqP; rewrite -subr_eq -addrA addrC eq_sym -subr_eq -mulrBl; move/eqP. have lcdn0 : lead_coef d != 0 by apply: contraTneq ulcd => ->; rewrite unitr0. have [-> /esym /eqP|abs] := eqVneq (p %/ d) q. by rewrite subrr mul0r subr_eq0 => /eqP<-. have hleq : size d <= size ((p %/ d - q) * d). rewrite size_proper_mul; last first. by rewrite mulf_eq0 (negPf lcdn0) orbF lead_coef_eq0 subr_eq0. by move: abs; rewrite -subr_eq0; move/polySpred->; rewrite addSn /= leq_addl. have hlt : size (r - p %% d) < size d. apply: leq_ltn_trans (size_polyD _ _) _. by rewrite gtn_max srd size_polyN ltn_modp -lead_coef_eq0. by move=> e; have:= leq_trans hlt hleq; rewrite e ltnn. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
edivpP
divpPp q r : p = q * d + r -> size r < size d -> q = (p %/ d). Proof. by move/edivpP=> h; case/h. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divpP
modpPp q r : p = q * d + r -> size r < size d -> r = (p %% d). Proof. by move/edivpP=> h; case/h. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
modpP
ulc_eqpPp q : lead_coef q \is a GRing.unit -> reflect (exists2 c : R, c != 0 & p = c *: q) (p %= q). Proof. have [->|] := eqVneq (lead_coef q) 0; first by rewrite unitr0. rewrite lead_coef_eq0 => nz_q ulcq; apply: (iffP idP). have [->|nz_p] := eqVneq p 0; first by rewrite eqp_sym eqp0 (negPf nz_q). move/eqp_eq=> eq; exists (lead_coef p / lead_coef q). by rewrite mulf_neq0 // ?invr_eq0 lead_coef_eq0. by apply/(scaler_injl ulcq); rewrite scalerA mulrCA divrr // mulr1. by case=> c nz_c ->; apply/eqpP; exists (1, c); rewrite ?scale1r ?oner_eq0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
ulc_eqpP
dvdp_eqp : (d %| p) = (p == p %/ d * d). Proof. apply/eqP/eqP=> [modp0 | ->]; last exact: modp_mull. by rewrite [p in LHS]divp_eq modp0 addr0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_eq
ucl_eqp_eqp q : lead_coef q \is a GRing.unit -> p %= q -> p = (lead_coef p / lead_coef q) *: q. Proof. move=> ulcq /eqp_eq; move/(congr1 ( *:%R (lead_coef q)^-1 )). by rewrite !scalerA mulrC divrr // scale1r mulrC. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
ucl_eqp_eq
modpZlc p : (c *: p) %% d = c *: (p %% d). Proof. have [-> | cn0] := eqVneq c 0; first by rewrite !scale0r mod0p. have e : (c *: p) = (c *: (p %/ d)) * d + c *: (p %% d). by rewrite -scalerAl -scalerDr -divp_eq. suff s: size (c *: (p %% d)) < size d by case: (edivpP e s) => _ ->. rewrite -mul_polyC; apply: leq_ltn_trans (size_polyMleq _ _) _. rewrite size_polyC cn0 addSn add0n /= ltn_modp -lead_coef_eq0. by apply: contraTneq ulcd => ->; rewrite unitr0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
modpZl
divpZlc p : (c *: p) %/ d = c *: (p %/ d). Proof. have [-> | cn0] := eqVneq c 0; first by rewrite !scale0r div0p. have e : (c *: p) = (c *: (p %/ d)) * d + c *: (p %% d). by rewrite -scalerAl -scalerDr -divp_eq. suff s: size (c *: (p %% d)) < size d by case: (edivpP e s) => ->. rewrite -mul_polyC; apply: leq_ltn_trans (size_polyMleq _ _) _. rewrite size_polyC cn0 addSn add0n /= ltn_modp -lead_coef_eq0. by apply: contraTneq ulcd => ->; rewrite unitr0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divpZl
eqp_modplp q : p %= q -> (p %% d) %= (q %% d). Proof. case/eqpP=> [[c1 c2]] /andP /= [c1n0 c2n0 e]. by apply/eqpP; exists (c1, c2); rewrite ?c1n0 //= -!modpZl e. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_modpl
eqp_divlp q : p %= q -> (p %/ d) %= (q %/ d). Proof. case/eqpP=> [[c1 c2]] /andP /= [c1n0 c2n0 e]. by apply/eqpP; exists (c1, c2); rewrite ?c1n0 // -!divpZl e. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_divl
modpNp : (- p) %% d = - (p %% d). Proof. by rewrite -mulN1r -[RHS]mulN1r -polyCN !mul_polyC modpZl. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
modpN
divpNp : (- p) %/ d = - (p %/ d). Proof. by rewrite -mulN1r -[RHS]mulN1r -polyCN !mul_polyC divpZl. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divpN
modpDp q : (p + q) %% d = p %% d + q %% d. Proof. have/edivpP [] // : (p + q) = (p %/ d + q %/ d) * d + (p %% d + q %% d). by rewrite mulrDl addrACA -!divp_eq. apply: leq_ltn_trans (size_polyD _ _) _. rewrite gtn_max !ltn_modp andbb -lead_coef_eq0. by apply: contraTneq ulcd => ->; rewrite unitr0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
modpD
divpDp q : (p + q) %/ d = p %/ d + q %/ d. Proof. have/edivpP [] // : (p + q) = (p %/ d + q %/ d) * d + (p %% d + q %% d). by rewrite mulrDl addrACA -!divp_eq. apply: leq_ltn_trans (size_polyD _ _) _. rewrite gtn_max !ltn_modp andbb -lead_coef_eq0. by apply: contraTneq ulcd => ->; rewrite unitr0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divpD
mulpKq : (q * d) %/ d = q. Proof. case/esym/edivpP: (addr0 (q * d)); rewrite // size_poly0 size_poly_gt0. by rewrite -lead_coef_eq0; apply: contraTneq ulcd => ->; rewrite unitr0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
mulpK
mulKpq : (d * q) %/ d = q. Proof. by rewrite mulrC; apply: mulpK. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
mulKp
divp_addl_mul_smallq r : size r < size d -> (q * d + r) %/ d = q. Proof. by move=> srd; rewrite divpD (divp_small srd) addr0 mulpK. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divp_addl_mul_small
modp_addl_mul_smallq r : size r < size d -> (q * d + r) %% d = r. Proof. by move=> srd; rewrite modpD modp_mull add0r modp_small. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
modp_addl_mul_small
divp_addl_mulq r : (q * d + r) %/ d = q + r %/ d. Proof. by rewrite divpD mulpK. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divp_addl_mul
divpp: d %/ d = 1. Proof. by rewrite -[d in d %/ _]mul1r mulpK. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divpp
leq_divMpm : size (m %/ d * d) <= size m. Proof. case: (eqVneq d 0) ulcd => [->|dn0 _]; first by rewrite lead_coef0 unitr0. have [->|q0] := eqVneq (m %/ d) 0; first by rewrite mul0r size_poly0 leq0n. rewrite {2}(divp_eq m) size_polyDl // size_mul // (polySpred q0) addSn /=. by rewrite ltn_addl // ltn_modp. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
leq_divMp
dvdpPp : reflect (exists q, p = q * d) (d %| p). Proof. apply: (iffP idP) => [| [k ->]]; last by apply/eqP; rewrite modp_mull. by rewrite dvdp_eq; move/eqP->; exists (p %/ d). Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdpP
divpKp : d %| p -> p %/ d * d = p. Proof. by rewrite dvdp_eq; move/eqP. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divpK
divpKCp : d %| p -> d * (p %/ d) = p. Proof. by move=> ?; rewrite mulrC divpK. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divpKC
dvdp_eq_divp q : d %| p -> (q == p %/ d) = (q * d == p). Proof. move/divpK=> {2}<-; apply/eqP/eqP; first by move->. apply/mulIf; rewrite -lead_coef_eq0; apply: contraTneq ulcd => ->. by rewrite unitr0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_eq_div
dvdp_eq_mulp q : d %| p -> (p == q * d) = (p %/ d == q). Proof. by move=> dv_d_p; rewrite eq_sym -dvdp_eq_div // eq_sym. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_eq_mul
divp_mulAp q : d %| q -> p * (q %/ d) = p * q %/ d. Proof. move=> hdm; apply/eqP; rewrite eq_sym -dvdp_eq_mul. by rewrite -mulrA divpK. by move/divpK: hdm<-; rewrite mulrA dvdp_mull // dvdpp. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divp_mulA
divp_mulACm n : d %| m -> m %/ d * n = m * n %/ d. Proof. by move=> hdm; rewrite mulrC (mulrC m); apply: divp_mulA. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divp_mulAC
divp_mulCAp q : d %| p -> d %| q -> p * (q %/ d) = q * (p %/ d). Proof. by move=> hdp hdq; rewrite mulrC divp_mulAC // divp_mulA. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divp_mulCA
modp_mulp q : (p * (q %% d)) %% d = (p * q) %% d. Proof. by rewrite [q in RHS]divp_eq mulrDr modpD mulrA modp_mull add0r. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
modp_mul
leq_trunc_divp:= leq_divMp.
Notation
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
leq_trunc_divp
expp_subm n : n <= m -> (d ^+ (m - n))%N = d ^+ m %/ d ^+ n. Proof. by move/subnK=> {2}<-; rewrite exprD mulpK // lead_coef_exp unitrX. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
expp_sub
divp_pmul2lp q : lead_coef q \in GRing.unit -> d * p %/ (d * q) = p %/ q. Proof. move=> uq; rewrite {1}(divp_eq uq p) mulrDr mulrCA divp_addl_mul //; last first. by rewrite lead_coefM unitrM_comm ?ulcd //; red; rewrite mulrC. have dn0 : d != 0. by rewrite -lead_coef_eq0; apply: contraTneq ulcd => ->; rewrite unitr0. have qn0 : q != 0. by rewrite -lead_coef_eq0; apply: contraTneq uq => ->; rewrite unitr0. have dqn0 : d * q != 0 by rewrite mulf_eq0 negb_or dn0. suff : size (d * (p %% q)) < size (d * q). by rewrite ltnNge -divpN0 // negbK => /eqP ->; rewrite addr0. have [-> | rn0] := eqVneq (p %% q) 0. by rewrite mulr0 size_poly0 size_poly_gt0. by rewrite !size_mul // (polySpred dn0) !addSn /= ltn_add2l ltn_modp. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divp_pmul2l
divp_pmul2rp q : lead_coef p \in GRing.unit -> q * d %/ (p * d) = q %/ p. Proof. by move=> uq; rewrite -!(mulrC d) divp_pmul2l. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divp_pmul2r
divp_divlr p q : lead_coef r \in GRing.unit -> lead_coef p \in GRing.unit -> q %/ p %/ r = q %/ (p * r). Proof. move=> ulcr ulcp. have e : q = (q %/ p %/ r) * (p * r) + ((q %/ p) %% r * p + q %% p). by rewrite addrA (mulrC p) mulrA -mulrDl; rewrite -divp_eq //; apply: divp_eq. have pn0 : p != 0. by rewrite -lead_coef_eq0; apply: contraTneq ulcp => ->; rewrite unitr0. have rn0 : r != 0. by rewrite -lead_coef_eq0; apply: contraTneq ulcr => ->; rewrite unitr0. have s : size ((q %/ p) %% r * p + q %% p) < size (p * r). have [-> | qn0] := eqVneq ((q %/ p) %% r) 0. rewrite mul0r add0r size_mul // (polySpred rn0) addnS /=. by apply: leq_trans (leq_addr _ _); rewrite ltn_modp. rewrite size_polyDl mulrC. by rewrite !size_mul // (polySpred pn0) !addSn /= ltn_add2l ltn_modp. rewrite size_mul // (polySpred qn0) addnS /=. by apply: leq_trans (leq_addr _ _); rewrite ltn_modp. case: (edivpP _ e s) => //; rewrite lead_coefM unitrM_comm ?ulcp //. by red; rewrite mulrC. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divp_divl
divpACp q : lead_coef p \in GRing.unit -> q %/ d %/ p = q %/ p %/ d. Proof. by move=> ulcp; rewrite !divp_divl // mulrC. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divpAC
modpZrc p : c \in GRing.unit -> p %% (c *: d) = (p %% d). Proof. case: (eqVneq d 0) => [-> | dn0 cn0]; first by rewrite scaler0 !modp0. have e : p = (c^-1 *: (p %/ d)) * (c *: d) + (p %% d). by rewrite scalerCA scalerA mulVr // scale1r -(divp_eq ulcd). suff s : size (p %% d) < size (c *: d). by rewrite (modpP _ e s) // -mul_polyC lead_coefM lead_coefC unitrM cn0. by rewrite size_scale ?ltn_modp //; apply: contraTneq cn0 => ->; rewrite unitr0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
modpZr
divpZrc p : c \in GRing.unit -> p %/ (c *: d) = c^-1 *: (p %/ d). Proof. case: (eqVneq d 0) => [-> | dn0 cn0]; first by rewrite scaler0 !divp0 scaler0. have e : p = (c^-1 *: (p %/ d)) * (c *: d) + (p %% d). by rewrite scalerCA scalerA mulVr // scale1r -(divp_eq ulcd). suff s : size (p %% d) < size (c *: d). by rewrite (divpP _ e s) // -mul_polyC lead_coefM lead_coefC unitrM cn0. by rewrite size_scale ?ltn_modp //; apply: contraTneq cn0 => ->; rewrite unitr0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divpZr
divp_eqp q : p = (p %/ q) * q + (p %% q). Proof. have [-> | qn0] := eqVneq q 0; first by rewrite modp0 mulr0 add0r. by apply: IdomainUnit.divp_eq; rewrite unitfE lead_coef_eq0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divp_eq
divp_modpPp q d r : p = q * d + r -> size r < size d -> q = (p %/ d) /\ r = p %% d. Proof. move=> he hs; apply: IdomainUnit.edivpP => //; rewrite unitfE lead_coef_eq0. by rewrite -size_poly_gt0; apply: leq_trans hs. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divp_modpP
divpPp q d r : p = q * d + r -> size r < size d -> q = (p %/ d). Proof. by move/divp_modpP=> h; case/h. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divpP
modpPp q d r : p = q * d + r -> size r < size d -> r = (p %% d). Proof. by move/divp_modpP=> h; case/h. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
modpP
eqpfPp q : p %= q -> p = (lead_coef p / lead_coef q) *: q. Proof. have [->|nz_q] := eqVneq q 0; first by rewrite eqp0 scaler0 => /eqP ->. by apply/IdomainUnit.ucl_eqp_eq; rewrite unitfE lead_coef_eq0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqpfP
dvdp_eqq p : (q %| p) = (p == p %/ q * q). Proof. have [-> | qn0] := eqVneq q 0; first by rewrite dvd0p mulr0 eq_sym. by apply: IdomainUnit.dvdp_eq; rewrite unitfE lead_coef_eq0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_eq
eqpf_eqp q : reflect (exists2 c, c != 0 & p = c *: q) (p %= q). Proof. apply: (iffP idP); last first. case=> c nz_c ->; apply/eqpP. by exists (1, c); rewrite ?scale1r ?oner_eq0. have [->|nz_q] := eqVneq q 0. by rewrite eqp0=> /eqP ->; exists 1; rewrite ?scale1r ?oner_eq0. case/IdomainUnit.ulc_eqpP; first by rewrite unitfE lead_coef_eq0. by move=> c nz_c ->; exists c. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqpf_eq
modpZlc p q : (c *: p) %% q = c *: (p %% q). Proof. have [-> | qn0] := eqVneq q 0; first by rewrite !modp0. by apply: IdomainUnit.modpZl; rewrite unitfE lead_coef_eq0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
modpZl
mulpKp q : q != 0 -> p * q %/ q = p. Proof. by move=> qn0; rewrite IdomainUnit.mulpK // unitfE lead_coef_eq0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
mulpK
mulKpp q : q != 0 -> q * p %/ q = p. Proof. by rewrite mulrC; apply: mulpK. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
mulKp
divpZlc p q : (c *: p) %/ q = c *: (p %/ q). Proof. have [-> | qn0] := eqVneq q 0; first by rewrite !divp0 scaler0. by apply: IdomainUnit.divpZl; rewrite unitfE lead_coef_eq0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divpZl
modpZrc p d : c != 0 -> p %% (c *: d) = (p %% d). Proof. case: (eqVneq d 0) => [-> | dn0 cn0]; first by rewrite scaler0 !modp0. have e : p = (c^-1 *: (p %/ d)) * (c *: d) + (p %% d). by rewrite scalerCA scalerA mulVf // scale1r -divp_eq. suff s : size (p %% d) < size (c *: d) by rewrite (modpP e s). by rewrite size_scale ?ltn_modp. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
modpZr
divpZrc p d : c != 0 -> p %/ (c *: d) = c^-1 *: (p %/ d). Proof. case: (eqVneq d 0) => [-> | dn0 cn0]; first by rewrite scaler0 !divp0 scaler0. have e : p = (c^-1 *: (p %/ d)) * (c *: d) + (p %% d). by rewrite scalerCA scalerA mulVf // scale1r -divp_eq. suff s : size (p %% d) < size (c *: d) by rewrite (divpP e s). by rewrite size_scale ?ltn_modp. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divpZr
eqp_modpld p q : p %= q -> (p %% d) %= (q %% d). Proof. case/eqpP=> [[c1 c2]] /andP /= [c1n0 c2n0 e]. by apply/eqpP; exists (c1, c2); rewrite ?c1n0 // -!modpZl e. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_modpl
eqp_divld p q : p %= q -> (p %/ d) %= (q %/ d). Proof. case/eqpP=> [[c1 c2]] /andP /= [c1n0 c2n0 e]. by apply/eqpP; exists (c1, c2); rewrite ?c1n0 // -!divpZl e. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_divl
eqp_modprd p q : p %= q -> (d %% p) %= (d %% q). Proof. case/eqpP=> [[c1 c2]] /andP [c1n0 c2n0 e]. have -> : p = (c1^-1 * c2) *: q by rewrite -scalerA -e scalerA mulVf // scale1r. by rewrite modpZr ?eqpxx // mulf_eq0 negb_or invr_eq0 c1n0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_modpr
eqp_modp1 p2 q1 q2 : p1 %= p2 -> q1 %= q2 -> p1 %% q1 %= p2 %% q2. Proof. move=> e1 e2; exact: eqp_trans (eqp_modpl _ e1) (eqp_modpr _ e2). Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_mod
eqp_divr(d m n : {poly F}) : m %= n -> (d %/ m) %= (d %/ n). Proof. case/eqpP=> [[c1 c2]] /andP [c1n0 c2n0 e]. have -> : m = (c1^-1 * c2) *: n by rewrite -scalerA -e scalerA mulVf // scale1r. by rewrite divpZr ?eqp_scale // ?invr_eq0 mulf_eq0 negb_or invr_eq0 c1n0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_divr
eqp_divp1 p2 q1 q2 : p1 %= p2 -> q1 %= q2 -> p1 %/ q1 %= p2 %/ q2. Proof. move=> e1 e2; exact: eqp_trans (eqp_divl _ e1) (eqp_divr _ e2). Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_div
eqp_gdcorp q r : q %= r -> gdcop p q %= gdcop p r. Proof. move=> eqr; rewrite /gdcop (eqp_size eqr). move: (size r)=> n; elim: n p q r eqr => [|n ihn] p q r; first by rewrite eqpxx. move=> eqr /=; rewrite (eqp_coprimepl p eqr); case: ifP => _ //. exact/ihn/eqp_div/eqp_gcdl. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_gdcor
eqp_gdcolp q r : q %= r -> gdcop q p %= gdcop r p. Proof. move=> eqr; rewrite /gdcop; move: (size p)=> n. elim: n p q r eqr {1 3}p (eqpxx p) => [|n ihn] p q r eqr s esp /=. case: (eqVneq q 0) eqr => [-> | nq0 eqr] /=. by rewrite eqp_sym eqp0 => ->; rewrite eqpxx. by case: (eqVneq r 0) eqr nq0 => [->|]; rewrite ?eqpxx // eqp0 => ->. rewrite (eqp_coprimepr _ eqr) (eqp_coprimepl _ esp); case: ifP=> _ //. exact/ihn/eqp_div/eqp_gcd. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_gdcol
eqp_rgdco_gdcoq p : rgdcop q p %= gdcop q p. Proof. rewrite /rgdcop /gdcop; move: (size p)=> n. elim: n p q {1 3}p {1 3}q (eqpxx p) (eqpxx q) => [|n ihn] p q s t /= sp tq. case: (eqVneq t 0) tq => [-> | nt0 etq]. by rewrite eqp_sym eqp0 => ->; rewrite eqpxx. by case: (eqVneq q 0) etq nt0 => [->|]; rewrite ?eqpxx // eqp0 => ->. rewrite rcoprimep_coprimep (eqp_coprimepl t sp) (eqp_coprimepr p tq). case: ifP=> // _; apply: ihn => //; apply: eqp_trans (eqp_rdiv_div _ _) _. by apply: eqp_div => //; apply: eqp_trans (eqp_rgcd_gcd _ _) _; apply: eqp_gcd. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_rgdco_gdco
modpDd p q : (p + q) %% d = p %% d + q %% d. Proof. have [-> | dn0] := eqVneq d 0; first by rewrite !modp0. by apply: IdomainUnit.modpD; rewrite unitfE lead_coef_eq0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
modpD
modpNp q : (- p) %% q = - (p %% q). Proof. by apply/eqP; rewrite -addr_eq0 -modpD addNr mod0p. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
modpN
modNpp q : (- p) %% q = - (p %% q). Proof. exact: modpN. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
modNp
divpDd p q : (p + q) %/ d = p %/ d + q %/ d. Proof. have [-> | dn0] := eqVneq d 0; first by rewrite !divp0 addr0. by apply: IdomainUnit.divpD; rewrite unitfE lead_coef_eq0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divpD
divpNp q : (- p) %/ q = - (p %/ q). Proof. by apply/eqP; rewrite -addr_eq0 -divpD addNr div0p. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divpN
divp_addl_mul_smalld q r : size r < size d -> (q * d + r) %/ d = q. Proof. move=> srd; rewrite divpD (divp_small srd) addr0 mulpK // -size_poly_gt0. exact: leq_trans srd. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divp_addl_mul_small
modp_addl_mul_smalld q r : size r < size d -> (q * d + r) %% d = r. Proof. by move=> srd; rewrite modpD modp_mull add0r modp_small. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
modp_addl_mul_small
divp_addl_muld q r : d != 0 -> (q * d + r) %/ d = q + r %/ d. Proof. by move=> dn0; rewrite divpD mulpK. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divp_addl_mul
divppd : d != 0 -> d %/ d = 1. Proof. by move=> dn0; apply: IdomainUnit.divpp; rewrite unitfE lead_coef_eq0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divpp
leq_divMpd m : size (m %/ d * d) <= size m. Proof. have [-> | dn0] := eqVneq d 0; first by rewrite mulr0 size_poly0. by apply: IdomainUnit.leq_divMp; rewrite unitfE lead_coef_eq0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
leq_divMp