fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
dvdpPq p : reflect (exists2 cqq, cqq.1 != 0 & cqq.1 *: p = cqq.2 * q) (q %| p). Proof. rewrite dvdp_eq; apply: (iffP eqP) => [e | [[c qq] cn0 e]]. by exists (lead_coef q ^+ scalp p q, p %/ q) => //=. apply/eqP; rewrite -dvdp_eq dvdpE. have Ecc: c%:P != 0 by rewrite polyC_eq0. have [->|nz_p] := eqVneq p 0; first by rewrite rdvdp0. pose p1 : {poly R} := lead_coef q ^+ rscalp p q *: qq - c *: (rdivp p q). have E1: c *: rmodp p q = p1 * q. rewrite mulrDl mulNr -scalerAl -e scalerA mulrC -scalerA -scalerAl. by rewrite -scalerBr rdivp_eq addrC addKr. suff: p1 * q == 0 by rewrite -E1 -mul_polyC mulf_eq0 (negPf Ecc). rewrite mulf_eq0; apply/norP; case=> p1_nz q_nz; have:= ltn_rmodp p q. by rewrite q_nz -(size_scale _ cn0) E1 size_mul // polySpred // ltnNge leq_addl. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdpP
mulpKp q : q != 0 -> p * q %/ q = lead_coef q ^+ scalp (p * q) q *: p. Proof. move=> qn0; apply: (rregP qn0); rewrite -scalerAl divp_eq. suff -> : (p * q) %% q = 0 by rewrite addr0. rewrite modpE RingComRreg.rmodp_mull ?scaler0 ?if_same //. by red; rewrite mulrC. by apply/rregP; rewrite lead_coef_eq0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
mulpK
mulKpp q : q != 0 -> q * p %/ q = lead_coef q ^+ scalp (p * q) q *: p. Proof. by move=> nzq; rewrite mulrC; apply: mulpK. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
mulKp
divppp : p != 0 -> p %/ p = (lead_coef p ^+ scalp p p)%:P. Proof. move=> np0; have := divp_eq p p. suff -> : p %% p = 0 by rewrite addr0 -mul_polyC; move/(mulIf np0). rewrite modpE Ring.rmodpp; last by red; rewrite mulrC. by rewrite scaler0 if_same. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divpp
scalp0p : scalp p 0 = 0. Proof. by rewrite /scalp unlock lead_coef0 unitr0 unlock eqxx. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
scalp0
divp_smallp q : size p < size q -> p %/ q = 0. Proof. move=> spq; rewrite /divp unlock redivp_def /=. by case: ifP; rewrite rdivp_small // scaler0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divp_small
leq_divpp q : (size (p %/ q) <= size p). Proof. rewrite /divp unlock redivp_def /=; case: ifP => ulcq; rewrite ?leq_rdivp //=. rewrite size_scale ?leq_rdivp // -exprVn expf_neq0 // invr_eq0. by case: eqP ulcq => // ->; rewrite unitr0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
leq_divp
div0pp : 0 %/ p = 0. Proof. by rewrite /divp unlock redivp_def /=; case: ifP; rewrite rdiv0p // scaler0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
div0p
divp0p : p %/ 0 = 0. Proof. by rewrite /divp unlock redivp_def /=; case: ifP; rewrite rdivp0 // scaler0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divp0
divp1m : m %/ 1 = m. Proof. by rewrite divpE lead_coefC unitr1 Ring.rdivp1 expr1n invr1 scale1r. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divp1
modp0p : p %% 0 = p. Proof. rewrite /modp unlock redivp_def; case: ifP; rewrite rmodp0 //= lead_coef0. by rewrite unitr0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
modp0
mod0pp : 0 %% p = 0. Proof. by rewrite /modp unlock redivp_def /=; case: ifP; rewrite rmod0p // scaler0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
mod0p
modp1p : p %% 1 = 0. Proof. by rewrite /modp unlock redivp_def /=; case: ifP; rewrite rmodp1 // scaler0. Qed. Hint Resolve divp0 divp1 mod0p modp0 modp1 : core.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
modp1
modp_smallp q : size p < size q -> p %% q = p. Proof. move=> spq; rewrite /modp unlock redivp_def; case: ifP; rewrite rmodp_small //. by rewrite /= rscalp_small // expr0 /= invr1 scale1r. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
modp_small
modpCp c : c != 0 -> p %% c%:P = 0. Proof. move=> cn0; rewrite /modp unlock redivp_def /=; case: ifP; rewrite ?rmodpC //. by rewrite scaler0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
modpC
modp_mullp q : (p * q) %% q = 0. Proof. have [-> | nq0] := eqVneq q 0; first by rewrite modp0 mulr0. have rlcq : GRing.rreg (lead_coef q) by apply/rregP; rewrite lead_coef_eq0. have hC : GRing.comm q (lead_coef q)%:P by red; rewrite mulrC. rewrite modpE; case: ifP => ulcq; rewrite RingComRreg.rmodp_mull //. exact: scaler0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
modp_mull
modp_mulrd p : (d * p) %% d = 0. Proof. by rewrite mulrC modp_mull. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
modp_mulr
modppd : d %% d = 0. Proof. by rewrite -[d in d %% _]mul1r modp_mull. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
modpp
ltn_modpp q : (size (p %% q) < size q) = (q != 0). Proof. rewrite /modp unlock redivp_def /=; case: ifP=> ulcq; rewrite ?ltn_rmodp //=. rewrite size_scale ?ltn_rmodp // -exprVn expf_neq0 // invr_eq0. by case: eqP ulcq => // ->; rewrite unitr0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
ltn_modp
ltn_divpld q p : d != 0 -> (size (q %/ d) < size p) = (size q < size (p * d)). Proof. move=> dn0. have: (lead_coef d) ^+ (scalp q d) != 0 by apply: lc_expn_scalp_neq0. move/(size_scale q)<-; rewrite divp_eq; have [->|quo0] := eqVneq (q %/ d) 0. rewrite mul0r add0r size_poly0 size_poly_gt0. have [->|pn0] := eqVneq p 0; first by rewrite mul0r size_poly0 ltn0. by rewrite size_mul // (polySpred pn0) addSn ltn_addl // ltn_modp. rewrite size_polyDl; last first. by rewrite size_mul // (polySpred quo0) addSn /= ltn_addl // ltn_modp. have [->|pn0] := eqVneq p 0; first by rewrite mul0r size_poly0 !ltn0. by rewrite !size_mul ?quo0 // (polySpred dn0) !addnS ltn_add2r. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
ltn_divpl
leq_divprd p q : d != 0 -> (size p <= size (q %/ d)) = (size (p * d) <= size q). Proof. by move=> dn0; rewrite leqNgt ltn_divpl // -leqNgt. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
leq_divpr
divpN0d p : d != 0 -> (p %/ d != 0) = (size d <= size p). Proof. move=> dn0. by rewrite -[d in RHS]mul1r -leq_divpr // size_polyC oner_eq0 size_poly_gt0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divpN0
size_divpp q : q != 0 -> size (p %/ q) = (size p - (size q).-1)%N. Proof. move=> nq0; case: (leqP (size q) (size p)) => sqp; last first. move: (sqp); rewrite -{1}(ltn_predK sqp) ltnS -subn_eq0 divp_small //. by move/eqP->; rewrite size_poly0. have np0 : p != 0. by rewrite -size_poly_gt0; apply: leq_trans sqp; rewrite size_poly_gt0. have /= := congr1 (size \o @polyseq R) (divp_eq p q). rewrite size_scale; last by rewrite expf_eq0 lead_coef_eq0 (negPf nq0) andbF. have [->|qq0] := eqVneq (p %/ q) 0. by rewrite mul0r add0r=> es; move: nq0; rewrite -(ltn_modp p) -es ltnNge sqp. rewrite size_polyDl. by move->; apply/eqP; rewrite size_mul // (polySpred nq0) addnS /= addnK. rewrite size_mul ?qq0 //. move: nq0; rewrite -(ltn_modp p); move/leq_trans; apply. by rewrite (polySpred qq0) addSn /= leq_addl. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
size_divp
ltn_modpN0p q : q != 0 -> size (p %% q) < size q. Proof. by rewrite ltn_modp. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
ltn_modpN0
modp_idp q : (p %% q) %% q = p %% q. Proof. by have [->|qn0] := eqVneq q 0; rewrite ?modp0 // modp_small ?ltn_modp. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
modp_id
leq_modpm d : size (m %% d) <= size m. Proof. rewrite /modp unlock redivp_def /=; case: ifP; rewrite ?leq_rmodp //. move=> ud; rewrite size_scale ?leq_rmodp // invr_eq0 expf_neq0 //. by apply: contraTneq ud => ->; rewrite unitr0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
leq_modp
dvdp0d : d %| 0. Proof. by rewrite /dvdp mod0p. Qed. Hint Resolve dvdp0 : core.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp0
dvd0pp : (0 %| p) = (p == 0). Proof. by rewrite /dvdp modp0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvd0p
dvd0pPp : reflect (p = 0) (0 %| p). Proof. by apply: (iffP idP); rewrite dvd0p; move/eqP. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvd0pP
dvdpN0p q : p %| q -> q != 0 -> p != 0. Proof. by move=> pq hq; apply: contraTneq pq => ->; rewrite dvd0p. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdpN0
dvdp1d : (d %| 1) = (size d == 1). Proof. rewrite /dvdp modpE; case ud: (lead_coef d \in GRing.unit); last exact: rdvdp1. rewrite -size_poly_eq0 size_scale; first by rewrite size_poly_eq0 -rdvdp1. by rewrite invr_eq0 expf_neq0 //; apply: contraTneq ud => ->; rewrite unitr0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp1
dvd1pm : 1 %| m. Proof. by rewrite /dvdp modp1. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvd1p
gtNdvdpp q : p != 0 -> size p < size q -> (q %| p) = false. Proof. by move=> nn0 hs; rewrite /dvdp; rewrite (modp_small hs); apply: negPf. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
gtNdvdp
modp_eq0Pp q : reflect (p %% q = 0) (q %| p). Proof. exact: (iffP eqP). Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
modp_eq0P
modp_eq0p q : (q %| p) -> p %% q = 0. Proof. exact: modp_eq0P. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
modp_eq0
leq_divpld p q : d %| p -> (size (p %/ d) <= size q) = (size p <= size (q * d)). Proof. case: (eqVneq d 0) => [-> /dvd0pP -> | nd0 hd]. by rewrite divp0 size_poly0 !leq0n. rewrite leq_eqVlt ltn_divpl // (leq_eqVlt (size p)). case lhs: (size p < size (q * d)); rewrite ?orbT ?orbF //. have: (lead_coef d) ^+ (scalp p d) != 0 by rewrite expf_neq0 // lead_coef_eq0. move/(size_scale p)<-; rewrite divp_eq; move/modp_eq0P: hd->; rewrite addr0. have [-> | quon0] := eqVneq (p %/ d) 0. rewrite mul0r size_poly0 2!(eq_sym 0) !size_poly_eq0. by rewrite mulf_eq0 (negPf nd0) orbF. have [-> | nq0] := eqVneq q 0. by rewrite mul0r size_poly0 !size_poly_eq0 mulf_eq0 (negPf nd0) orbF. by rewrite !size_mul // (polySpred nd0) !addnS /= eqn_add2r. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
leq_divpl
dvdp_leqp q : q != 0 -> p %| q -> size p <= size q. Proof. move=> nq0 /modp_eq0P. by case: leqP => // /modp_small -> /eqP; rewrite (negPf nq0). Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_leq
eq_dvdpc quo q p : c != 0 -> c *: p = quo * q -> q %| p. Proof. move=> cn0; case: (eqVneq p 0) => [->|nz_quo def_quo] //. pose p1 : {poly R} := lead_coef q ^+ scalp p q *: quo - c *: (p %/ q). have E1: c *: (p %% q) = p1 * q. rewrite mulrDl mulNr -scalerAl -def_quo scalerA mulrC -scalerA. by rewrite -scalerAl -scalerBr divp_eq addrAC subrr add0r. rewrite /dvdp; apply/idPn=> m_nz. have: p1 * q != 0 by rewrite -E1 -mul_polyC mulf_neq0 // polyC_eq0. rewrite mulf_eq0; case/norP=> p1_nz q_nz. have := ltn_modp p q; rewrite q_nz -(size_scale (p %% q) cn0) E1. by rewrite size_mul // polySpred // ltnNge leq_addl. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eq_dvdp
dvdppd : d %| d. Proof. by rewrite /dvdp modpp. Qed. Hint Resolve dvdpp : core.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdpp
divp_dvdp q : p %| q -> (q %/ p) %| q. Proof. have [-> | np0] := eqVneq p 0; first by rewrite divp0. rewrite dvdp_eq => /eqP h. apply: (@eq_dvdp ((lead_coef p)^+ (scalp q p)) p); last by rewrite mulrC. by rewrite expf_neq0 // lead_coef_eq0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
divp_dvd
dvdp_mullm d n : d %| n -> d %| m * n. Proof. case: (eqVneq d 0) => [-> /dvd0pP -> | dn0]; first by rewrite mulr0 dvdpp. rewrite dvdp_eq => /eqP e. apply: (@eq_dvdp (lead_coef d ^+ scalp n d) (m * (n %/ d))). by rewrite expf_neq0 // lead_coef_eq0. by rewrite scalerAr e mulrA. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_mull
dvdp_mulrn d m : d %| m -> d %| m * n. Proof. by move=> hdm; rewrite mulrC dvdp_mull. Qed. Hint Resolve dvdp_mull dvdp_mulr : core.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_mulr
dvdp_muld1 d2 m1 m2 : d1 %| m1 -> d2 %| m2 -> d1 * d2 %| m1 * m2. Proof. case: (eqVneq d1 0) => [-> /dvd0pP -> | d1n0]; first by rewrite !mul0r dvdpp. case: (eqVneq d2 0) => [-> _ /dvd0pP -> | d2n0]; first by rewrite !mulr0. rewrite dvdp_eq; set c1 := _ ^+ _; set q1 := _ %/ _; move/eqP=> Hq1. rewrite dvdp_eq; set c2 := _ ^+ _; set q2 := _ %/ _; move/eqP=> Hq2. apply: (@eq_dvdp (c1 * c2) (q1 * q2)). by rewrite mulf_neq0 // expf_neq0 // lead_coef_eq0. rewrite -scalerA scalerAr scalerAl Hq1 Hq2 -!mulrA. by rewrite [d1 * (q2 * _)]mulrCA. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_mul
dvdp_addrm d n : d %| m -> (d %| m + n) = (d %| n). Proof. case: (eqVneq d 0) => [-> /dvd0pP -> | dn0]; first by rewrite add0r. rewrite dvdp_eq; set c1 := _ ^+ _; set q1 := _ %/ _; move/eqP=> Eq1. apply/idP/idP; rewrite dvdp_eq; set c2 := _ ^+ _; set q2 := _ %/ _. have sn0 : c1 * c2 != 0. by rewrite !mulf_neq0 // expf_eq0 lead_coef_eq0 (negPf dn0) andbF. move/eqP=> Eq2; apply: (@eq_dvdp _ (c1 *: q2 - c2 *: q1) _ _ sn0). rewrite mulrDl -scaleNr -!scalerAl -Eq1 -Eq2 !scalerA. by rewrite mulNr mulrC scaleNr -scalerBr addrC addKr. have sn0 : c1 * c2 != 0. by rewrite !mulf_neq0 // expf_eq0 lead_coef_eq0 (negPf dn0) andbF. move/eqP=> Eq2; apply: (@eq_dvdp _ (c1 *: q2 + c2 *: q1) _ _ sn0). by rewrite mulrDl -!scalerAl -Eq1 -Eq2 !scalerA mulrC addrC scalerDr. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_addr
dvdp_addln d m : d %| n -> (d %| m + n) = (d %| m). Proof. by rewrite addrC; apply: dvdp_addr. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_addl
dvdp_addd m n : d %| m -> d %| n -> d %| m + n. Proof. by move/dvdp_addr->. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_add
dvdp_add_eqd m n : d %| m + n -> (d %| m) = (d %| n). Proof. by move=> ?; apply/idP/idP; [move/dvdp_addr <-| move/dvdp_addl <-]. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_add_eq
dvdp_subrd m n : d %| m -> (d %| m - n) = (d %| n). Proof. by move=> ?; apply: dvdp_add_eq; rewrite -addrA addNr simp. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_subr
dvdp_subld m n : d %| n -> (d %| m - n) = (d %| m). Proof. by move/dvdp_addl<-; rewrite subrK. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_subl
dvdp_subd m n : d %| m -> d %| n -> d %| m - n. Proof. by move=> *; rewrite dvdp_subl. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_sub
dvdp_modd n m : d %| n -> (d %| m) = (d %| m %% n). Proof. have [-> | nn0] := eqVneq n 0; first by rewrite modp0. case: (eqVneq d 0) => [-> /dvd0pP -> | dn0]; first by rewrite modp0. rewrite dvdp_eq; set c1 := _ ^+ _; set q1 := _ %/ _; move/eqP=> Eq1. apply/idP/idP; rewrite dvdp_eq; set c2 := _ ^+ _; set q2 := _ %/ _. have sn0 : c1 * c2 != 0. by rewrite !mulf_neq0 // expf_eq0 lead_coef_eq0 (negPf dn0) andbF. pose quo := (c1 * lead_coef n ^+ scalp m n) *: q2 - c2 *: (m %/ n) * q1. move/eqP=> Eq2; apply: (@eq_dvdp _ quo _ _ sn0). rewrite mulrDl mulNr -!scalerAl -!mulrA -Eq1 -Eq2 -scalerAr !scalerA. rewrite mulrC [_ * c2]mulrC mulrA -[((_ * _) * _) *: _]scalerA -scalerBr. by rewrite divp_eq addrC addKr. have sn0 : c1 * c2 * lead_coef n ^+ scalp m n != 0. rewrite !mulf_neq0 // expf_eq0 lead_coef_eq0 ?(negPf dn0) ?andbF //. by rewrite (negPf nn0) andbF. move/eqP=> Eq2; apply: (@eq_dvdp _ (c2 *: (m %/ n) * q1 + c1 *: q2) _ _ sn0). rewrite -scalerA divp_eq scalerDr -!scalerA Eq2 scalerAl scalerAr Eq1. by rewrite scalerAl mulrDl mulrA. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_mod
dvdp_trans: transitive (@dvdp R). Proof. move=> n d m. case: (eqVneq d 0) => [-> /dvd0pP -> // | dn0]. case: (eqVneq n 0) => [-> _ /dvd0pP -> // | nn0]. rewrite dvdp_eq; set c1 := _ ^+ _; set q1 := _ %/ _; move/eqP=> Hq1. rewrite dvdp_eq; set c2 := _ ^+ _; set q2 := _ %/ _; move/eqP=> Hq2. have sn0 : c1 * c2 != 0 by rewrite mulf_neq0 // expf_neq0 // lead_coef_eq0. apply: (@eq_dvdp _ (q2 * q1) _ _ sn0). by rewrite -scalerA Hq2 scalerAr Hq1 mulrA. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_trans
dvdp_mulIlp q : p %| p * q. Proof. exact/dvdp_mulr/dvdpp. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_mulIl
dvdp_mulIrp q : q %| p * q. Proof. exact/dvdp_mull/dvdpp. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_mulIr
dvdp_mul2rr p q : r != 0 -> (p * r %| q * r) = (p %| q). Proof. move=> nzr. have [-> | pn0] := eqVneq p 0. by rewrite mul0r !dvd0p mulf_eq0 (negPf nzr) orbF. have [-> | qn0] := eqVneq q 0; first by rewrite mul0r !dvdp0. apply/idP/idP; last by move=> ?; rewrite dvdp_mul ?dvdpp. rewrite dvdp_eq; set c := _ ^+ _; set x := _ %/ _; move/eqP=> Hx. apply: (@eq_dvdp c x); first by rewrite expf_neq0 // lead_coef_eq0 mulf_neq0. by apply: (mulIf nzr); rewrite -mulrA -scalerAl. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_mul2r
dvdp_mul2lr p q: r != 0 -> (r * p %| r * q) = (p %| q). Proof. by rewrite ![r * _]mulrC; apply: dvdp_mul2r. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_mul2l
ltn_divprd p q : d %| q -> (size p < size (q %/ d)) = (size (p * d) < size q). Proof. by move=> dv_d_q; rewrite !ltnNge leq_divpl. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
ltn_divpr
dvdp_expd k p : 0 < k -> d %| p -> d %| (p ^+ k). Proof. by case: k => // k _ d_dv_m; rewrite exprS dvdp_mulr. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_exp
dvdp_exp2ld k l : k <= l -> d ^+ k %| d ^+ l. Proof. by move/subnK <-; rewrite exprD dvdp_mull // ?lead_coef_exp ?unitrX. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_exp2l
dvdp_Pexp2ld k l : 1 < size d -> (d ^+ k %| d ^+ l) = (k <= l). Proof. move=> sd; case: leqP => [|gt_n_m]; first exact: dvdp_exp2l. have dn0 : d != 0 by rewrite -size_poly_gt0; apply: ltn_trans sd. rewrite gtNdvdp ?expf_neq0 // polySpred ?expf_neq0 // size_exp /=. rewrite [size (d ^+ k)]polySpred ?expf_neq0 // size_exp ltnS ltn_mul2l. by move: sd; rewrite -subn_gt0 subn1; move->. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_Pexp2l
dvdp_exp2rp q k : p %| q -> p ^+ k %| q ^+ k. Proof. case: (eqVneq p 0) => [-> /dvd0pP -> // | pn0]. rewrite dvdp_eq; set c := _ ^+ _; set t := _ %/ _; move/eqP=> e. apply: (@eq_dvdp (c ^+ k) (t ^+ k)); first by rewrite !expf_neq0 ?lead_coef_eq0. by rewrite -exprMn -exprZn; congr (_ ^+ k). Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_exp2r
dvdp_exp_subp q k l: p != 0 -> (p ^+ k %| q * p ^+ l) = (p ^+ (k - l) %| q). Proof. move=> pn0; case: (leqP k l)=> [|/ltnW] hkl. move: (hkl); rewrite -subn_eq0; move/eqP->; rewrite expr0 dvd1p. exact/dvdp_mull/dvdp_exp2l. by rewrite -[in LHS](subnK hkl) exprD dvdp_mul2r // expf_eq0 (negPf pn0) andbF. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_exp_sub
dvdp_XsubClp x : ('X - x%:P) %| p = root p x. Proof. by rewrite dvdpE; apply: Ring.rdvdp_XsubCl. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_XsubCl
root_dvdpp q x : p %| q -> root p x -> root q x. Proof. by rewrite -!dvdp_XsubCl => /[swap]; exact: dvdp_trans. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
root_dvdp
polyXsubCPp x : reflect (p.[x] = 0) (('X - x%:P) %| p). Proof. by rewrite dvdpE; apply: Ring.polyXsubCP. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
polyXsubCP
eqp_div_XsubCp c : (p == (p %/ ('X - c%:P)) * ('X - c%:P)) = ('X - c%:P %| p). Proof. by rewrite dvdp_eq lead_coefXsubC expr1n scale1r. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_div_XsubC
root_factor_theoremp x : root p x = (('X - x%:P) %| p). Proof. by rewrite dvdp_XsubCl. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
root_factor_theorem
uniq_roots_dvdpp rs : all (root p) rs -> uniq_roots rs -> (\prod_(z <- rs) ('X - z%:P)) %| p. Proof. move=> rrs; case/(uniq_roots_prod_XsubC rrs)=> q ->. by apply: dvdp_mull; rewrite // (eqP (monic_prod_XsubC _)) unitr1. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
uniq_roots_dvdp
root_bigmulx (ps : seq {poly R}) : ~~root (\big[*%R/1]_(p <- ps) p) x = all (fun p => ~~ root p x) ps. Proof. elim: ps => [|p ps ihp]; first by rewrite big_nil root1. by rewrite big_cons /= rootM negb_or ihp. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
root_bigmul
eqpPm n : reflect (exists2 c12, (c12.1 != 0) && (c12.2 != 0) & c12.1 *: m = c12.2 *: n) (m %= n). Proof. apply: (iffP idP) => [| [[c1 c2]/andP[nz_c1 nz_c2 eq_cmn]]]; last first. rewrite /eqp (@eq_dvdp c2 c1%:P) -?eq_cmn ?mul_polyC // (@eq_dvdp c1 c2%:P)//. by rewrite eq_cmn mul_polyC. case: (eqVneq m 0) => [-> /andP [/dvd0pP -> _] | m_nz]. by exists (1, 1); rewrite ?scaler0 // oner_eq0. case: (eqVneq n 0) => [-> /andP [_ /dvd0pP ->] | n_nz /andP []]. by exists (1, 1); rewrite ?scaler0 // oner_eq0. rewrite !dvdp_eq; set c1 := _ ^+ _; set c2 := _ ^+ _. set q1 := _ %/ _; set q2 := _ %/ _; move/eqP => Hq1 /eqP Hq2; have Hc1 : c1 != 0 by rewrite expf_eq0 lead_coef_eq0 negb_and m_nz orbT. have Hc2 : c2 != 0 by rewrite expf_eq0 lead_coef_eq0 negb_and n_nz orbT. have def_q12: q1 * q2 = (c1 * c2)%:P. apply: (mulIf m_nz); rewrite mulrAC mulrC -Hq1 -scalerAr -Hq2 scalerA. by rewrite -mul_polyC. have: q1 * q2 != 0 by rewrite def_q12 -size_poly_eq0 size_polyC mulf_neq0. rewrite mulf_eq0; case/norP=> nz_q1 nz_q2. have: size q2 <= 1. have:= size_mul nz_q1 nz_q2; rewrite def_q12 size_polyC mulf_neq0 //=. by rewrite polySpred // => ->; rewrite leq_addl. rewrite leq_eqVlt ltnS size_poly_leq0 (negPf nz_q2) orbF. case/size_poly1P=> c cn0 cqe; exists (c2, c); first by rewrite Hc2. by rewrite Hq2 -mul_polyC -cqe. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqpP
eqp_eqp q: p %= q -> (lead_coef q) *: p = (lead_coef p) *: q. Proof. move=> /eqpP [[c1 c2] /= /andP [nz_c1 nz_c2]] eq. have/(congr1 lead_coef) := eq; rewrite !lead_coefZ. move=> eqC; apply/(@mulfI _ c2%:P); rewrite ?polyC_eq0 //. by rewrite !mul_polyC scalerA -eqC mulrC -scalerA eq !scalerA mulrC. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_eq
eqpxx: reflexive (@eqp R). Proof. by move=> p; rewrite /eqp dvdpp. Qed. Hint Resolve eqpxx : core.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqpxx
eqpWp q : p = q -> p %= q. Proof. by move->; rewrite eqpxx. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqpW
eqp_sym: symmetric (@eqp R). Proof. by move=> p q; rewrite /eqp andbC. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_sym
eqp_trans: transitive (@eqp R). Proof. move=> p q r; case/andP=> Dp pD; case/andP=> Dq qD. by rewrite /eqp (dvdp_trans Dp) // (dvdp_trans qD). Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_trans
eqp_ltrans: left_transitive (@eqp R). Proof. exact: sym_left_transitive eqp_sym eqp_trans. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_ltrans
eqp_rtrans: right_transitive (@eqp R). Proof. exact: sym_right_transitive eqp_sym eqp_trans. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_rtrans
eqp0p : (p %= 0) = (p == 0). Proof. by apply/idP/eqP => [/andP [_ /dvd0pP] | -> //]. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp0
eqp01: 0 %= (1 : {poly R}) = false. Proof. by rewrite eqp_sym eqp0 oner_eq0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp01
eqp_scalep c : c != 0 -> c *: p %= p. Proof. move=> c0; apply/eqpP; exists (1, c); first by rewrite c0 oner_eq0. by rewrite scale1r. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_scale
eqp_sizep q : p %= q -> size p = size q. Proof. have [->|Eq] := eqVneq q 0; first by rewrite eqp0; move/eqP->. rewrite eqp_sym; have [->|Ep] := eqVneq p 0; first by rewrite eqp0; move/eqP->. by case/andP => Dp Dq; apply: anti_leq; rewrite !dvdp_leq. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_size
size_poly_eq1p : (size p == 1) = (p %= 1). Proof. apply/size_poly1P/idP=> [[c cn0 ep] |]. by apply/eqpP; exists (1, c); rewrite ?oner_eq0 // alg_polyC scale1r. by move/eqp_size; rewrite size_poly1; move/eqP/size_poly1P. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
size_poly_eq1
polyXsubC_eqp1(x : R) : ('X - x%:P %= 1) = false. Proof. by rewrite -size_poly_eq1 size_XsubC. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
polyXsubC_eqp1
dvdp_eqp1p q : p %| q -> q %= 1 -> p %= 1. Proof. move=> dpq hq. have sizeq : size q == 1 by rewrite size_poly_eq1. have n0q : q != 0 by case: eqP hq => // ->; rewrite eqp01. rewrite -size_poly_eq1 eqn_leq -{1}(eqP sizeq) dvdp_leq //= size_poly_gt0. by apply/eqP => p0; move: dpq n0q; rewrite p0 dvd0p => ->. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_eqp1
eqp_dvdrq p d: p %= q -> d %| p = (d %| q). Proof. suff Hmn m n: m %= n -> (d %| m) -> (d %| n). by move=> mn; apply/idP/idP; apply: Hmn=> //; rewrite eqp_sym. by rewrite /eqp; case/andP=> pq qp dp; apply: (dvdp_trans dp). Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_dvdr
eqp_dvdld2 d1 p : d1 %= d2 -> d1 %| p = (d2 %| p). suff Hmn m n: m %= n -> (m %| p) -> (n %| p). by move=> ?; apply/idP/idP; apply: Hmn; rewrite // eqp_sym. by rewrite /eqp; case/andP=> dd' d'd dp; apply: (dvdp_trans d'd). Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_dvdl
dvdpZrc m n : c != 0 -> m %| c *: n = (m %| n). Proof. by move=> cn0; exact/eqp_dvdr/eqp_scale. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdpZr
dvdpZlc m n : c != 0 -> (c *: m %| n) = (m %| n). Proof. by move=> cn0; exact/eqp_dvdl/eqp_scale. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdpZl
dvdpNld p : (- d) %| p = (d %| p). Proof. by rewrite -scaleN1r; apply/eqp_dvdl/eqp_scale; rewrite oppr_eq0 oner_neq0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdpNl
dvdpNrd p : d %| (- p) = (d %| p). Proof. by apply: eqp_dvdr; rewrite -scaleN1r eqp_scale ?oppr_eq0 ?oner_eq0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdpNr
eqp_mul2rr p q : r != 0 -> (p * r %= q * r) = (p %= q). Proof. by move=> nz_r; rewrite /eqp !dvdp_mul2r. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_mul2r
eqp_mul2lr p q: r != 0 -> (r * p %= r * q) = (p %= q). Proof. by move=> nz_r; rewrite /eqp !dvdp_mul2l. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_mul2l
eqp_mullr p q: q %= r -> p * q %= p * r. Proof. case/eqpP=> [[c d]] /andP [c0 d0 e]; apply/eqpP; exists (c, d); rewrite ?c0 //. by rewrite scalerAr e -scalerAr. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_mull
eqp_mulrq p r : p %= q -> p * r %= q * r. Proof. by move=> epq; rewrite ![_ * r]mulrC eqp_mull. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_mulr
eqp_expp q k : p %= q -> p ^+ k %= q ^+ k. Proof. move=> pq; elim: k=> [|k ihk]; first by rewrite !expr0 eqpxx. by rewrite !exprS (@eqp_trans (q * p ^+ k)) // (eqp_mulr, eqp_mull). Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_exp
polyC_eqp1(c : R) : (c%:P %= 1) = (c != 0). Proof. apply/eqpP/idP => [[[x y]] |nc0] /=. case: (eqVneq c) => [->|] //= /andP [_] /negPf <- /eqP. by rewrite alg_polyC scaler0 eq_sym polyC_eq0. exists (1, c); first by rewrite nc0 /= oner_neq0. by rewrite alg_polyC scale1r. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
polyC_eqp1
dvdUpd p: d %= 1 -> d %| p. Proof. by move/eqp_dvdl->; rewrite dvd1p. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdUp
dvdp_size_eqpp q : p %| q -> size p == size q = (p %= q). Proof. move=> pq; apply/idP/idP; last by move/eqp_size->. have [->|Hq] := eqVneq q 0; first by rewrite size_poly0 size_poly_eq0 eqp0. have [->|Hp] := eqVneq p 0. by rewrite size_poly0 eq_sym size_poly_eq0 eqp_sym eqp0. move: pq; rewrite dvdp_eq; set c := _ ^+ _; set x := _ %/ _; move/eqP=> eqpq. have /= := congr1 (size \o @polyseq R) eqpq. have cn0 : c != 0 by rewrite expf_neq0 // lead_coef_eq0. rewrite (@eqp_size _ q); last exact: eqp_scale. rewrite size_mul ?p0 // => [-> HH|]; last first. apply/eqP=> HH; move: eqpq; rewrite HH mul0r. by move/eqP; rewrite scale_poly_eq0 (negPf Hq) (negPf cn0). suff: size x == 1%N. case/size_poly1P=> y H1y H2y. by apply/eqpP; exists (y, c); rewrite ?H1y // eqpq H2y mul_polyC. case: (size p) HH (size_poly_eq0 p)=> [|n]; first by case: eqP Hp. by rewrite addnS -add1n eqn_add2r; move/eqP->. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
dvdp_size_eqp
eqp_rootp q : p %= q -> root p =1 root q. Proof. move/eqpP=> [[c d]] /andP [c0 d0 e] x; move/negPf:c0=>c0; move/negPf:d0=>d0. by rewrite rootE -[_==_]orFb -c0 -mulf_eq0 -hornerZ e hornerZ mulf_eq0 d0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_root
eqp_rmod_modp q : rmodp p q %= modp p q. Proof. rewrite modpE eqp_sym; case: ifP => ulcq //. apply: eqp_scale; rewrite invr_eq0 //. by apply: expf_neq0; apply: contraTneq ulcq => ->; rewrite unitr0. Qed.
Lemma
algebra
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import fintype bigop ssralg poly" ]
algebra/polydiv.v
eqp_rmod_mod