fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
ltf_nV2: {in neg &, {mono (@GRing.inv F) : x y /~ x < y}}. Proof. exact: leW_nmono_in lef_nV2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ltf_nV2
ltef_pV2:= (lef_pV2, ltf_pV2).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ltef_pV2
ltef_nV2:= (lef_nV2, ltf_nV2).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ltef_nV2
invf_pgt: {in pos &, forall x y, (x < y^-1) = (y < x^-1)}. Proof. by move=> x y *; rewrite -[x in LHS]invrK ltf_pV2// posrE invr_gt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
invf_pgt
invf_pge: {in pos &, forall x y, (x <= y^-1) = (y <= x^-1)}. Proof. by move=> x y *; rewrite -[x in LHS]invrK lef_pV2// posrE invr_gt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
invf_pge
invf_ngt: {in neg &, forall x y, (x < y^-1) = (y < x^-1)}. Proof. by move=> x y *; rewrite -[x in LHS]invrK ltf_nV2// negrE invr_lt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
invf_ngt
invf_nge: {in neg &, forall x y, (x <= y^-1) = (y <= x^-1)}. Proof. by move=> x y *; rewrite -[x in LHS]invrK lef_nV2// negrE invr_lt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
invf_nge
invf_gt1x : 0 < x -> (1 < x^-1) = (x < 1). Proof. by move=> x0; rewrite invf_pgt ?invr1 ?posrE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
invf_gt1
invf_ge1x : 0 < x -> (1 <= x^-1) = (x <= 1). Proof. by move=> x0; rewrite invf_pge ?invr1 ?posrE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
invf_ge1
invf_gte1:= (invf_ge1, invf_gt1).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
invf_gte1
invf_plt: {in pos &, forall x y, (x^-1 < y) = (y^-1 < x)}. Proof. by move=> x y *; rewrite -[y in LHS]invrK ltf_pV2// posrE invr_gt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
invf_plt
invf_ple: {in pos &, forall x y, (x^-1 <= y) = (y^-1 <= x)}. Proof. by move=> x y *; rewrite -[y in LHS]invrK lef_pV2// posrE invr_gt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
invf_ple
invf_nlt: {in neg &, forall x y, (x^-1 < y) = (y^-1 < x)}. Proof. by move=> x y *; rewrite -[y in LHS]invrK ltf_nV2// negrE invr_lt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
invf_nlt
invf_nle: {in neg &, forall x y, (x^-1 <= y) = (y^-1 <= x)}. Proof. by move=> x y *; rewrite -[y in LHS]invrK lef_nV2// negrE invr_lt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
invf_nle
invf_le1x : 0 < x -> (x^-1 <= 1) = (1 <= x). Proof. by move=> x0; rewrite -invf_ple ?invr1 ?posrE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
invf_le1
invf_lt1x : 0 < x -> (x^-1 < 1) = (1 < x). Proof. by move=> x0; rewrite invf_plt ?invr1 ?posrE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
invf_lt1
invf_lte1:= (invf_le1, invf_lt1).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
invf_lte1
invf_cp1:= (invf_gte1, invf_lte1).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
invf_cp1
ler_pdivlMrz x y : 0 < z -> (x <= y / z) = (x * z <= y). Proof. by move=> z_gt0; rewrite -(@ler_pM2r _ z _ x) ?mulfVK ?gt_eqF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ler_pdivlMr
ltr_pdivlMrz x y : 0 < z -> (x < y / z) = (x * z < y). Proof. by move=> z_gt0; rewrite -(@ltr_pM2r _ z _ x) ?mulfVK ?gt_eqF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ltr_pdivlMr
lter_pdivlMr:= (ler_pdivlMr, ltr_pdivlMr).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
lter_pdivlMr
ler_pdivrMrz x y : 0 < z -> (y / z <= x) = (y <= x * z). Proof. by move=> z_gt0; rewrite -(@ler_pM2r _ z) ?mulfVK ?gt_eqF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ler_pdivrMr
ltr_pdivrMrz x y : 0 < z -> (y / z < x) = (y < x * z). Proof. by move=> z_gt0; rewrite -(@ltr_pM2r _ z) ?mulfVK ?gt_eqF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ltr_pdivrMr
lter_pdivrMr:= (ler_pdivrMr, ltr_pdivrMr).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
lter_pdivrMr
ler_pdivlMlz x y : 0 < z -> (x <= z^-1 * y) = (z * x <= y). Proof. by move=> z_gt0; rewrite mulrC ler_pdivlMr ?[z * _]mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ler_pdivlMl
ltr_pdivlMlz x y : 0 < z -> (x < z^-1 * y) = (z * x < y). Proof. by move=> z_gt0; rewrite mulrC ltr_pdivlMr ?[z * _]mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ltr_pdivlMl
lter_pdivlMl:= (ler_pdivlMl, ltr_pdivlMl).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
lter_pdivlMl
ler_pdivrMlz x y : 0 < z -> (z^-1 * y <= x) = (y <= z * x). Proof. by move=> z_gt0; rewrite mulrC ler_pdivrMr ?[z * _]mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ler_pdivrMl
ltr_pdivrMlz x y : 0 < z -> (z^-1 * y < x) = (y < z * x). Proof. by move=> z_gt0; rewrite mulrC ltr_pdivrMr ?[z * _]mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ltr_pdivrMl
lter_pdivrMl:= (ler_pdivrMl, ltr_pdivrMl).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
lter_pdivrMl
ler_ndivlMrz x y : z < 0 -> (x <= y / z) = (y <= x * z). Proof. by move=> z_lt0; rewrite -(@ler_nM2r _ z) ?mulfVK ?lt_eqF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ler_ndivlMr
ltr_ndivlMrz x y : z < 0 -> (x < y / z) = (y < x * z). Proof. by move=> z_lt0; rewrite -(@ltr_nM2r _ z) ?mulfVK ?lt_eqF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ltr_ndivlMr
lter_ndivlMr:= (ler_ndivlMr, ltr_ndivlMr).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
lter_ndivlMr
ler_ndivrMrz x y : z < 0 -> (y / z <= x) = (x * z <= y). Proof. by move=> z_lt0; rewrite -(@ler_nM2r _ z) ?mulfVK ?lt_eqF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ler_ndivrMr
ltr_ndivrMrz x y : z < 0 -> (y / z < x) = (x * z < y). Proof. by move=> z_lt0; rewrite -(@ltr_nM2r _ z) ?mulfVK ?lt_eqF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ltr_ndivrMr
lter_ndivrMr:= (ler_ndivrMr, ltr_ndivrMr).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
lter_ndivrMr
ler_ndivlMlz x y : z < 0 -> (x <= z^-1 * y) = (y <= z * x). Proof. by move=> z_lt0; rewrite mulrC ler_ndivlMr ?[z * _]mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ler_ndivlMl
ltr_ndivlMlz x y : z < 0 -> (x < z^-1 * y) = (y < z * x). Proof. by move=> z_lt0; rewrite mulrC ltr_ndivlMr ?[z * _]mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ltr_ndivlMl
lter_ndivlMl:= (ler_ndivlMl, ltr_ndivlMl).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
lter_ndivlMl
ler_ndivrMlz x y : z < 0 -> (z^-1 * y <= x) = (z * x <= y). Proof. by move=> z_lt0; rewrite mulrC ler_ndivrMr ?[z * _]mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ler_ndivrMl
ltr_ndivrMlz x y : z < 0 -> (z^-1 * y < x) = (z * x < y). Proof. by move=> z_lt0; rewrite mulrC ltr_ndivrMr ?[z * _]mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ltr_ndivrMl
lter_ndivrMl:= (ler_ndivrMl, ltr_ndivrMl).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
lter_ndivrMl
natf_divm d : (d %| m)%N -> (m %/ d)%:R = m%:R / d%:R :> F. Proof. by apply: pchar0_natf_div; apply: (@pchar_num F). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
natf_div
normfV: {morph (norm : F -> F) : x / x ^-1}. Proof. move=> x /=; have [/normrV //|Nux] := boolP (x \is a GRing.unit). by rewrite !invr_out // unitfE normr_eq0 -unitfE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
normfV
normf_div: {morph (norm : F -> F) : x y / x / y}. Proof. by move=> x y /=; rewrite normrM normfV. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
normf_div
invr_sgx : (sg x)^-1 = sgr x. Proof. by rewrite !(fun_if GRing.inv) !(invr0, invrN, invr1). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
invr_sg
sgrVx : sgr x^-1 = sgr x. Proof. by rewrite /sgr invr_eq0 invr_lt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sgrV
splitrx : x = x / 2%:R + x / 2%:R. Proof. by rewrite -mulr2n -[RHS]mulr_natr mulfVK //= pnatr_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
splitr
lteif_pdivlMrC z x y : 0 < z -> x < y / z ?<= if C = (x * z < y ?<= if C). Proof. by case: C => ? /=; rewrite lter_pdivlMr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
lteif_pdivlMr
lteif_pdivrMrC z x y : 0 < z -> y / z < x ?<= if C = (y < x * z ?<= if C). Proof. by case: C => ? /=; rewrite lter_pdivrMr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
lteif_pdivrMr
lteif_pdivlMlC z x y : 0 < z -> x < z^-1 * y ?<= if C = (z * x < y ?<= if C). Proof. by case: C => ? /=; rewrite lter_pdivlMl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
lteif_pdivlMl
lteif_pdivrMlC z x y : 0 < z -> z^-1 * y < x ?<= if C = (y < z * x ?<= if C). Proof. by case: C => ? /=; rewrite lter_pdivrMl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
lteif_pdivrMl
lteif_ndivlMrC z x y : z < 0 -> x < y / z ?<= if C = (y < x * z ?<= if C). Proof. by case: C => ? /=; rewrite lter_ndivlMr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
lteif_ndivlMr
lteif_ndivrMrC z x y : z < 0 -> y / z < x ?<= if C = (x * z < y ?<= if C). Proof. by case: C => ? /=; rewrite lter_ndivrMr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
lteif_ndivrMr
lteif_ndivlMlC z x y : z < 0 -> x < z^-1 * y ?<= if C = (y < z * x ?<= if C). Proof. by case: C => ? /=; rewrite lter_ndivlMl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
lteif_ndivlMl
lteif_ndivrMlC z x y : z < 0 -> z^-1 * y < x ?<= if C = (z * x < y ?<= if C). Proof. by case: C => ? /=; rewrite lter_ndivrMl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
lteif_ndivrMl
midf_lex y : x <= y -> (x <= mid x y) * (mid x y <= y). Proof. move=> lexy; rewrite ler_pdivlMr ?ler_pdivrMr ?ltr0Sn //. by rewrite !mulrDr !mulr1 !lerD2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
midf_le
midf_ltx y : x < y -> (x < mid x y) * (mid x y < y). Proof. move=> ltxy; rewrite ltr_pdivlMr ?ltr_pdivrMr ?ltr0Sn //. by rewrite !mulrDr !mulr1 !ltrD2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
midf_lt
midf_lte:= (midf_le, midf_lt).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
midf_lte
ler_addgt0Prx y : reflect (forall e, e > 0 -> x <= y + e) (x <= y). Proof. apply/(iffP idP)=> [lexy e e_gt0 | lexye]; first by rewrite ler_wpDr// ltW. have [||ltyx]// := comparable_leP. rewrite (@comparabler_trans _ (y + 1))// /Order.comparable ?lexye ?ltr01//. by rewrite lerDl ler01 orbT. have /midf_lt [_] := ltyx; rewrite le_gtF//. rewrite -(@addrK _ y y) (addrAC _ _ x) -addrA 2!mulrDl -splitr lexye//. by rewrite divr_gt0// ?ltr0n// subr_gt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ler_addgt0Pr
ler_addgt0Plx y : reflect (forall e, e > 0 -> x <= e + y) (x <= y). Proof. by apply/(equivP (ler_addgt0Pr x y)); split=> lexy e /lexy; rewrite addrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ler_addgt0Pl
lt_lea b : (forall x, x < a -> x < b) -> a <= b. Proof. move=> ab; apply/ler_addgt0Pr => e e_gt0; rewrite -lerBDr ltW//. by rewrite ab// ltrBlDr ltrDl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
lt_le
gt_gea b : (forall x, b < x -> a < x) -> a <= b. Proof. by move=> ab; apply/ler_addgt0Pr => e e_gt0; rewrite ltW// ab// ltrDl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
gt_ge
real_leif_mean_squarex y : x \is real -> y \is real -> x * y <= mid (x ^+ 2) (y ^+ 2) ?= iff (x == y). Proof. move=> Rx Ry; rewrite -(mono_leif (ler_pM2r (ltr_nat F 0 2))). by rewrite divfK ?pnatr_eq0 // mulr_natr; apply: real_leif_mean_square_scaled. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
real_leif_mean_square
real_leif_AGM2x y : x \is real -> y \is real -> x * y <= mid x y ^+ 2 ?= iff (x == y). Proof. move=> Rx Ry; rewrite -(mono_leif (ler_pM2r (ltr_nat F 0 4))). rewrite mulr_natr (natrX F 2 2) -exprMn divfK ?pnatr_eq0 //. exact: real_leif_AGM2_scaled. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
real_leif_AGM2
leif_AGM(I : finType) (A : {pred I}) (E : I -> F) : let n := #|A| in let mu := (\sum_(i in A) E i) / n%:R in {in A, forall i, 0 <= E i} -> \prod_(i in A) E i <= mu ^+ n ?= iff [forall i in A, forall j in A, E i == E j]. Proof. move=> n mu Ege0; have [n0 | n_gt0] := posnP n. by rewrite n0 -big_andE !(big_pred0 _ _ _ _ (card0_eq n0)); apply/leifP. pose E' i := E i / n%:R. have defE' i: E' i *+ n = E i by rewrite -mulr_natr divfK ?pnatr_eq0 -?lt0n. have /leif_AGM_scaled (i): i \in A -> 0 <= E' i *+ n by rewrite defE' => /Ege0. rewrite -/n -mulr_suml (eq_bigr _ (in1W defE')); congr (_ <= _ ?= iff _). by do 2![apply: eq_forallb_in => ? _]; rewrite -(eqr_pMn2r n_gt0) !defE'. Qed. Implicit Type p : {poly F}.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
leif_AGM
Cauchy_root_boundp : p != 0 -> {b | forall x, root p x -> `|x| <= b}. Proof. move=> nz_p; set a := lead_coef p; set n := (size p).-1. have [q Dp]: {q | forall x, x != 0 -> p.[x] = (a - q.[x^-1] / x) * x ^+ n}. exists (- \poly_(i < n) p`_(n - i.+1)) => x nz_x. rewrite hornerN mulNr opprK horner_poly mulrDl !mulr_suml addrC. rewrite horner_coef polySpred // big_ord_recr (reindex_inj rev_ord_inj) /=. rewrite -/n -lead_coefE; congr (_ + _); apply: eq_bigr=> i _. by rewrite exprB ?unitfE // -exprVn mulrA mulrAC exprSr mulrA. have [b ub_q] := poly_disk_bound q 1; exists (b / `|a| + 1) => x px0. have b_ge0: 0 <= b by rewrite (le_trans (normr_ge0 q.[1])) ?ub_q ?normr1. have{b_ge0} ba_ge0: 0 <= b / `|a| by rewrite divr_ge0. rewrite real_leNgt ?rpredD ?rpred1 ?ger0_real //. apply: contraL px0 => lb_x; rewrite rootE. have x_ge1: 1 <= `|x| by rewrite (le_trans _ (ltW lb_x)) // ler_wpDl. have nz_x: x != 0 by rewrite -normr_gt0 (lt_le_trans ltr01). rewrite {}Dp // mulf_neq0 ?expf_neq0 // subr_eq0 eq_sym. have: (b / `|a|) < `|x| by rewrite (lt_trans _ lb_x) // ltr_pwDr ?ltr01. apply: contraTneq => /(canRL (divfK nz_x))Dax. rewrite ltr_pdivrMr ?normr_gt0 ?lead_coef_eq0 // mulrC -normrM -{}Dax. by rewrite le_gtF // ub_q // normfV invf_le1 ?normr_gt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
Cauchy_root_bound
natf_indexg(gT : finGroupType) (G H : {group gT}) : H \subset G -> #|G : H|%:R = (#|G|%:R / #|H|%:R)%R :> F. Proof. by move=> sHG; rewrite -divgS // natf_div ?cardSg. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
natf_indexg
leif_mean_squarex y : x * y <= (x ^+ 2 + y ^+ 2) / 2 ?= iff (x == y). Proof. by apply: real_leif_mean_square; apply: num_real. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
leif_mean_square
leif_AGM2x y : x * y <= ((x + y) / 2)^+ 2 ?= iff (x == y). Proof. by apply: real_leif_AGM2; apply: num_real. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
leif_AGM2
maxr_absEx y : Num.max x y = (x + y + `|x - y|) / 2. Proof. apply: canRL (mulfK _) _ => //; rewrite ?pnatr_eq0//. case: lerP => _; rewrite [2]mulr2n mulrDr mulr1. by rewrite addrCA addrK. by rewrite addrCA addrAC subrr add0r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
maxr_absE
minr_absEx y : Num.min x y = (x + y - `|x - y|) / 2. Proof. apply: (addrI (Num.max x y)); rewrite addr_max_min maxr_absE. by rewrite -mulrDl addrCA addrK mulrDl -splitr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
minr_absE
poly_ivt: real_closed_axiom R. Proof. exact: poly_ivt. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
poly_ivt
sqrtr_ge0a : 0 <= sqrt a. Proof. by rewrite /sqrt; case: (sig2W _). Qed. Hint Resolve sqrtr_ge0 : core.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqrtr_ge0
sqr_sqrtra : 0 <= a -> sqrt a ^+ 2 = a. Proof. by rewrite /sqrt => a_ge0; case: (sig2W _) => /= x _; rewrite a_ge0 => /eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqr_sqrtr
ler0_sqrtra : a <= 0 -> sqrt a = 0. Proof. rewrite /sqrtr; case: (sig2W _) => x /= _. by have [//|_ /eqP//|->] := ltrgt0P a; rewrite mulf_eq0 orbb => /eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ler0_sqrtr
ltr0_sqrtra : a < 0 -> sqrt a = 0. Proof. by move=> /ltW; apply: ler0_sqrtr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ltr0_sqrtr
sqrtr_speca : R -> bool -> bool -> R -> Type := | IsNoSqrtr of a < 0 : sqrtr_spec a a false true 0 | IsSqrtr b of 0 <= b : sqrtr_spec a (b ^+ 2) true false b.
Variant
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqrtr_spec
sqrtrPa : sqrtr_spec a a (0 <= a) (a < 0) (sqrt a). Proof. have [a_ge0|a_lt0] := ger0P a. by rewrite -{1 2}[a]sqr_sqrtr //; constructor. by rewrite ltr0_sqrtr //; constructor. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqrtrP
sqrtr_sqra : sqrt (a ^+ 2) = `|a|. Proof. have /eqP : sqrt (a ^+ 2) ^+ 2 = `|a| ^+ 2. by rewrite -normrX ger0_norm ?sqr_sqrtr ?sqr_ge0. rewrite eqf_sqr => /predU1P[-> //|ha]. have := sqrtr_ge0 (a ^+ 2); rewrite (eqP ha) oppr_ge0 normr_le0 => /eqP ->. by rewrite normr0 oppr0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqrtr_sqr
sqrtrMa b : 0 <= a -> sqrt (a * b) = sqrt a * sqrt b. Proof. case: (sqrtrP a) => // {}a a_ge0 _; case: (sqrtrP b) => [b_lt0 | {}b b_ge0]. by rewrite mulr0 ler0_sqrtr // nmulr_lle0 ?mulr_ge0. by rewrite mulrACA sqrtr_sqr ger0_norm ?mulr_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqrtrM
sqrtr0: sqrt 0 = 0 :> R. Proof. by move: (sqrtr_sqr 0); rewrite exprS mul0r => ->; rewrite normr0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqrtr0
sqrtr1: sqrt 1 = 1 :> R. Proof. by move: (sqrtr_sqr 1); rewrite expr1n => ->; rewrite normr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqrtr1
sqrtr_eq0a : (sqrt a == 0) = (a <= 0). Proof. case: sqrtrP => [/ltW ->|b]; first by rewrite eqxx. case: ltrgt0P => [b_gt0|//|->]; last by rewrite exprS mul0r lexx. by rewrite lt_geF ?pmulr_rgt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqrtr_eq0
sqrtr_gt0a : (0 < sqrt a) = (0 < a). Proof. by rewrite lt0r sqrtr_ge0 sqrtr_eq0 -ltNge andbT. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqrtr_gt0
eqr_sqrta b : 0 <= a -> 0 <= b -> (sqrt a == sqrt b) = (a == b). Proof. move=> a_ge0 b_ge0; apply/eqP/eqP=> [HS|->] //. by move: (sqr_sqrtr a_ge0); rewrite HS (sqr_sqrtr b_ge0). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
eqr_sqrt
ler_wsqrtr: {homo @sqrt R : a b / a <= b}. Proof. move=> a b /= le_ab; case: (boolP (0 <= a))=> [pa|]; last first. by rewrite -ltNge; move/ltW; rewrite -sqrtr_eq0; move/eqP->. rewrite -(@ler_pXn2r R 2) ?nnegrE ?sqrtr_ge0 //. by rewrite !sqr_sqrtr // (le_trans pa). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ler_wsqrtr
ler_psqrt: {in @nneg R &, {mono sqrt : a b / a <= b}}. Proof. apply: le_mono_in => x y x_gt0 y_gt0. rewrite !lt_neqAle => /andP[neq_xy le_xy]. by rewrite ler_wsqrtr // eqr_sqrt // neq_xy. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ler_psqrt
ler_sqrta b : 0 <= b -> (sqrt a <= sqrt b) = (a <= b). Proof. move=> b_ge0; have [a_le0|a_gt0] := ler0P a; last first. by rewrite ler_psqrt // nnegrE ltW. by rewrite ler0_sqrtr // sqrtr_ge0 (le_trans a_le0). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ler_sqrt
ltr_sqrta b : 0 < b -> (sqrt a < sqrt b) = (a < b). Proof. move=> b_gt0; have [a_le0|a_gt0] := ler0P a; last first. by rewrite (leW_mono_in ler_psqrt)//; apply: ltW. by rewrite ler0_sqrtr // sqrtr_gt0 b_gt0 (le_lt_trans a_le0). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ltr_sqrt
sqrtrVx : 0 <= x -> sqrt (x^-1) = (sqrt x)^-1. Proof. case: ltrgt0P => // [x_gt0 _|->]; last by rewrite !(invr0, sqrtr0). have sx_neq0 : sqrt x != 0 by rewrite sqrtr_eq0 -ltNge. apply: (mulfI sx_neq0). by rewrite -sqrtrM !(divff, ltW, sqrtr1) // lt0r_neq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqrtrV
normCK: forall x, `|x| ^+ 2 = x * x^* := normCK_subdef.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
normCK
sqrCi: 'i ^+ 2 = -1 :> C := sqrCi.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqrCi
mulCii: 'i * 'i = -1 :> C. Proof. exact: sqrCi. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
mulCii
conjCK: involutive (@conj C). Proof. have JE x : x^* = `|x|^+2 / x. have [->|x_neq0] := eqVneq x 0; first by rewrite rmorph0 invr0 mulr0. by apply: (canRL (mulfK _)) => //; rewrite mulrC -normCK. move=> x; have [->|x_neq0] := eqVneq x 0; first by rewrite !rmorph0. rewrite !JE normrM normfV exprMn normrX normr_id. rewrite invfM exprVn (AC (2*2) (1*(2*3)*4))/= -invfM -exprMn. by rewrite divff ?mul1r ?invrK // !expf_eq0 normr_eq0 //. Qed. Let Re2 z := z + z^*.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
conjCK
nnegImz := (0 <= 'i * (z^* - z)).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
nnegIm
argCley z := nnegIm z ==> nnegIm y && (Re2 z <= Re2 y).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
argCle
rootC_specn (x : C) : Type := RootCspec (y : C) of if (n > 0)%N then y ^+ n = x else y = 0 & forall z, (n > 0)%N -> z ^+ n = x -> argCle y z. Fact rootC_subproof n x : rootC_spec n x. Proof. have realRe2 u : Re2 u \is Num.real by rewrite realEsqr expr2 {2}/Re2 -{2}[u]conjCK addrC -rmorphD -normCK exprn_ge0. have argCle_total : total argCle. move=> u v; rewrite /total /argCle. by do 2!case: (nnegIm _) => //; rewrite ?orbT //= real_leVge. have argCle_trans : transitive argCle. move=> u v w /implyP geZuv /implyP geZvw; apply/implyP. by case/geZvw/andP=> /geZuv/andP[-> geRuv] /le_trans->. pose p := 'X^n - (x *+ (n > 0))%:P; have [r0 Dp] := closed_field_poly_normal p. have sz_p : size p = n.+1. rewrite size_polyDl ?size_polyXn // ltnS size_polyN size_polyC mulrn_eq0. by case: posnP => //; case: negP. pose r := sort argCle r0; have r_arg: sorted argCle r by apply: sort_sorted. have{} Dp: p = \prod_(z <- r) ('X - z%:P). rewrite Dp lead_coefE sz_p coefB coefXn coefC -mulrb -mulrnA mulnb lt0n andNb. by rewrite subr0 eqxx scale1r; apply/esym/perm_big; rewrite perm_sort. have mem_rP z: (n > 0)%N -> reflect (z ^+ n = x) (z \in r). move=> n_gt0; rewrite -root_prod_XsubC -Dp rootE !hornerE n_gt0. by rewrite subr_eq0; apply: eqP. exists r`_0 => [|z n_gt0 /(mem_rP z n_gt0) r_z]. have sz_r: size r = n by apply: succn_inj; rewrite -sz_p Dp size_prod_XsubC. case: posnP => [n0 | n_gt0]; first by rewrite nth_default // sz_r n0. by apply/mem_rP=> //; rew ...
Variant
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
rootC_spec
nthrootn x := let: RootCspec y _ _ := rootC_subproof n x in y.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
nthroot
sqrtC:= 2.-root. Fact Re_lock : unit. Proof. exact: tt. Qed. Fact Im_lock : unit. Proof. exact: tt. Qed.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqrtC