fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
normrEsgx : `|x| = sg x * x. Proof. by case: sgrP; rewrite ?(mul0r, mul1r, mulN1r). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
normrEsg
numEsgx : x = sg x * `|x|. Proof. by case: sgrP; rewrite !(mul1r, mul0r, mulrNN). Qed. #[deprecated(since="mathcomp 2.3.0", note="use `numEsg` instead")]
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
numEsg
mulr_sg_normx : sg x * `|x| = x. Proof. by rewrite -numEsg. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
mulr_sg_norm
sgrMx y : sg (x * y) = sg x * sg y. Proof. rewrite !sgr_def mulr_lt0 andbA mulrnAr mulrnAl -mulrnA mulnb -negb_or mulf_eq0. by case: (~~ _) => //; rewrite signr_addb. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sgrM
sgrNx : sg (- x) = - sg x. Proof. by rewrite -mulrN1 sgrM sgrN1 mulrN1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sgrN
sgrXn x : sg (x ^+ n) = (sg x) ^+ n. Proof. by elim: n => [|n IHn]; rewrite ?sgr1 // !exprS sgrM IHn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sgrX
sgr_smulx y : sg (sg x * y) = sg x * sg y. Proof. by rewrite sgrM sgr_id. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sgr_smul
sgr_gt0x : (sg x > 0) = (x > 0). Proof. by rewrite -[LHS]sgr_cp0 sgr_id sgr_cp0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sgr_gt0
sgr_ge0x : (sgr x >= 0) = (x >= 0). Proof. by rewrite !leNgt sgr_lt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sgr_ge0
ler_normx : (x <= `|x|). Proof. exact: real_ler_norm. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_norm
ler_normlx y : (`|x| <= y) = (- y <= x <= y). Proof. exact: real_ler_norml. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_norml
ler_normlPx y : reflect ((- x <= y) * (x <= y)) (`|x| <= y). Proof. exact: real_ler_normlP. Qed. Arguments ler_normlP {x y}.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_normlP
eqr_normlx y : (`|x| == y) = ((x == y) || (x == -y)) && (0 <= y). Proof. exact: real_eqr_norml. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
eqr_norml
eqr_norm2x y : (`|x| == `|y|) = (x == y) || (x == -y). Proof. exact: real_eqr_norm2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
eqr_norm2
ltr_normlx y : (`|x| < y) = (- y < x < y). Proof. exact: real_ltr_norml. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_norml
lter_norml:= (ler_norml, ltr_norml).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lter_norml
ltr_normlPx y : reflect ((-x < y) * (x < y)) (`|x| < y). Proof. exact: real_ltr_normlP. Qed. Arguments ltr_normlP {x y}.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_normlP
ltr_normlWx y : `|x| < y -> x < y. Proof. exact: real_ltr_normlW. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_normlW
ltrNnormlWx y : `|x| < y -> - y < x. Proof. exact: real_ltrNnormlW. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltrNnormlW
ler_normlWx y : `|x| <= y -> x <= y. Proof. exact: real_ler_normlW. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_normlW
lerNnormlWx y : `|x| <= y -> - y <= x. Proof. exact: real_lerNnormlW. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lerNnormlW
ler_normrx y : (x <= `|y|) = (x <= y) || (x <= - y). Proof. exact: real_ler_normr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_normr
ltr_normrx y : (x < `|y|) = (x < y) || (x < - y). Proof. exact: real_ltr_normr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_normr
lter_normr:= (ler_normr, ltr_normr).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lter_normr
ler_distlx y e : (`|x - y| <= e) = (y - e <= x <= y + e). Proof. exact: real_ler_distl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_distl
ltr_distlx y e : (`|x - y| < e) = (y - e < x < y + e). Proof. exact: real_ltr_distl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_distl
lter_distl:= (ler_distl, ltr_distl).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lter_distl
ltr_distlCx y e : (`|x - y| < e) = (x - e < y < x + e). Proof. by rewrite distrC ltr_distl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_distlC
ler_distlCx y e : (`|x - y| <= e) = (x - e <= y <= x + e). Proof. by rewrite distrC ler_distl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_distlC
lter_distlC:= (ler_distlC, ltr_distlC).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lter_distlC
ltr_distlDrx y e : `|x - y| < e -> x < y + e. Proof. exact: real_ltr_distlDr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_distlDr
ler_distlDrx y e : `|x - y| <= e -> x <= y + e. Proof. exact: real_ler_distlDr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_distlDr
ltr_distlCDrx y e : `|x - y| < e -> y < x + e. Proof. exact: real_ltr_distlCDr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_distlCDr
ler_distlCDrx y e : `|x - y| <= e -> y <= x + e. Proof. exact: real_ler_distlCDr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_distlCDr
ltr_distlBlx y e : `|x - y| < e -> x - e < y. Proof. exact: real_ltr_distlBl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_distlBl
ler_distlBlx y e : `|x - y| <= e -> x - e <= y. Proof. exact: real_ler_distlBl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_distlBl
ltr_distlCBlx y e : `|x - y| < e -> y - e < x. Proof. exact: real_ltr_distlCBl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_distlCBl
ler_distlCBlx y e : `|x - y| <= e -> y - e <= x. Proof. exact: real_ler_distlCBl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_distlCBl
exprn_even_ge0n x : ~~ odd n -> 0 <= x ^+ n. Proof. by move=> even_n; rewrite real_exprn_even_ge0 ?num_real. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
exprn_even_ge0
exprn_even_gt0n x : ~~ odd n -> (0 < x ^+ n) = (n == 0)%N || (x != 0). Proof. by move=> even_n; rewrite real_exprn_even_gt0 ?num_real. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
exprn_even_gt0
exprn_even_le0n x : ~~ odd n -> (x ^+ n <= 0) = (n != 0) && (x == 0). Proof. by move=> even_n; rewrite real_exprn_even_le0 ?num_real. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
exprn_even_le0
exprn_even_lt0n x : ~~ odd n -> (x ^+ n < 0) = false. Proof. by move=> even_n; rewrite real_exprn_even_lt0 ?num_real. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
exprn_even_lt0
exprn_odd_ge0n x : odd n -> (0 <= x ^+ n) = (0 <= x). Proof. by move=> even_n; rewrite real_exprn_odd_ge0 ?num_real. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
exprn_odd_ge0
exprn_odd_gt0n x : odd n -> (0 < x ^+ n) = (0 < x). Proof. by move=> even_n; rewrite real_exprn_odd_gt0 ?num_real. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
exprn_odd_gt0
exprn_odd_le0n x : odd n -> (x ^+ n <= 0) = (x <= 0). Proof. by move=> even_n; rewrite real_exprn_odd_le0 ?num_real. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
exprn_odd_le0
exprn_odd_lt0n x : odd n -> (x ^+ n < 0) = (x < 0). Proof. by move=> even_n; rewrite real_exprn_odd_lt0 ?num_real. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
exprn_odd_lt0
lteif_normlC x y : (`|x| < y ?<= if C) = (- y < x ?<= if C) && (x < y ?<= if C). Proof. by case: C; rewrite /= lter_norml. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lteif_norml
lteif_normrC x y : (x < `|y| ?<= if C) = (x < y ?<= if C) || (x < - y ?<= if C). Proof. by case: C; rewrite /= lter_normr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lteif_normr
lteif_distlC x y e : (`|x - y| < e ?<= if C) = (y - e < x ?<= if C) && (x < y + e ?<= if C). Proof. by case: C; rewrite /= lter_distl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lteif_distl
sqr_ge0x : 0 <= x ^+ 2. Proof. by rewrite exprn_even_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sqr_ge0
sqr_norm_eq1x : (x ^+ 2 == 1) = (`|x| == 1). Proof. by rewrite sqrf_eq1 eqr_norml ler01 andbT. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sqr_norm_eq1
leif_mean_square_scaledx y : x * y *+ 2 <= x ^+ 2 + y ^+ 2 ?= iff (x == y). Proof. exact: real_leif_mean_square_scaled. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
leif_mean_square_scaled
leif_AGM2_scaledx y : x * y *+ 4 <= (x + y) ^+ 2 ?= iff (x == y). Proof. exact: real_leif_AGM2_scaled. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
leif_AGM2_scaled
oppr_max: {morph -%R : x y / max x y >-> min x y : R}. Proof. by move=> x y; apply: real_oppr_max. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
oppr_max
oppr_min: {morph -%R : x y / min x y >-> max x y : R}. Proof. by move=> x y; apply: real_oppr_min. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
oppr_min
addr_minl: @left_distributive R R +%R min. Proof. by move=> x y z; apply: real_addr_minl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
addr_minl
addr_minr: @right_distributive R R +%R min. Proof. by move=> x y z; apply: real_addr_minr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
addr_minr
addr_maxl: @left_distributive R R +%R max. Proof. by move=> x y z; apply: real_addr_maxl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
addr_maxl
addr_maxr: @right_distributive R R +%R max. Proof. by move=> x y z; apply: real_addr_maxr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
addr_maxr
minr_nMrx y z : x <= 0 -> x * min y z = max (x * y) (x * z). Proof. by move=> x_le0; apply: real_minr_nMr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
minr_nMr
maxr_nMrx y z : x <= 0 -> x * max y z = min (x * y) (x * z). Proof. by move=> x_le0; apply: real_maxr_nMr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
maxr_nMr
minr_nMlx y z : x <= 0 -> min y z * x = max (y * x) (z * x). Proof. by move=> x_le0; apply: real_minr_nMl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
minr_nMl
maxr_nMlx y z : x <= 0 -> max y z * x = min (y * x) (z * x). Proof. by move=> x_le0; apply: real_maxr_nMl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
maxr_nMl
maxrNx : max x (- x) = `|x|. Proof. exact: real_maxrN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
maxrN
maxNrx : max (- x) x = `|x|. Proof. exact: real_maxNr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
maxNr
minrNx : min x (- x) = - `|x|. Proof. exact: real_minrN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
minrN
minNrx : min (- x) x = - `|x|. Proof. exact: real_minNr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
minNr
poly_itv_bounda b : {ub | forall x, a <= x <= b -> `|p.[x]| <= ub}. Proof. have [ub le_p_ub] := poly_disk_bound p (Num.max `|a| `|b|). exists ub => x /andP[le_a_x le_x_b]; rewrite le_p_ub // le_max !ler_normr. by have [_|_] := ler0P x; rewrite ?lerN2 ?le_a_x ?le_x_b orbT. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
poly_itv_bound
monic_Cauchy_bound: p \is monic -> {b | forall x, x >= b -> p.[x] > 0}. Proof. move/monicP=> mon_p; pose n := (size p - 2)%N. have [p_le1 | p_gt1] := leqP (size p) 1. exists 0 => x _; rewrite (size1_polyC p_le1) hornerC. by rewrite -[p`_0]lead_coefC -size1_polyC // mon_p ltr01. pose lb := \sum_(j < n.+1) `|p`_j|; exists (lb + 1) => x le_ub_x. have x_ge1: 1 <= x; last have x_gt0 := lt_le_trans ltr01 x_ge1. by rewrite -(lerD2l lb) ler_wpDl ?sumr_ge0 // => j _. rewrite horner_coef -(subnK p_gt1) -/n addnS big_ord_recr /= addn1. rewrite [in p`__]subnSK // subn1 -lead_coefE mon_p mul1r -ltrBlDl sub0r. apply: le_lt_trans (_ : lb * x ^+ n < _); last first. by rewrite exprS ltr_pM2r ?exprn_gt0// -(ltrD2r 1) ltr_pwDr. rewrite -sumrN mulr_suml ler_sum // => j _; apply: le_trans (ler_norm _) _. rewrite normrN normrM ler_wpM2l // normrX. by rewrite ger0_norm ?(ltW x_gt0) // ler_weXn2l ?leq_ord. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
monic_Cauchy_bound
RecordIntegralDomain_isNumRing R of GRing.IntegralDomain R := { Rle : rel R; Rlt : rel R; norm : R -> R; normD : forall x y, Rle (norm (x + y)) (norm x + norm y); addr_gt0 : forall x y, Rlt 0 x -> Rlt 0 y -> Rlt 0 (x + y); norm_eq0 : forall x, norm x = 0 -> x = 0; ger_total : forall x y, Rle 0 x -> Rle 0 y -> Rle x y || Rle y x; normM : {morph norm : x y / x * y}; le_def : forall x y, (Rle x y) = (norm (y - x) == y - x); lt_def : forall x y, (Rlt x y) = (y != x) && (Rle x y) }. HB.builders Context R of IntegralDomain_isNumRing R. Local Notation "x <= y" := (Rle x y) : ring_scope. Local Notation "x < y" := (Rlt x y) : ring_scope. Local Notation "`| x |" := (norm x) : ring_scope.
HB.factory
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
Record
ltrrx : x < x = false. Proof. by rewrite lt_def eqxx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltrr
ge0_defx : (0 <= x) = (`|x| == x). Proof. by rewrite le_def subr0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ge0_def
subr_ge0x y : (0 <= x - y) = (y <= x). Proof. by rewrite ge0_def -le_def. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
subr_ge0
subr_gt0x y : (0 < y - x) = (x < y). Proof. by rewrite !lt_def subr_eq0 subr_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
subr_gt0
lt_trans: transitive Rlt. Proof. move=> y x z le_xy le_yz. by rewrite -subr_gt0 -(subrK y z) -addrA addr_gt0 // subr_gt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lt_trans
le01: 0 <= 1. Proof. have n1_nz: `|1| != 0 :> R by apply: contraNneq (@oner_neq0 R) => /norm_eq0->. by rewrite ge0_def -(inj_eq (mulfI n1_nz)) -normM !mulr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
le01
lt01: 0 < 1. Proof. by rewrite lt_def oner_neq0 le01. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lt01
ltWx y : x < y -> x <= y. Proof. by rewrite lt_def => /andP[]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltW
lerrx : x <= x. Proof. have n2: `|2| == 2 :> R by rewrite -ge0_def ltW ?addr_gt0 ?lt01. rewrite le_def subrr -(inj_eq (addrI `|0|)) addr0 -mulr2n -mulr_natr. by rewrite -(eqP n2) -normM mul0r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lerr
le_def'x y : (x <= y) = (x == y) || (x < y). Proof. by rewrite lt_def; case: eqVneq => //= ->; rewrite lerr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
le_def'
le_trans: transitive Rle. by move=> y x z; rewrite !le_def' => /predU1P [->|hxy] // /predU1P [<-|hyz]; rewrite ?hxy ?(lt_trans hxy hyz) orbT. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
le_trans
normrMnx n : `|x *+ n| = `|x| *+ n. Proof. rewrite -mulr_natr -[RHS]mulr_natr normM. congr (_ * _); apply/eqP; rewrite -ge0_def. elim: n => [|n ih]; [exact: lerr | apply: (le_trans ih)]. by rewrite le_def -natrB // subSnn -[_%:R]subr0 -le_def mulr1n le01. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
normrMn
normrN1: `|-1| = 1 :> R. Proof. have: `|-1| ^+ 2 == 1 :> R by rewrite expr2 /= -normM mulrNN mul1r -[1]subr0 -le_def le01. rewrite sqrf_eq1 => /predU1P [] //; rewrite -[-1]subr0 -le_def. have ->: 0 <= -1 = (-1 == 0 :> R) || (0 < -1) by rewrite lt_def; case: eqP => // ->; rewrite lerr. by rewrite oppr_eq0 oner_eq0 => /(addr_gt0 lt01); rewrite subrr ltrr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
normrN1
normrNx : `|- x| = `|x|. Proof. by rewrite -mulN1r normM -[RHS]mul1r normrN1. Qed. HB.instance Definition _ := Order.LtLe_isPOrder.Build ring_display R le_def' ltrr lt_trans. HB.instance Definition _ := Zmodule_isNormed.Build _ R normD norm_eq0 normrMn normrN. HB.instance Definition _ := isNumRing.Build R addr_gt0 ger_total normM le_def. HB.end. HB.factory Record NumDomain_isReal R of NumDomain R := { real : real_axiom R }. HB.builders Context R of NumDomain_isReal R.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
normrN
le_total: Order.POrder_isTotal ring_display R. Proof. constructor=> x y; move: (real (x - y)). by rewrite unfold_in /= !ler_def subr0 add0r opprB orbC. Qed. HB.instance Definition _ := le_total. HB.end. HB.factory Record IntegralDomain_isLeReal R of GRing.IntegralDomain R := { Rle : rel R; Rlt : rel R; norm : R -> R; le0_add : forall x y, Rle 0 x -> Rle 0 y -> Rle 0 (x + y); le0_mul : forall x y, Rle 0 x -> Rle 0 y -> Rle 0 (x * y); le0_anti : forall x, Rle 0 x -> Rle x 0 -> x = 0; sub_ge0 : forall x y, Rle 0 (y - x) = Rle x y; le0_total : forall x, Rle 0 x || Rle x 0; normN : forall x, norm (- x) = norm x; ge0_norm : forall x, Rle 0 x -> norm x = x; lt_def : forall x y, Rlt x y = (y != x) && Rle x y; }. HB.builders Context R of IntegralDomain_isLeReal R. Local Notation le := Rle. Local Notation lt := Rlt. Local Notation "x <= y" := (le x y) : ring_scope. Local Notation "x < y" := (lt x y) : ring_scope. Local Notation "`| x |" := (norm x) : ring_scope. Let le0N x : (0 <= - x) = (x <= 0). Proof. by rewrite -sub0r sub_ge0. Qed. Let leN_total x : 0 <= x \/ 0 <= - x. Proof. by apply/orP; rewrite le0N le0_total. Qed. Let le00 : 0 <= 0. Proof. by have:= le0_total 0; rewrite orbb. Qed. Fact lt0_add x y : 0 < x -> 0 < y -> 0 < x + y. Proof. rewrite !lt_def => /andP [x_neq0 l0x] /andP [y_neq0 l0y]; rewrite le0_add //.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
le_total
DefinitionNumField := { R of GRing.UnitRing_isField R & GRing.IntegralDomain R & POrderedZmodule R & NormedZmodule (POrderedZmodule.clone R _) R & isNumRing R }.
HB.structure
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
Definition
RecordNumField_isImaginary R of NumField R := { imaginary : R; conj_subdef : {rmorphism R -> R}; sqrCi : imaginary ^+ 2 = - 1; normCK_subdef : forall x, `|x| ^+ 2 = x * conj_subdef x; }. #[short(type="numClosedFieldType")] HB.structure Definition ClosedField := { R of NumField_isImaginary R & GRing.ClosedField R & NumField R }.
HB.mixin
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
Record
conj{C : numClosedFieldType} : C -> C := @conj_subdef C. #[export] HB.instance Definition _ C := GRing.RMorphism.on (@conj C). #[deprecated(since="mathcomp 2.5.0",note="Use conj instead.")]
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
conj
conj_op:= conj (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
conj_op
DefinitionRealField := { R of Order.Total ring_display R & NumField R }.
HB.structure
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
Definition
RecordRealField_isClosed R of RealField R := { poly_ivt_subproof : real_closed_axiom R }. #[short(type="rcfType")] HB.structure Definition RealClosedField := { R of RealField_isClosed R & RealField R }.
HB.mixin
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
Record
poly_ivt: real_closed_axiom R. Proof. exact: poly_ivt_subproof. Qed. Fact sqrtr_subproof (x : R) : exists2 y, 0 <= y & (if 0 <= x then y ^+ 2 == x else y == 0) : bool. Proof. case x_ge0: (0 <= x); last by exists 0. have le0x1: 0 <= x + 1 by rewrite -nnegrE rpredD ?rpred1. have [|y /andP[y_ge0 _]] := @poly_ivt ('X^2 - x%:P) _ _ le0x1. rewrite !hornerE -subr_ge0 add0r expr0n sub0r opprK x_ge0 sqrrD mulr1. by rewrite addrAC !addrA addrK -nnegrE !rpredD ?rpredX ?rpred1. by rewrite rootE !hornerE subr_eq0; exists y. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
poly_ivt
conjC:= conj.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
conjC
sqrtr{R} x := s2val (sig2W (@sqrtr_subproof R x)).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqrtr
sqrt:= sqrtr.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqrt
unitf_gt0x : 0 < x -> x \is a GRing.unit. Proof. by move=> hx; rewrite unitfE eq_sym lt_eqF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
unitf_gt0
unitf_lt0x : x < 0 -> x \is a GRing.unit. Proof. by move=> hx; rewrite unitfE lt_eqF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
unitf_lt0
lef_pV2: {in pos &, {mono (@GRing.inv F) : x y /~ x <= y}}. Proof. by move=> x y hx hy /=; rewrite ler_pV2 ?inE ?unitf_gt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
lef_pV2
lef_nV2: {in neg &, {mono (@GRing.inv F) : x y /~ x <= y}}. Proof. by move=> x y hx hy /=; rewrite ler_nV2 ?inE ?unitf_lt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
lef_nV2
ltf_pV2: {in pos &, {mono (@GRing.inv F) : x y /~ x < y}}. Proof. exact: leW_nmono_in lef_pV2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ltf_pV2