fact
stringlengths 8
1.54k
| type
stringclasses 19
values | library
stringclasses 8
values | imports
listlengths 1
10
| filename
stringclasses 98
values | symbolic_name
stringlengths 1
42
| docstring
stringclasses 1
value |
|---|---|---|---|---|---|---|
expr_gte1:= (expr_ge1, expr_gt1).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
expr_gte1
| |
pexpr_eq1x n : (0 < n)%N -> 0 <= x -> (x ^+ n == 1) = (x == 1).
Proof. by move=> ngt0 xge0; rewrite !eq_le expr_le1 // expr_ge1. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
pexpr_eq1
| |
pexprn_eq1x n : 0 <= x -> (x ^+ n == 1) = (n == 0) || (x == 1).
Proof. by case: n => [|n] xge0; rewrite ?eqxx // pexpr_eq1 ?gtn_eqF. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
pexprn_eq1
| |
eqrXn2n x y :
(0 < n)%N -> 0 <= x -> 0 <= y -> (x ^+ n == y ^+ n) = (x == y).
Proof. by move=> ngt0 xge0 yge0; rewrite (inj_in_eq (pexpIrn _)). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
eqrXn2
| |
sqrp_eq1x : 0 <= x -> (x ^+ 2 == 1) = (x == 1).
Proof. by move/pexpr_eq1->. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
sqrp_eq1
| |
sqrn_eq1x : x <= 0 -> (x ^+ 2 == 1) = (x == -1).
Proof. by rewrite -sqrrN -oppr_ge0 -eqr_oppLR => /sqrp_eq1. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
sqrn_eq1
| |
ler_sqr: {in nneg &, {mono (fun x => x ^+ 2) : x y / x <= y}}.
Proof. exact: ler_pXn2r. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
ler_sqr
| |
ltr_sqr: {in nneg &, {mono (fun x => x ^+ 2) : x y / x < y}}.
Proof. exact: ltr_pXn2r. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
ltr_sqr
| |
ler_pV2:
{in [pred x in GRing.unit | 0 < x] &, {mono (@GRing.inv R) : x y /~ x <= y}}.
Proof.
move=> x y /andP [ux hx] /andP [uy hy] /=.
by rewrite -(ler_pM2l hx) -(ler_pM2r hy) !(divrr, mulrVK) ?unitf_gt0 // mul1r.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
ler_pV2
| |
ler_nV2:
{in [pred x in GRing.unit | x < 0] &, {mono (@GRing.inv R) : x y /~ x <= y}}.
Proof.
move=> x y /andP [ux hx] /andP [uy hy] /=.
by rewrite -(ler_nM2l hx) -(ler_nM2r hy) !(divrr, mulrVK) ?unitf_lt0 // mul1r.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
ler_nV2
| |
ltr_pV2:
{in [pred x in GRing.unit | 0 < x] &, {mono (@GRing.inv R) : x y /~ x < y}}.
Proof. exact: leW_nmono_in ler_pV2. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
ltr_pV2
| |
ltr_nV2:
{in [pred x in GRing.unit | x < 0] &, {mono (@GRing.inv R) : x y /~ x < y}}.
Proof. exact: leW_nmono_in ler_nV2. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
ltr_nV2
| |
invr_gt1x : x \is a GRing.unit -> 0 < x -> (1 < x^-1) = (x < 1).
Proof.
by move=> Ux xgt0; rewrite -{1}[1]invr1 ltr_pV2 ?inE ?unitr1 ?ltr01 ?Ux.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
invr_gt1
| |
invr_ge1x : x \is a GRing.unit -> 0 < x -> (1 <= x^-1) = (x <= 1).
Proof.
by move=> Ux xgt0; rewrite -{1}[1]invr1 ler_pV2 ?inE ?unitr1 ?ltr01 // Ux.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
invr_ge1
| |
invr_gte1:= (invr_ge1, invr_gt1).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
invr_gte1
| |
invr_le1x (ux : x \is a GRing.unit) (hx : 0 < x) :
(x^-1 <= 1) = (1 <= x).
Proof. by rewrite -invr_ge1 ?invr_gt0 ?unitrV // invrK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
invr_le1
| |
invr_lt1x (ux : x \is a GRing.unit) (hx : 0 < x) : (x^-1 < 1) = (1 < x).
Proof. by rewrite -invr_gt1 ?invr_gt0 ?unitrV // invrK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
invr_lt1
| |
invr_lte1:= (invr_le1, invr_lt1).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
invr_lte1
| |
invr_cp1:= (invr_gte1, invr_lte1).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
invr_cp1
| |
natr_min(m n : nat) : (Order.min m n)%:R = Order.min m%:R n%:R :> R.
Proof. by rewrite !minElt ltr_nat /Order.lt/= -fun_if. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
natr_min
| |
natr_max(m n : nat) : (Order.max m n)%:R = Order.max m%:R n%:R :> R.
Proof. by rewrite !maxElt ltr_nat /Order.lt/= -fun_if. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
natr_max
| |
addr_min_maxx y : min x y + max x y = x + y.
Proof. by rewrite /min /max; case: ifP => //; rewrite addrC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
addr_min_max
| |
addr_max_minx y : max x y + min x y = x + y.
Proof. by rewrite addrC addr_min_max. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
addr_max_min
| |
minr_to_maxx y : min x y = x + y - max x y.
Proof. by rewrite -[x + y]addr_min_max addrK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
minr_to_max
| |
maxr_to_minx y : max x y = x + y - min x y.
Proof. by rewrite -[x + y]addr_max_min addrK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
maxr_to_min
| |
real_oppr_max: {in real &, {morph -%R : x y / max x y >-> min x y : R}}.
Proof.
by move=> x y xr yr; rewrite !(fun_if, if_arg) ltrN2; case: real_ltgtP => // ->.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_oppr_max
| |
real_oppr_min: {in real &, {morph -%R : x y / min x y >-> max x y : R}}.
Proof.
by move=> x y xr yr; rewrite -[RHS]opprK real_oppr_max ?realN// !opprK.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_oppr_min
| |
real_addr_minl: {in real & real & real, @left_distributive R R +%R min}.
Proof.
by move=> x y z xr yr zr; case: (@real_leP (_ + _)); rewrite ?realD//;
rewrite lterD2; case: real_leP.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_addr_minl
| |
real_addr_minr: {in real & real & real, @right_distributive R R +%R min}.
Proof. by move=> x y z xr yr zr; rewrite !(addrC x) real_addr_minl. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_addr_minr
| |
real_addr_maxl: {in real & real & real, @left_distributive R R +%R max}.
Proof.
by move=> x y z xr yr zr; case: (@real_leP (_ + _)); rewrite ?realD//;
rewrite lterD2; case: real_leP.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_addr_maxl
| |
real_addr_maxr: {in real & real & real, @right_distributive R R +%R max}.
Proof. by move=> x y z xr yr zr; rewrite !(addrC x) real_addr_maxl. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_addr_maxr
| |
minr_pMrx y z : 0 <= x -> x * min y z = min (x * y) (x * z).
Proof.
have [|x_gt0||->]// := comparableP x; last by rewrite !mul0r minxx.
by rewrite !(fun_if, if_arg) lter_pM2l//; case: (y < z).
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
minr_pMr
| |
maxr_pMrx y z : 0 <= x -> x * max y z = max (x * y) (x * z).
Proof.
have [|x_gt0||->]// := comparableP x; last by rewrite !mul0r maxxx.
by rewrite !(fun_if, if_arg) lter_pM2l//; case: (y < z).
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
maxr_pMr
| |
real_maxr_nMrx y z : x <= 0 -> y \is real -> z \is real ->
x * max y z = min (x * y) (x * z).
Proof.
move=> x0 yr zr; rewrite -[_ * _]opprK -mulrN real_oppr_max// -mulNr.
by rewrite minr_pMr ?oppr_ge0// !(mulNr, mulrN, opprK).
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_maxr_nMr
| |
real_minr_nMrx y z : x <= 0 -> y \is real -> z \is real ->
x * min y z = max (x * y) (x * z).
Proof.
move=> x0 yr zr; rewrite -[_ * _]opprK -mulrN real_oppr_min// -mulNr.
by rewrite maxr_pMr ?oppr_ge0// !(mulNr, mulrN, opprK).
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_minr_nMr
| |
minr_pMlx y z : 0 <= x -> min y z * x = min (y * x) (z * x).
Proof. by move=> *; rewrite mulrC minr_pMr // ![_ * x]mulrC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
minr_pMl
| |
maxr_pMlx y z : 0 <= x -> max y z * x = max (y * x) (z * x).
Proof. by move=> *; rewrite mulrC maxr_pMr // ![_ * x]mulrC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
maxr_pMl
| |
real_minr_nMlx y z : x <= 0 -> y \is real -> z \is real ->
min y z * x = max (y * x) (z * x).
Proof. by move=> *; rewrite mulrC real_minr_nMr // ![_ * x]mulrC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_minr_nMl
| |
real_maxr_nMlx y z : x <= 0 -> y \is real -> z \is real ->
max y z * x = min (y * x) (z * x).
Proof. by move=> *; rewrite mulrC real_maxr_nMr // ![_ * x]mulrC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_maxr_nMl
| |
real_maxrNx : x \is real -> max x (- x) = `|x|.
Proof.
move=> x_real; rewrite /max.
by case: real_ge0P => // [/ge0_cp [] | /lt0_cp []];
case: (@real_leP (- x) x); rewrite ?realN.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_maxrN
| |
real_maxNrx : x \is real -> max (- x) x = `|x|.
Proof.
by move=> x_real; rewrite comparable_maxC ?real_maxrN ?real_comparable ?realN.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_maxNr
| |
real_minrNx : x \is real -> min x (- x) = - `|x|.
Proof.
by move=> x_real; rewrite -[LHS]opprK real_oppr_min ?opprK ?real_maxNr ?realN.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_minrN
| |
real_minNrx : x \is real -> min (- x) x = - `|x|.
Proof.
by move=> x_real; rewrite -[LHS]opprK real_oppr_min ?opprK ?real_maxrN ?realN.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_minNr
| |
real_arg_minP: extremum_spec <=%R P F [arg min_(i < i0 | P i) F i].
Proof.
by apply: comparable_arg_minP => // i j iP jP; rewrite real_comparable ?F_real.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_arg_minP
| |
real_arg_maxP: extremum_spec >=%R P F [arg max_(i > i0 | P i) F i].
Proof.
by apply: comparable_arg_maxP => // i j iP jP; rewrite real_comparable ?F_real.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_arg_maxP
| |
real_ler_normx : x \is real -> x <= `|x|.
Proof.
by case/real_ge0P=> hx //; rewrite (le_trans (ltW hx)) // oppr_ge0 ltW.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_ler_norm
| |
normr_realv : `|v| \is real. Proof. by apply/ger0_real. Qed.
Hint Resolve normr_real : core.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
normr_real
| |
ler_norm_sumI r (G : I -> V) (P : pred I):
`|\sum_(i <- r | P i) G i| <= \sum_(i <- r | P i) `|G i|.
Proof.
elim/big_rec2: _ => [|i y x _]; first by rewrite normr0.
by rewrite -(lerD2l `|G i|); apply: le_trans; apply: ler_normD.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
ler_norm_sum
| |
ler_normBv w : `|v - w| <= `|v| + `|w|.
Proof. by rewrite (le_trans (ler_normD _ _)) ?normrN. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
ler_normB
| |
ler_distDu v w : `|v - w| <= `|v - u| + `|u - w|.
Proof. by rewrite (le_trans _ (ler_normD _ _)) // addrA addrNK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
ler_distD
| |
lerB_normDv w : `|v| - `|w| <= `|v + w|.
Proof.
by rewrite -{1}[v](addrK w) lterBDl (le_trans (ler_normD _ _))// addrC normrN.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
lerB_normD
| |
lerB_distv w : `|v| - `|w| <= `|v - w|.
Proof. by rewrite -[`|w|]normrN lerB_normD. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
lerB_dist
| |
ler_dist_distv w : `| `|v| - `|w| | <= `|v - w|.
Proof.
have [||_|_] // := @real_leP `|v| `|w|; last by rewrite lerB_dist.
by rewrite distrC lerB_dist.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
ler_dist_dist
| |
ler_dist_normDv w : `| `|v| - `|w| | <= `|v + w|.
Proof. by rewrite -[w]opprK normrN ler_dist_dist. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
ler_dist_normD
| |
ler_nnormlv x : x < 0 -> `|v| <= x = false.
Proof. by move=> h; rewrite lt_geF //; apply/(lt_le_trans h). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
ler_nnorml
| |
ltr_nnormlv x : x <= 0 -> `|v| < x = false.
Proof. by move=> h; rewrite le_gtF //; apply/(le_trans h). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
ltr_nnorml
| |
lter_nnormr:= (ler_nnorml, ltr_nnorml).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
lter_nnormr
| |
real_ler_normlx y : x \is real -> (`|x| <= y) = (- y <= x <= y).
Proof.
move=> xR; wlog x_ge0 : x xR / 0 <= x => [hwlog|].
move: (xR) => /(@real_leVge 0) /orP [|/hwlog->|hx] //.
by rewrite -[x]opprK normrN lerN2 andbC lerNl hwlog ?realN ?oppr_ge0.
rewrite ger0_norm //; have [le_xy|] := boolP (x <= y); last by rewrite andbF.
by rewrite (le_trans _ x_ge0) // oppr_le0 (le_trans x_ge0).
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_ler_norml
| |
real_ler_normlPx y :
x \is real -> reflect ((-x <= y) * (x <= y)) (`|x| <= y).
Proof.
by move=> Rx; rewrite real_ler_norml // lerNl; apply: (iffP andP) => [] [].
Qed.
Arguments real_ler_normlP {x y}.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_ler_normlP
| |
real_eqr_normlx y :
x \is real -> (`|x| == y) = ((x == y) || (x == -y)) && (0 <= y).
Proof.
move=> Rx.
apply/idP/idP=> [|/andP[/pred2P[]-> /ger0_norm/eqP]]; rewrite ?normrE //.
case: real_le0P => // hx; rewrite 1?eqr_oppLR => /eqP exy.
by move: hx; rewrite exy ?oppr_le0 eqxx orbT //.
by move: hx=> /ltW; rewrite exy eqxx.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_eqr_norml
| |
real_eqr_norm2x y :
x \is real -> y \is real -> (`|x| == `|y|) = (x == y) || (x == -y).
Proof.
move=> Rx Ry; rewrite real_eqr_norml // normrE andbT.
by case: real_le0P; rewrite // opprK orbC.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_eqr_norm2
| |
real_ltr_normlx y : x \is real -> (`|x| < y) = (- y < x < y).
Proof.
move=> Rx; wlog x_ge0 : x Rx / 0 <= x => [hwlog|].
move: (Rx) => /(@real_leVge 0) /orP [|/hwlog->|hx] //.
by rewrite -[x]opprK normrN ltrN2 andbC ltrNl hwlog ?realN ?oppr_ge0.
rewrite ger0_norm //; have [le_xy|] := boolP (x < y); last by rewrite andbF.
by rewrite (lt_le_trans _ x_ge0) // oppr_lt0 (le_lt_trans x_ge0).
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_ltr_norml
| |
real_lter_norml:= (real_ler_norml, real_ltr_norml).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_lter_norml
| |
real_ltr_normlPx y :
x \is real -> reflect ((-x < y) * (x < y)) (`|x| < y).
Proof.
by move=> Rx; rewrite real_ltr_norml // ltrNl; apply: (iffP (@andP _ _)); case.
Qed.
Arguments real_ltr_normlP {x y}.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_ltr_normlP
| |
real_ler_normrx y : y \is real -> (x <= `|y|) = (x <= y) || (x <= - y).
Proof.
move=> Ry.
have [xR|xNR] := boolP (x \is real); last by rewrite ?Nreal_leF ?realN.
rewrite real_leNgt ?real_ltr_norml // negb_and -?real_leNgt ?realN //.
by rewrite orbC lerNr.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_ler_normr
| |
real_ltr_normrx y : y \is real -> (x < `|y|) = (x < y) || (x < - y).
Proof.
move=> Ry.
have [xR|xNR] := boolP (x \is real); last by rewrite ?Nreal_ltF ?realN.
rewrite real_ltNge ?real_ler_norml // negb_and -?real_ltNge ?realN //.
by rewrite orbC ltrNr.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_ltr_normr
| |
real_lter_normr:= (real_ler_normr, real_ltr_normr).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_lter_normr
| |
real_ltr_normlWx y : x \is real -> `|x| < y -> x < y.
Proof. by move=> ?; case/real_ltr_normlP. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_ltr_normlW
| |
real_ltrNnormlWx y : x \is real -> `|x| < y -> - y < x.
Proof. by move=> ?; case/real_ltr_normlP => //; rewrite ltrNl. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_ltrNnormlW
| |
real_ler_normlWx y : x \is real -> `|x| <= y -> x <= y.
Proof. by move=> ?; case/real_ler_normlP. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_ler_normlW
| |
real_lerNnormlWx y : x \is real -> `|x| <= y -> - y <= x.
Proof. by move=> ?; case/real_ler_normlP => //; rewrite lerNl. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_lerNnormlW
| |
real_ler_distlx y e :
x - y \is real -> (`|x - y| <= e) = (y - e <= x <= y + e).
Proof. by move=> Rxy; rewrite real_lter_norml // !lterBDl. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_ler_distl
| |
real_ltr_distlx y e :
x - y \is real -> (`|x - y| < e) = (y - e < x < y + e).
Proof. by move=> Rxy; rewrite real_lter_norml // !lterBDl. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_ltr_distl
| |
real_lter_distl:= (real_ler_distl, real_ltr_distl).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_lter_distl
| |
real_ltr_distlDrx y e : x - y \is real -> `|x - y| < e -> x < y + e.
Proof. by move=> ?; rewrite real_ltr_distl // => /andP[]. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_ltr_distlDr
| |
real_ler_distlDrx y e : x - y \is real -> `|x - y| <= e -> x <= y + e.
Proof. by move=> ?; rewrite real_ler_distl // => /andP[]. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_ler_distlDr
| |
real_ltr_distlCDrx y e : x - y \is real -> `|x - y| < e -> y < x + e.
Proof. by rewrite realBC (distrC x) => ? /real_ltr_distlDr; apply. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_ltr_distlCDr
| |
real_ler_distlCDrx y e : x - y \is real -> `|x - y| <= e -> y <= x + e.
Proof. by rewrite realBC distrC => ? /real_ler_distlDr; apply. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_ler_distlCDr
| |
real_ltr_distlBlx y e : x - y \is real -> `|x - y| < e -> x - e < y.
Proof. by move/real_ltr_distlDr; rewrite ltrBlDr; apply. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_ltr_distlBl
| |
real_ler_distlBlx y e : x - y \is real -> `|x - y| <= e -> x - e <= y.
Proof. by move/real_ler_distlDr; rewrite lerBlDr; apply. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_ler_distlBl
| |
real_ltr_distlCBlx y e : x - y \is real -> `|x - y| < e -> y - e < x.
Proof. by rewrite realBC distrC => ? /real_ltr_distlBl; apply. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_ltr_distlCBl
| |
real_ler_distlCBlx y e : x - y \is real -> `|x - y| <= e -> y - e <= x.
Proof. by rewrite realBC distrC => ? /real_ler_distlBl; apply. Qed.
#[deprecated(since="mathcomp 2.3.0", note="use `ger0_def` instead")]
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_ler_distlCBl
| |
eqr_norm_idx : (`|x| == x) = (0 <= x). Proof. by rewrite ger0_def. Qed.
#[deprecated(since="mathcomp 2.3.0", note="use `ler0_def` instead")]
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
eqr_norm_id
| |
eqr_normNx : (`|x| == - x) = (x <= 0). Proof. by rewrite ler0_def. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
eqr_normN
| |
eqr_norm_idVN:= =^~ (ger0_def, ler0_def).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
eqr_norm_idVN
| |
real_exprn_even_ge0n x : x \is real -> ~~ odd n -> 0 <= x ^+ n.
Proof.
move=> xR even_n; have [/exprn_ge0 -> //|x_lt0] := real_ge0P xR.
rewrite -[x]opprK -mulN1r exprMn -signr_odd (negPf even_n) expr0 mul1r.
by rewrite exprn_ge0 ?oppr_ge0 ?ltW.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_exprn_even_ge0
| |
real_exprn_even_gt0n x :
x \is real -> ~~ odd n -> (0 < x ^+ n) = (n == 0)%N || (x != 0).
Proof.
move=> xR n_even; rewrite lt0r real_exprn_even_ge0 ?expf_eq0 //.
by rewrite andbT negb_and lt0n negbK.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_exprn_even_gt0
| |
real_exprn_even_le0n x :
x \is real -> ~~ odd n -> (x ^+ n <= 0) = (n != 0) && (x == 0).
Proof.
move=> xR n_even; rewrite !real_leNgt ?rpred0 ?rpredX //.
by rewrite real_exprn_even_gt0 // negb_or negbK.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_exprn_even_le0
| |
real_exprn_even_lt0n x :
x \is real -> ~~ odd n -> (x ^+ n < 0) = false.
Proof. by move=> xR n_even; rewrite le_gtF // real_exprn_even_ge0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_exprn_even_lt0
| |
real_exprn_odd_ge0n x :
x \is real -> odd n -> (0 <= x ^+ n) = (0 <= x).
Proof.
case/real_ge0P => [x_ge0|x_lt0] n_odd; first by rewrite exprn_ge0.
apply: negbTE; rewrite lt_geF //.
case: n n_odd => // n /= n_even; rewrite exprS pmulr_llt0 //.
by rewrite real_exprn_even_gt0 ?ler0_real ?ltW // (lt_eqF x_lt0) ?orbT.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_exprn_odd_ge0
| |
real_exprn_odd_gt0n x : x \is real -> odd n -> (0 < x ^+ n) = (0 < x).
Proof.
by move=> xR n_odd; rewrite !lt0r expf_eq0 real_exprn_odd_ge0; case: n n_odd.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_exprn_odd_gt0
| |
real_exprn_odd_le0n x : x \is real -> odd n -> (x ^+ n <= 0) = (x <= 0).
Proof.
by move=> xR n_odd; rewrite !real_leNgt ?rpred0 ?rpredX // real_exprn_odd_gt0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_exprn_odd_le0
| |
real_exprn_odd_lt0n x : x \is real -> odd n -> (x ^+ n < 0) = (x < 0).
Proof.
by move=> xR n_odd; rewrite !real_ltNge ?rpred0 ?rpredX // real_exprn_odd_ge0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_exprn_odd_lt0
| |
realEsqrx : (x \is real) = (0 <= x ^+ 2).
Proof. by rewrite ger0_def normrX eqf_sqr -ger0_def -ler0_def. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
realEsqr
| |
real_normKx : x \is real -> `|x| ^+ 2 = x ^+ 2.
Proof. by move=> Rx; rewrite -normrX ger0_norm -?realEsqr. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
real_normK
| |
normr_signs : `|(-1) ^+ s : R| = 1.
Proof. by rewrite normrX normrN1 expr1n. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
normr_sign
| |
normrMsigns x : `|(-1) ^+ s * x| = `|x|.
Proof. by rewrite normrM normr_sign mul1r. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
normrMsign
| |
signr_gt0(b : bool) : (0 < (-1) ^+ b :> R) = ~~ b.
Proof. by case: b; rewrite (ltr01, ltr0N1). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
signr_gt0
| |
signr_lt0(b : bool) : ((-1) ^+ b < 0 :> R) = b.
Proof. by case: b; rewrite // ?(ltrN10, ltr10). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
signr_lt0
| |
signr_ge0(b : bool) : (0 <= (-1) ^+ b :> R) = ~~ b.
Proof. by rewrite le0r signr_eq0 signr_gt0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod"
] |
algebra/num_theory/numdomain.v
|
signr_ge0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.