fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
expr_gte1:= (expr_ge1, expr_gt1).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
expr_gte1
pexpr_eq1x n : (0 < n)%N -> 0 <= x -> (x ^+ n == 1) = (x == 1). Proof. by move=> ngt0 xge0; rewrite !eq_le expr_le1 // expr_ge1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
pexpr_eq1
pexprn_eq1x n : 0 <= x -> (x ^+ n == 1) = (n == 0) || (x == 1). Proof. by case: n => [|n] xge0; rewrite ?eqxx // pexpr_eq1 ?gtn_eqF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
pexprn_eq1
eqrXn2n x y : (0 < n)%N -> 0 <= x -> 0 <= y -> (x ^+ n == y ^+ n) = (x == y). Proof. by move=> ngt0 xge0 yge0; rewrite (inj_in_eq (pexpIrn _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
eqrXn2
sqrp_eq1x : 0 <= x -> (x ^+ 2 == 1) = (x == 1). Proof. by move/pexpr_eq1->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sqrp_eq1
sqrn_eq1x : x <= 0 -> (x ^+ 2 == 1) = (x == -1). Proof. by rewrite -sqrrN -oppr_ge0 -eqr_oppLR => /sqrp_eq1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sqrn_eq1
ler_sqr: {in nneg &, {mono (fun x => x ^+ 2) : x y / x <= y}}. Proof. exact: ler_pXn2r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_sqr
ltr_sqr: {in nneg &, {mono (fun x => x ^+ 2) : x y / x < y}}. Proof. exact: ltr_pXn2r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_sqr
ler_pV2: {in [pred x in GRing.unit | 0 < x] &, {mono (@GRing.inv R) : x y /~ x <= y}}. Proof. move=> x y /andP [ux hx] /andP [uy hy] /=. by rewrite -(ler_pM2l hx) -(ler_pM2r hy) !(divrr, mulrVK) ?unitf_gt0 // mul1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_pV2
ler_nV2: {in [pred x in GRing.unit | x < 0] &, {mono (@GRing.inv R) : x y /~ x <= y}}. Proof. move=> x y /andP [ux hx] /andP [uy hy] /=. by rewrite -(ler_nM2l hx) -(ler_nM2r hy) !(divrr, mulrVK) ?unitf_lt0 // mul1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_nV2
ltr_pV2: {in [pred x in GRing.unit | 0 < x] &, {mono (@GRing.inv R) : x y /~ x < y}}. Proof. exact: leW_nmono_in ler_pV2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_pV2
ltr_nV2: {in [pred x in GRing.unit | x < 0] &, {mono (@GRing.inv R) : x y /~ x < y}}. Proof. exact: leW_nmono_in ler_nV2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_nV2
invr_gt1x : x \is a GRing.unit -> 0 < x -> (1 < x^-1) = (x < 1). Proof. by move=> Ux xgt0; rewrite -{1}[1]invr1 ltr_pV2 ?inE ?unitr1 ?ltr01 ?Ux. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
invr_gt1
invr_ge1x : x \is a GRing.unit -> 0 < x -> (1 <= x^-1) = (x <= 1). Proof. by move=> Ux xgt0; rewrite -{1}[1]invr1 ler_pV2 ?inE ?unitr1 ?ltr01 // Ux. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
invr_ge1
invr_gte1:= (invr_ge1, invr_gt1).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
invr_gte1
invr_le1x (ux : x \is a GRing.unit) (hx : 0 < x) : (x^-1 <= 1) = (1 <= x). Proof. by rewrite -invr_ge1 ?invr_gt0 ?unitrV // invrK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
invr_le1
invr_lt1x (ux : x \is a GRing.unit) (hx : 0 < x) : (x^-1 < 1) = (1 < x). Proof. by rewrite -invr_gt1 ?invr_gt0 ?unitrV // invrK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
invr_lt1
invr_lte1:= (invr_le1, invr_lt1).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
invr_lte1
invr_cp1:= (invr_gte1, invr_lte1).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
invr_cp1
natr_min(m n : nat) : (Order.min m n)%:R = Order.min m%:R n%:R :> R. Proof. by rewrite !minElt ltr_nat /Order.lt/= -fun_if. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
natr_min
natr_max(m n : nat) : (Order.max m n)%:R = Order.max m%:R n%:R :> R. Proof. by rewrite !maxElt ltr_nat /Order.lt/= -fun_if. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
natr_max
addr_min_maxx y : min x y + max x y = x + y. Proof. by rewrite /min /max; case: ifP => //; rewrite addrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
addr_min_max
addr_max_minx y : max x y + min x y = x + y. Proof. by rewrite addrC addr_min_max. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
addr_max_min
minr_to_maxx y : min x y = x + y - max x y. Proof. by rewrite -[x + y]addr_min_max addrK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
minr_to_max
maxr_to_minx y : max x y = x + y - min x y. Proof. by rewrite -[x + y]addr_max_min addrK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
maxr_to_min
real_oppr_max: {in real &, {morph -%R : x y / max x y >-> min x y : R}}. Proof. by move=> x y xr yr; rewrite !(fun_if, if_arg) ltrN2; case: real_ltgtP => // ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_oppr_max
real_oppr_min: {in real &, {morph -%R : x y / min x y >-> max x y : R}}. Proof. by move=> x y xr yr; rewrite -[RHS]opprK real_oppr_max ?realN// !opprK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_oppr_min
real_addr_minl: {in real & real & real, @left_distributive R R +%R min}. Proof. by move=> x y z xr yr zr; case: (@real_leP (_ + _)); rewrite ?realD//; rewrite lterD2; case: real_leP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_addr_minl
real_addr_minr: {in real & real & real, @right_distributive R R +%R min}. Proof. by move=> x y z xr yr zr; rewrite !(addrC x) real_addr_minl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_addr_minr
real_addr_maxl: {in real & real & real, @left_distributive R R +%R max}. Proof. by move=> x y z xr yr zr; case: (@real_leP (_ + _)); rewrite ?realD//; rewrite lterD2; case: real_leP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_addr_maxl
real_addr_maxr: {in real & real & real, @right_distributive R R +%R max}. Proof. by move=> x y z xr yr zr; rewrite !(addrC x) real_addr_maxl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_addr_maxr
minr_pMrx y z : 0 <= x -> x * min y z = min (x * y) (x * z). Proof. have [|x_gt0||->]// := comparableP x; last by rewrite !mul0r minxx. by rewrite !(fun_if, if_arg) lter_pM2l//; case: (y < z). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
minr_pMr
maxr_pMrx y z : 0 <= x -> x * max y z = max (x * y) (x * z). Proof. have [|x_gt0||->]// := comparableP x; last by rewrite !mul0r maxxx. by rewrite !(fun_if, if_arg) lter_pM2l//; case: (y < z). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
maxr_pMr
real_maxr_nMrx y z : x <= 0 -> y \is real -> z \is real -> x * max y z = min (x * y) (x * z). Proof. move=> x0 yr zr; rewrite -[_ * _]opprK -mulrN real_oppr_max// -mulNr. by rewrite minr_pMr ?oppr_ge0// !(mulNr, mulrN, opprK). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_maxr_nMr
real_minr_nMrx y z : x <= 0 -> y \is real -> z \is real -> x * min y z = max (x * y) (x * z). Proof. move=> x0 yr zr; rewrite -[_ * _]opprK -mulrN real_oppr_min// -mulNr. by rewrite maxr_pMr ?oppr_ge0// !(mulNr, mulrN, opprK). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_minr_nMr
minr_pMlx y z : 0 <= x -> min y z * x = min (y * x) (z * x). Proof. by move=> *; rewrite mulrC minr_pMr // ![_ * x]mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
minr_pMl
maxr_pMlx y z : 0 <= x -> max y z * x = max (y * x) (z * x). Proof. by move=> *; rewrite mulrC maxr_pMr // ![_ * x]mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
maxr_pMl
real_minr_nMlx y z : x <= 0 -> y \is real -> z \is real -> min y z * x = max (y * x) (z * x). Proof. by move=> *; rewrite mulrC real_minr_nMr // ![_ * x]mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_minr_nMl
real_maxr_nMlx y z : x <= 0 -> y \is real -> z \is real -> max y z * x = min (y * x) (z * x). Proof. by move=> *; rewrite mulrC real_maxr_nMr // ![_ * x]mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_maxr_nMl
real_maxrNx : x \is real -> max x (- x) = `|x|. Proof. move=> x_real; rewrite /max. by case: real_ge0P => // [/ge0_cp [] | /lt0_cp []]; case: (@real_leP (- x) x); rewrite ?realN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_maxrN
real_maxNrx : x \is real -> max (- x) x = `|x|. Proof. by move=> x_real; rewrite comparable_maxC ?real_maxrN ?real_comparable ?realN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_maxNr
real_minrNx : x \is real -> min x (- x) = - `|x|. Proof. by move=> x_real; rewrite -[LHS]opprK real_oppr_min ?opprK ?real_maxNr ?realN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_minrN
real_minNrx : x \is real -> min (- x) x = - `|x|. Proof. by move=> x_real; rewrite -[LHS]opprK real_oppr_min ?opprK ?real_maxrN ?realN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_minNr
real_arg_minP: extremum_spec <=%R P F [arg min_(i < i0 | P i) F i]. Proof. by apply: comparable_arg_minP => // i j iP jP; rewrite real_comparable ?F_real. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_arg_minP
real_arg_maxP: extremum_spec >=%R P F [arg max_(i > i0 | P i) F i]. Proof. by apply: comparable_arg_maxP => // i j iP jP; rewrite real_comparable ?F_real. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_arg_maxP
real_ler_normx : x \is real -> x <= `|x|. Proof. by case/real_ge0P=> hx //; rewrite (le_trans (ltW hx)) // oppr_ge0 ltW. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_ler_norm
normr_realv : `|v| \is real. Proof. by apply/ger0_real. Qed. Hint Resolve normr_real : core.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
normr_real
ler_norm_sumI r (G : I -> V) (P : pred I): `|\sum_(i <- r | P i) G i| <= \sum_(i <- r | P i) `|G i|. Proof. elim/big_rec2: _ => [|i y x _]; first by rewrite normr0. by rewrite -(lerD2l `|G i|); apply: le_trans; apply: ler_normD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_norm_sum
ler_normBv w : `|v - w| <= `|v| + `|w|. Proof. by rewrite (le_trans (ler_normD _ _)) ?normrN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_normB
ler_distDu v w : `|v - w| <= `|v - u| + `|u - w|. Proof. by rewrite (le_trans _ (ler_normD _ _)) // addrA addrNK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_distD
lerB_normDv w : `|v| - `|w| <= `|v + w|. Proof. by rewrite -{1}[v](addrK w) lterBDl (le_trans (ler_normD _ _))// addrC normrN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lerB_normD
lerB_distv w : `|v| - `|w| <= `|v - w|. Proof. by rewrite -[`|w|]normrN lerB_normD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lerB_dist
ler_dist_distv w : `| `|v| - `|w| | <= `|v - w|. Proof. have [||_|_] // := @real_leP `|v| `|w|; last by rewrite lerB_dist. by rewrite distrC lerB_dist. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_dist_dist
ler_dist_normDv w : `| `|v| - `|w| | <= `|v + w|. Proof. by rewrite -[w]opprK normrN ler_dist_dist. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_dist_normD
ler_nnormlv x : x < 0 -> `|v| <= x = false. Proof. by move=> h; rewrite lt_geF //; apply/(lt_le_trans h). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_nnorml
ltr_nnormlv x : x <= 0 -> `|v| < x = false. Proof. by move=> h; rewrite le_gtF //; apply/(le_trans h). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_nnorml
lter_nnormr:= (ler_nnorml, ltr_nnorml).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lter_nnormr
real_ler_normlx y : x \is real -> (`|x| <= y) = (- y <= x <= y). Proof. move=> xR; wlog x_ge0 : x xR / 0 <= x => [hwlog|]. move: (xR) => /(@real_leVge 0) /orP [|/hwlog->|hx] //. by rewrite -[x]opprK normrN lerN2 andbC lerNl hwlog ?realN ?oppr_ge0. rewrite ger0_norm //; have [le_xy|] := boolP (x <= y); last by rewrite andbF. by rewrite (le_trans _ x_ge0) // oppr_le0 (le_trans x_ge0). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_ler_norml
real_ler_normlPx y : x \is real -> reflect ((-x <= y) * (x <= y)) (`|x| <= y). Proof. by move=> Rx; rewrite real_ler_norml // lerNl; apply: (iffP andP) => [] []. Qed. Arguments real_ler_normlP {x y}.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_ler_normlP
real_eqr_normlx y : x \is real -> (`|x| == y) = ((x == y) || (x == -y)) && (0 <= y). Proof. move=> Rx. apply/idP/idP=> [|/andP[/pred2P[]-> /ger0_norm/eqP]]; rewrite ?normrE //. case: real_le0P => // hx; rewrite 1?eqr_oppLR => /eqP exy. by move: hx; rewrite exy ?oppr_le0 eqxx orbT //. by move: hx=> /ltW; rewrite exy eqxx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_eqr_norml
real_eqr_norm2x y : x \is real -> y \is real -> (`|x| == `|y|) = (x == y) || (x == -y). Proof. move=> Rx Ry; rewrite real_eqr_norml // normrE andbT. by case: real_le0P; rewrite // opprK orbC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_eqr_norm2
real_ltr_normlx y : x \is real -> (`|x| < y) = (- y < x < y). Proof. move=> Rx; wlog x_ge0 : x Rx / 0 <= x => [hwlog|]. move: (Rx) => /(@real_leVge 0) /orP [|/hwlog->|hx] //. by rewrite -[x]opprK normrN ltrN2 andbC ltrNl hwlog ?realN ?oppr_ge0. rewrite ger0_norm //; have [le_xy|] := boolP (x < y); last by rewrite andbF. by rewrite (lt_le_trans _ x_ge0) // oppr_lt0 (le_lt_trans x_ge0). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_ltr_norml
real_lter_norml:= (real_ler_norml, real_ltr_norml).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_lter_norml
real_ltr_normlPx y : x \is real -> reflect ((-x < y) * (x < y)) (`|x| < y). Proof. by move=> Rx; rewrite real_ltr_norml // ltrNl; apply: (iffP (@andP _ _)); case. Qed. Arguments real_ltr_normlP {x y}.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_ltr_normlP
real_ler_normrx y : y \is real -> (x <= `|y|) = (x <= y) || (x <= - y). Proof. move=> Ry. have [xR|xNR] := boolP (x \is real); last by rewrite ?Nreal_leF ?realN. rewrite real_leNgt ?real_ltr_norml // negb_and -?real_leNgt ?realN //. by rewrite orbC lerNr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_ler_normr
real_ltr_normrx y : y \is real -> (x < `|y|) = (x < y) || (x < - y). Proof. move=> Ry. have [xR|xNR] := boolP (x \is real); last by rewrite ?Nreal_ltF ?realN. rewrite real_ltNge ?real_ler_norml // negb_and -?real_ltNge ?realN //. by rewrite orbC ltrNr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_ltr_normr
real_lter_normr:= (real_ler_normr, real_ltr_normr).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_lter_normr
real_ltr_normlWx y : x \is real -> `|x| < y -> x < y. Proof. by move=> ?; case/real_ltr_normlP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_ltr_normlW
real_ltrNnormlWx y : x \is real -> `|x| < y -> - y < x. Proof. by move=> ?; case/real_ltr_normlP => //; rewrite ltrNl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_ltrNnormlW
real_ler_normlWx y : x \is real -> `|x| <= y -> x <= y. Proof. by move=> ?; case/real_ler_normlP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_ler_normlW
real_lerNnormlWx y : x \is real -> `|x| <= y -> - y <= x. Proof. by move=> ?; case/real_ler_normlP => //; rewrite lerNl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_lerNnormlW
real_ler_distlx y e : x - y \is real -> (`|x - y| <= e) = (y - e <= x <= y + e). Proof. by move=> Rxy; rewrite real_lter_norml // !lterBDl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_ler_distl
real_ltr_distlx y e : x - y \is real -> (`|x - y| < e) = (y - e < x < y + e). Proof. by move=> Rxy; rewrite real_lter_norml // !lterBDl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_ltr_distl
real_lter_distl:= (real_ler_distl, real_ltr_distl).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_lter_distl
real_ltr_distlDrx y e : x - y \is real -> `|x - y| < e -> x < y + e. Proof. by move=> ?; rewrite real_ltr_distl // => /andP[]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_ltr_distlDr
real_ler_distlDrx y e : x - y \is real -> `|x - y| <= e -> x <= y + e. Proof. by move=> ?; rewrite real_ler_distl // => /andP[]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_ler_distlDr
real_ltr_distlCDrx y e : x - y \is real -> `|x - y| < e -> y < x + e. Proof. by rewrite realBC (distrC x) => ? /real_ltr_distlDr; apply. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_ltr_distlCDr
real_ler_distlCDrx y e : x - y \is real -> `|x - y| <= e -> y <= x + e. Proof. by rewrite realBC distrC => ? /real_ler_distlDr; apply. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_ler_distlCDr
real_ltr_distlBlx y e : x - y \is real -> `|x - y| < e -> x - e < y. Proof. by move/real_ltr_distlDr; rewrite ltrBlDr; apply. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_ltr_distlBl
real_ler_distlBlx y e : x - y \is real -> `|x - y| <= e -> x - e <= y. Proof. by move/real_ler_distlDr; rewrite lerBlDr; apply. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_ler_distlBl
real_ltr_distlCBlx y e : x - y \is real -> `|x - y| < e -> y - e < x. Proof. by rewrite realBC distrC => ? /real_ltr_distlBl; apply. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_ltr_distlCBl
real_ler_distlCBlx y e : x - y \is real -> `|x - y| <= e -> y - e <= x. Proof. by rewrite realBC distrC => ? /real_ler_distlBl; apply. Qed. #[deprecated(since="mathcomp 2.3.0", note="use `ger0_def` instead")]
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_ler_distlCBl
eqr_norm_idx : (`|x| == x) = (0 <= x). Proof. by rewrite ger0_def. Qed. #[deprecated(since="mathcomp 2.3.0", note="use `ler0_def` instead")]
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
eqr_norm_id
eqr_normNx : (`|x| == - x) = (x <= 0). Proof. by rewrite ler0_def. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
eqr_normN
eqr_norm_idVN:= =^~ (ger0_def, ler0_def).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
eqr_norm_idVN
real_exprn_even_ge0n x : x \is real -> ~~ odd n -> 0 <= x ^+ n. Proof. move=> xR even_n; have [/exprn_ge0 -> //|x_lt0] := real_ge0P xR. rewrite -[x]opprK -mulN1r exprMn -signr_odd (negPf even_n) expr0 mul1r. by rewrite exprn_ge0 ?oppr_ge0 ?ltW. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_exprn_even_ge0
real_exprn_even_gt0n x : x \is real -> ~~ odd n -> (0 < x ^+ n) = (n == 0)%N || (x != 0). Proof. move=> xR n_even; rewrite lt0r real_exprn_even_ge0 ?expf_eq0 //. by rewrite andbT negb_and lt0n negbK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_exprn_even_gt0
real_exprn_even_le0n x : x \is real -> ~~ odd n -> (x ^+ n <= 0) = (n != 0) && (x == 0). Proof. move=> xR n_even; rewrite !real_leNgt ?rpred0 ?rpredX //. by rewrite real_exprn_even_gt0 // negb_or negbK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_exprn_even_le0
real_exprn_even_lt0n x : x \is real -> ~~ odd n -> (x ^+ n < 0) = false. Proof. by move=> xR n_even; rewrite le_gtF // real_exprn_even_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_exprn_even_lt0
real_exprn_odd_ge0n x : x \is real -> odd n -> (0 <= x ^+ n) = (0 <= x). Proof. case/real_ge0P => [x_ge0|x_lt0] n_odd; first by rewrite exprn_ge0. apply: negbTE; rewrite lt_geF //. case: n n_odd => // n /= n_even; rewrite exprS pmulr_llt0 //. by rewrite real_exprn_even_gt0 ?ler0_real ?ltW // (lt_eqF x_lt0) ?orbT. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_exprn_odd_ge0
real_exprn_odd_gt0n x : x \is real -> odd n -> (0 < x ^+ n) = (0 < x). Proof. by move=> xR n_odd; rewrite !lt0r expf_eq0 real_exprn_odd_ge0; case: n n_odd. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_exprn_odd_gt0
real_exprn_odd_le0n x : x \is real -> odd n -> (x ^+ n <= 0) = (x <= 0). Proof. by move=> xR n_odd; rewrite !real_leNgt ?rpred0 ?rpredX // real_exprn_odd_gt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_exprn_odd_le0
real_exprn_odd_lt0n x : x \is real -> odd n -> (x ^+ n < 0) = (x < 0). Proof. by move=> xR n_odd; rewrite !real_ltNge ?rpred0 ?rpredX // real_exprn_odd_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_exprn_odd_lt0
realEsqrx : (x \is real) = (0 <= x ^+ 2). Proof. by rewrite ger0_def normrX eqf_sqr -ger0_def -ler0_def. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
realEsqr
real_normKx : x \is real -> `|x| ^+ 2 = x ^+ 2. Proof. by move=> Rx; rewrite -normrX ger0_norm -?realEsqr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_normK
normr_signs : `|(-1) ^+ s : R| = 1. Proof. by rewrite normrX normrN1 expr1n. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
normr_sign
normrMsigns x : `|(-1) ^+ s * x| = `|x|. Proof. by rewrite normrM normr_sign mul1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
normrMsign
signr_gt0(b : bool) : (0 < (-1) ^+ b :> R) = ~~ b. Proof. by case: b; rewrite (ltr01, ltr0N1). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
signr_gt0
signr_lt0(b : bool) : ((-1) ^+ b < 0 :> R) = b. Proof. by case: b; rewrite // ?(ltrN10, ltr10). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
signr_lt0
signr_ge0(b : bool) : (0 <= (-1) ^+ b :> R) = ~~ b. Proof. by rewrite le0r signr_eq0 signr_gt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
signr_ge0