fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
signr_le0(b : bool) : ((-1) ^+ b <= 0 :> R) = b. Proof. by rewrite le_eqVlt signr_eq0 signr_lt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
signr_le0
signr_inj: injective (fun b : bool => (-1) ^+ b : R). Proof. exact: can_inj (fun x => 0 >= x) signr_le0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
signr_inj
sgr_defx : sg x = (-1) ^+ (x < 0)%R *+ (x != 0). Proof. by rewrite /sg; do 2!case: ifP => //. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sgr_def
neqr0_signx : x != 0 -> (-1) ^+ (x < 0)%R = sgr x. Proof. by rewrite sgr_def => ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
neqr0_sign
gtr0_sgx : 0 < x -> sg x = 1. Proof. by move=> x_gt0; rewrite /sg gt_eqF // lt_gtF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
gtr0_sg
ltr0_sgx : x < 0 -> sg x = -1. Proof. by move=> x_lt0; rewrite /sg x_lt0 lt_eqF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr0_sg
sgr0: sg 0 = 0 :> R. Proof. by rewrite /sgr eqxx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sgr0
sgr1: sg 1 = 1 :> R. Proof. by rewrite gtr0_sg // ltr01. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sgr1
sgrN1: sg (-1) = -1 :> R. Proof. by rewrite ltr0_sg // ltrN10. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sgrN1
sgrE:= (sgr0, sgr1, sgrN1).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sgrE
sqr_sgx : sg x ^+ 2 = (x != 0)%:R. Proof. by rewrite sgr_def exprMn_n sqrr_sign -mulnn mulnb andbb. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sqr_sg
mulr_sg_eq1x y : (sg x * y == 1) = (x != 0) && (sg x == y). Proof. rewrite /sg eq_sym; case: ifP => _; first by rewrite mul0r oner_eq0. by case: ifP => _; rewrite ?mul1r // mulN1r eqr_oppLR. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
mulr_sg_eq1
mulr_sg_eqN1x y : (sg x * sg y == -1) = (x != 0) && (sg x == - sg y). Proof. move/sg: y => y; rewrite /sg eq_sym eqr_oppLR. case: ifP => _; first by rewrite mul0r oppr0 oner_eq0. by case: ifP => _; rewrite ?mul1r // mulN1r eqr_oppLR. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
mulr_sg_eqN1
sgr_eq0x : (sg x == 0) = (x == 0). Proof. by rewrite -sqrf_eq0 sqr_sg pnatr_eq0; case: (x == 0). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sgr_eq0
sgr_oddn x : x != 0 -> (sg x) ^+ n = (sg x) ^+ (odd n). Proof. by rewrite /sg; do 2!case: ifP => // _; rewrite ?expr1n ?signr_odd. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sgr_odd
sgrMnx n : sg (x *+ n) = (n != 0)%:R * sg x. Proof. case: n => [|n]; first by rewrite mulr0n sgr0 mul0r. by rewrite !sgr_def mulrn_eq0 mul1r pmulrn_llt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sgrMn
sgr_natn : sg n%:R = (n != 0)%:R :> R. Proof. by rewrite sgrMn sgr1 mulr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sgr_nat
sgr_idx : sg (sg x) = sg x. Proof. by rewrite !(fun_if sg) !sgrE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sgr_id
sgr_lt0x : (sg x < 0) = (x < 0). Proof. rewrite /sg; case: eqP => [-> // | _]. by case: ifP => _; rewrite ?ltrN10 // lt_gtF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sgr_lt0
sgr_le0x : (sgr x <= 0) = (x <= 0). Proof. by rewrite !le_eqVlt sgr_eq0 sgr_lt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sgr_le0
realEsignx : x \is real -> x = (-1) ^+ (x < 0)%R * `|x|. Proof. by case/real_ge0P; rewrite (mul1r, mulN1r) ?opprK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
realEsign
realNEsignx : x \is real -> - x = (-1) ^+ (0 < x)%R * `|x|. Proof. by move=> Rx; rewrite -normrN -oppr_lt0 -realEsign ?rpredN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
realNEsign
real_normrEsign(x : R) (xR : x \is real) : `|x| = (-1) ^+ (x < 0)%R * x. Proof. by rewrite {3}[x]realEsign // signrMK. Qed. #[deprecated(since="mathcomp 2.3.0", note="use `realEsign` instead")]
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_normrEsign
real_mulr_sign_normx : x \is real -> (-1) ^+ (x < 0)%R * `|x| = x. Proof. by move/realEsign. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_mulr_sign_norm
real_mulr_Nsign_normx : x \is real -> (-1) ^+ (0 < x)%R * `|x| = - x. Proof. by move/realNEsign. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_mulr_Nsign_norm
realEsgx : x \is real -> x = sgr x * `|x|. Proof. move=> xR; have [-> | ] := eqVneq x 0; first by rewrite normr0 mulr0. by move=> /neqr0_sign <-; rewrite -realEsign. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
realEsg
normr_sgx : `|sg x| = (x != 0)%:R. Proof. by rewrite sgr_def -mulr_natr normrMsign normr_nat. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
normr_sg
sgr_normx : sg `|x| = (x != 0)%:R. Proof. by rewrite /sg le_gtF // normr_eq0 mulrb if_neg. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sgr_norm
leif_nat_rm n C : (m%:R <= n%:R ?= iff C :> R) = (m <= n ?= iff C)%N. Proof. by rewrite /leif !ler_nat eqr_nat. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
leif_nat_r
leifBLRx y z C : (x - y <= z ?= iff C) = (x <= z + y ?= iff C). Proof. by rewrite /leif !eq_le lerBlDr lerBrDr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
leifBLR
leifBRLx y z C : (x <= y - z ?= iff C) = (x + z <= y ?= iff C). Proof. by rewrite -leifBLR opprK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
leifBRL
leifDx1 y1 C1 x2 y2 C2 : x1 <= y1 ?= iff C1 -> x2 <= y2 ?= iff C2 -> x1 + x2 <= y1 + y2 ?= iff C1 && C2. Proof. rewrite -(mono_leif (C := C1) (lerD2r x2)). rewrite -(mono_leif (C := C2) (lerD2l y1)). exact: leif_trans. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
leifD
leif_sum(I : finType) (P C : pred I) (E1 E2 : I -> R) : (forall i, P i -> E1 i <= E2 i ?= iff C i) -> \sum_(i | P i) E1 i <= \sum_(i | P i) E2 i ?= iff [forall (i | P i), C i]. Proof. move=> leE12; rewrite -big_andE. elim/big_rec3: _ => [|i Ci m2 m1 /leE12]; first by rewrite /leif lexx eqxx. exact: leifD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
leif_sum
leif_0_sum(I : finType) (P C : pred I) (E : I -> R) : (forall i, P i -> 0 <= E i ?= iff C i) -> 0 <= \sum_(i | P i) E i ?= iff [forall (i | P i), C i]. Proof. by move/leif_sum; rewrite big1_eq. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
leif_0_sum
real_leif_normx : x \is real -> x <= `|x| ?= iff (0 <= x). Proof. by move=> xR; rewrite ger0_def eq_sym; apply: leif_eq; rewrite real_ler_norm. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_leif_norm
leif_pMx1 x2 y1 y2 C1 C2 : 0 <= x1 -> 0 <= x2 -> x1 <= y1 ?= iff C1 -> x2 <= y2 ?= iff C2 -> x1 * x2 <= y1 * y2 ?= iff (y1 * y2 == 0) || C1 && C2. Proof. move=> x1_ge0 x2_ge0 le_xy1 le_xy2; have [y_0 | ] := eqVneq _ 0. apply/leifP; rewrite y_0 /= mulf_eq0 !eq_le x1_ge0 x2_ge0 !andbT. move/eqP: y_0; rewrite mulf_eq0. by case/pred2P=> <-; rewrite (le_xy1, le_xy2) ?orbT. rewrite /= mulf_eq0 => /norP[y1nz y2nz]. have y1_gt0: 0 < y1 by rewrite lt_def y1nz (le_trans _ le_xy1). have [x2_0 | x2nz] := eqVneq x2 0. apply/leifP; rewrite -le_xy2 x2_0 eq_sym (negPf y2nz) andbF mulr0. by rewrite mulr_gt0 // lt_def y2nz -x2_0 le_xy2. have:= le_xy2; rewrite -[X in X -> _](mono_leif (ler_pM2l y1_gt0)). by apply: leif_trans; rewrite (mono_leif (ler_pM2r _)) // lt_def x2nz. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
leif_pM
leif_nMx1 x2 y1 y2 C1 C2 : y1 <= 0 -> y2 <= 0 -> x1 <= y1 ?= iff C1 -> x2 <= y2 ?= iff C2 -> y1 * y2 <= x1 * x2 ?= iff (x1 * x2 == 0) || C1 && C2. Proof. rewrite -!oppr_ge0 -mulrNN -[x1 * x2]mulrNN => y1le0 y2le0 le_xy1 le_xy2. by apply: leif_pM => //; rewrite (nmono_leif lerN2). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
leif_nM
leif_pprod(I : finType) (P C : pred I) (E1 E2 : I -> R) : (forall i, P i -> 0 <= E1 i) -> (forall i, P i -> E1 i <= E2 i ?= iff C i) -> let pi E := \prod_(i | P i) E i in pi E1 <= pi E2 ?= iff (pi E2 == 0) || [forall (i | P i), C i]. Proof. move=> E1_ge0 leE12 /=; rewrite -big_andE; elim/(big_load (fun x => 0 <= x)): _. elim/big_rec3: _ => [|i Ci m2 m1 Pi [m1ge0 le_m12]]. by split=> //; apply/leifP; rewrite orbT. have Ei_ge0 := E1_ge0 i Pi; split; first by rewrite mulr_ge0. congr (leif _ _ _): (leif_pM Ei_ge0 m1ge0 (leE12 i Pi) le_m12). by rewrite mulf_eq0 -!orbA; congr (_ || _); rewrite !orb_andr orbA orbb. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
leif_pprod
subr_lteifr0C x y : (y - x < 0 ?<= if C) = (y < x ?<= if C). Proof. by case: C => /=; rewrite subr_lte0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
subr_lteifr0
subr_lteif0rC x y : (0 < y - x ?<= if C) = (x < y ?<= if C). Proof. by case: C => /=; rewrite subr_gte0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
subr_lteif0r
subr_lteif0:= (subr_lteifr0, subr_lteif0r).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
subr_lteif0
lteif01C : 0 < 1 ?<= if C :> R. Proof. by case: C; rewrite /= lter01. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lteif01
lteifNlC x y : - x < y ?<= if C = (- y < x ?<= if C). Proof. by case: C; rewrite /= lterNl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lteifNl
lteifNrC x y : x < - y ?<= if C = (y < - x ?<= if C). Proof. by case: C; rewrite /= lterNr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lteifNr
lteif0NrC x : 0 < - x ?<= if C = (x < 0 ?<= if C). Proof. by case: C; rewrite /= (oppr_ge0, oppr_gt0). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lteif0Nr
lteifNr0C x : - x < 0 ?<= if C = (0 < x ?<= if C). Proof. by case: C; rewrite /= (oppr_le0, oppr_lt0). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lteifNr0
lteifN2C : {mono -%R : x y /~ x < y ?<= if C :> R}. Proof. by case: C => ? ?; rewrite /= lterN2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lteifN2
lteif_oppE:= (lteif0Nr, lteifNr0, lteifN2).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lteif_oppE
lteifD2lC x : {mono +%R x : y z / y < z ?<= if C}. Proof. by case: C => ? ?; rewrite /= lterD2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lteifD2l
lteifD2rC x : {mono +%R^~ x : y z / y < z ?<= if C}. Proof. by case: C => ? ?; rewrite /= lterD2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lteifD2r
lteifD2:= (lteifD2l, lteifD2r).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lteifD2
lteifBlDrC x y z : (x - y < z ?<= if C) = (x < z + y ?<= if C). Proof. by case: C; rewrite /= lterBDr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lteifBlDr
lteifBrDrC x y z : (x < y - z ?<= if C) = (x + z < y ?<= if C). Proof. by case: C; rewrite /= lterBDr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lteifBrDr
lteifBDr:= (lteifBlDr, lteifBrDr).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lteifBDr
lteifBlDlC x y z : (x - y < z ?<= if C) = (x < y + z ?<= if C). Proof. by case: C; rewrite /= lterBDl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lteifBlDl
lteifBrDlC x y z : (x < y - z ?<= if C) = (z + x < y ?<= if C). Proof. by case: C; rewrite /= lterBDl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lteifBrDl
lteifBDl:= (lteifBlDl, lteifBrDl).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lteifBDl
lteif_pM2lC x : 0 < x -> {mono *%R x : y z / y < z ?<= if C}. Proof. by case: C => ? ? ?; rewrite /= lter_pM2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lteif_pM2l
lteif_pM2rC x : 0 < x -> {mono *%R^~ x : y z / y < z ?<= if C}. Proof. by case: C => ? ? ?; rewrite /= lter_pM2r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lteif_pM2r
lteif_nM2lC x : x < 0 -> {mono *%R x : y z /~ y < z ?<= if C}. Proof. by case: C => ? ? ?; rewrite /= lter_nM2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lteif_nM2l
lteif_nM2rC x : x < 0 -> {mono *%R^~ x : y z /~ y < z ?<= if C}. Proof. by case: C => ? ? ?; rewrite /= lter_nM2r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lteif_nM2r
lteif_nnormrC x y : y < 0 ?<= if ~~ C -> (`|x| < y ?<= if C) = false. Proof. by case: C => ?; rewrite /= lter_nnormr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lteif_nnormr
real_lteifNEx y C : x \is Num.real -> y \is Num.real -> x < y ?<= if ~~ C = ~~ (y < x ?<= if C). Proof. by move=> ? ?; rewrite comparable_lteifNE ?real_comparable. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_lteifNE
real_lteif_normlC x y : x \is Num.real -> (`|x| < y ?<= if C) = ((- y < x ?<= if C) && (x < y ?<= if C)). Proof. by case: C => ?; rewrite /= real_lter_norml. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_lteif_norml
real_lteif_normrC x y : y \is Num.real -> (x < `|y| ?<= if C) = ((x < y ?<= if C) || (x < - y ?<= if C)). Proof. by case: C => ?; rewrite /= real_lter_normr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_lteif_normr
real_lteif_distlC x y e : x - y \is real -> (`|x - y| < e ?<= if C) = (y - e < x ?<= if C) && (x < y + e ?<= if C). Proof. by case: C => /= ?; rewrite real_lter_distl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_lteif_distl
real_leif_mean_square_scaledx y : x \is real -> y \is real -> x * y *+ 2 <= x ^+ 2 + y ^+ 2 ?= iff (x == y). Proof. move=> Rx Ry; rewrite -[_ *+ 2]add0r -leifBRL addrAC -sqrrB -subr_eq0. by rewrite -sqrf_eq0 eq_sym; apply: leif_eq; rewrite -realEsqr rpredB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_leif_mean_square_scaled
real_leif_AGM2_scaledx y : x \is real -> y \is real -> x * y *+ 4 <= (x + y) ^+ 2 ?= iff (x == y). Proof. move=> Rx Ry; rewrite sqrrD addrAC (mulrnDr _ 2) -leifBLR addrK. exact: real_leif_mean_square_scaled. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_leif_AGM2_scaled
leif_AGM_scaled(I : finType) (A : {pred I}) (E : I -> R) (n := #|A|) : {in A, forall i, 0 <= E i *+ n} -> \prod_(i in A) (E i *+ n) <= (\sum_(i in A) E i) ^+ n ?= iff [forall i in A, forall j in A, E i == E j]. Proof. have [m leAm] := ubnP #|A|; elim: m => // m IHm in A leAm E n * => Ege0. apply/leifP; case: ifPn => [/forall_inP-Econstant | Enonconstant]. have [i /= Ai | A0] := pickP [in A]; last by rewrite [n]eq_card0 ?big_pred0. have /eqfun_inP-E_i := Econstant i Ai; rewrite -(eq_bigr _ E_i) sumr_const. by rewrite exprMn_n prodrMn_const -(eq_bigr _ E_i) prodr_const. set mu := \sum_(i in A) E i; pose En i := E i *+ n. pose cmp_mu s := [pred i | s * mu < s * En i]. have{Enonconstant} has_cmp_mu e (s := (-1) ^+ e): {i | i \in A & cmp_mu s i}. apply/sig2W/exists_inP; apply: contraR Enonconstant => /exists_inPn-mu_s_A. have n_gt0 i: i \in A -> (0 < n)%N by rewrite [n](cardD1 i) => ->. have{} mu_s_A i: i \in A -> s * En i <= s * mu. move=> Ai; rewrite real_leNgt ?mu_s_A ?rpredMsign ?ger0_real ?Ege0 //. by rewrite -(pmulrn_lge0 _ (n_gt0 i Ai)) -sumrMnl sumr_ge0. have [_ /esym/eqfun_inP] := leif_sum (fun i Ai => leif_eq (mu_s_A i Ai)). rewrite sumr_const -/n -mulr_sumr sumrMnl -/mu mulrnAr eqxx => A_mu. apply/forall_inP=> i Ai; apply/eqfun_inP=> j Aj. by apply: (pmulrnI (n_gt0 i Ai)); apply: (can_inj (signrMK e)); rewrite !A_mu. have [[i Ai Ei_lt_mu] [j Aj Ej_gt_mu]] := (has_cmp_mu 1, has_cmp_mu 0)%N. rewrite {cmp_mu has_cmp_mu}/= !mul ...
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
leif_AGM_scaled
poly_disk_boundp b : {ub | forall x, `|x| <= b -> `|p.[x]| <= ub}. Proof. exists (\sum_(j < size p) `|p`_j| * b ^+ j) => x le_x_b. rewrite horner_coef (le_trans (ler_norm_sum _ _ _)) ?ler_sum // => j _. rewrite normrM normrX ler_wpM2l ?lerXn2r ?unfold_in //=. exact: le_trans (normr_ge0 x) le_x_b. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
poly_disk_bound
real_mono: {homo f : x y / x < y} -> {in real &, {mono f : x y / x <= y}}. Proof. move=> mf x y xR yR /=; have [lt_xy | le_yx] := real_leP xR yR. by rewrite ltW_homo. by rewrite lt_geF ?mf. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_mono
real_nmono: {homo f : x y /~ x < y} -> {in real &, {mono f : x y /~ x <= y}}. Proof. move=> mf x y xR yR /=; have [lt_xy|le_yx] := real_ltP xR yR. by rewrite lt_geF ?mf. by rewrite ltW_nhomo. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_nmono
real_mono_in: {in D &, {homo f : x y / x < y}} -> {in [pred x in D | x \is real] &, {mono f : x y / x <= y}}. Proof. move=> Dmf x y /andP[hx xR] /andP[hy yR] /=. have [lt_xy|le_yx] := real_leP xR yR; first by rewrite (ltW_homo_in Dmf). by rewrite lt_geF ?Dmf. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_mono_in
real_nmono_in: {in D &, {homo f : x y /~ x < y}} -> {in [pred x in D | x \is real] &, {mono f : x y /~ x <= y}}. Proof. move=> Dmf x y /andP[hx xR] /andP[hy yR] /=. have [lt_xy|le_yx] := real_ltP xR yR; last by rewrite (ltW_nhomo_in Dmf). by rewrite lt_geF ?Dmf. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_nmono_in
realn_mono: {homo f' : x y / x < y >-> (x < y)} -> {in real &, {mono f' : x y / x <= y >-> (x <= y)}}. Proof. move=> mf x y xR yR /=; have [lt_xy | le_yx] := real_leP xR yR. by rewrite ltW_homo. by rewrite lt_geF ?mf. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
realn_mono
realn_nmono: {homo f' : x y / y < x >-> (x < y)} -> {in real &, {mono f' : x y / y <= x >-> (x <= y)}}. Proof. move=> mf x y xR yR /=; have [lt_xy|le_yx] := real_ltP xR yR. by rewrite lt_geF ?mf. by rewrite ltW_nhomo. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
realn_nmono
realn_mono_in: {in D &, {homo f' : x y / x < y >-> (x < y)}} -> {in [pred x in D | x \is real] &, {mono f' : x y / x <= y >-> (x <= y)}}. Proof. move=> Dmf x y /andP[hx xR] /andP[hy yR] /=. have [lt_xy|le_yx] := real_leP xR yR; first by rewrite (ltW_homo_in Dmf). by rewrite lt_geF ?Dmf. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
realn_mono_in
realn_nmono_in: {in D &, {homo f' : x y / y < x >-> (x < y)}} -> {in [pred x in D | x \is real] &, {mono f' : x y / y <= x >-> (x <= y)}}. Proof. move=> Dmf x y /andP[hx xR] /andP[hy yR] /=. have [lt_xy|le_yx] := real_ltP xR yR; last by rewrite (ltW_nhomo_in Dmf). by rewrite lt_geF ?Dmf. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
realn_nmono_in
natrG_gt0G : #|G|%:R > 0 :> R. Proof. by rewrite ltr0n cardG_gt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
natrG_gt0
natrG_neq0G : #|G|%:R != 0 :> R. Proof. by rewrite gt_eqF // natrG_gt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
natrG_neq0
natr_indexg_gt0G B : #|G : B|%:R > 0 :> R. Proof. by rewrite ltr0n indexg_gt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
natr_indexg_gt0
natr_indexg_neq0G B : #|G : B|%:R != 0 :> R. Proof. by rewrite gt_eqF // natr_indexg_gt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
natr_indexg_neq0
num_realx : x \is real. Proof. exact: num_real. Qed. Hint Resolve num_real : core.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
num_real
lerPx y : ler_xor_gt x y (min y x) (min x y) (max y x) (max x y) `|x - y| `|y - x| (x <= y) (y < x). Proof. exact: real_leP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lerP
ltrPx y : ltr_xor_ge x y (min y x) (min x y) (max y x) (max x y) `|x - y| `|y - x| (y <= x) (x < y). Proof. exact: real_ltP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltrP
ltrgtPx y : comparer x y (min y x) (min x y) (max y x) (max x y) `|x - y| `|y - x| (y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y) . Proof. exact: real_ltgtP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltrgtP
ger0Px : ger0_xor_lt0 x (min 0 x) (min x 0) (max 0 x) (max x 0) `|x| (x < 0) (0 <= x). Proof. exact: real_ge0P. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ger0P
ler0Px : ler0_xor_gt0 x (min 0 x) (min x 0) (max 0 x) (max x 0) `|x| (0 < x) (x <= 0). Proof. exact: real_le0P. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler0P
ltrgt0Px : comparer0 x (min 0 x) (min x 0) (max 0 x) (max x 0) `|x| (0 == x) (x == 0) (x <= 0) (0 <= x) (x < 0) (x > 0). Proof. exact: real_ltgt0P. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltrgt0P
mulr_lt0x y : (x * y < 0) = [&& x != 0, y != 0 & (x < 0) (+) (y < 0)]. Proof. have [x_gt0|x_lt0|->] /= := ltrgt0P x; last by rewrite mul0r. by rewrite pmulr_rlt0 //; case: ltrgt0P. by rewrite nmulr_rlt0 //; case: ltrgt0P. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
mulr_lt0
neq0_mulr_lt0x y : x != 0 -> y != 0 -> (x * y < 0) = (x < 0) (+) (y < 0). Proof. by move=> x_neq0 y_neq0; rewrite mulr_lt0 x_neq0 y_neq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
neq0_mulr_lt0
mulr_sign_lt0(b : bool) x : ((-1) ^+ b * x < 0) = (x != 0) && (b (+) (x < 0)%R). Proof. by rewrite mulr_lt0 signr_lt0 signr_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
mulr_sign_lt0
mulr_sign_normx : (-1) ^+ (x < 0)%R * `|x| = x. Proof. by rewrite -realEsign. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
mulr_sign_norm
mulr_Nsign_normx : (-1) ^+ (0 < x)%R * `|x| = - x. Proof. by rewrite real_mulr_Nsign_norm. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
mulr_Nsign_norm
numEsignx : x = (-1) ^+ (x < 0)%R * `|x|. Proof. by rewrite -realEsign. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
numEsign
numNEsignx : -x = (-1) ^+ (0 < x)%R * `|x|. Proof. by rewrite -realNEsign. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
numNEsign
normrEsignx : `|x| = (-1) ^+ (x < 0)%R * x. Proof. by rewrite -real_normrEsign. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
normrEsign
sgr_cp0x : ((sg x == 1) = (0 < x)) * ((sg x == -1) = (x < 0)) * ((sg x == 0) = (x == 0)). Proof. rewrite -[1]/((-1) ^+ false) -signrN lt0r leNgt sgr_def. case: (x =P 0) => [-> | _]; first by rewrite !(eq_sym 0) !signr_eq0 ltxx eqxx. by rewrite !(inj_eq signr_inj) eqb_id eqbF_neg signr_eq0 //. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sgr_cp0
sgr_valx : R -> bool -> bool -> bool -> bool -> bool -> bool -> bool -> bool -> bool -> bool -> bool -> bool -> R -> Set := | SgrNull of x = 0 : sgr_val x 0 true true true true false false true false false true false false 0 | SgrPos of x > 0 : sgr_val x x false false true false false true false false true false false true 1 | SgrNeg of x < 0 : sgr_val x (- x) false true false false true false false true false false true false (-1).
Variant
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sgr_val
sgrPx : sgr_val x `|x| (0 == x) (x <= 0) (0 <= x) (x == 0) (x < 0) (0 < x) (0 == sg x) (-1 == sg x) (1 == sg x) (sg x == 0) (sg x == -1) (sg x == 1) (sg x). Proof. by rewrite ![_ == sg _]eq_sym !sgr_cp0 /sg; case: ltrgt0P; constructor. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sgrP