fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
nmulr_lge0x y : x < 0 -> (0 <= y * x) = (y <= 0). Proof. by move=> x_lt0; rewrite mulrC nmulr_rge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
nmulr_lge0
nmulr_llt0x y : x < 0 -> (y * x < 0) = (0 < y). Proof. by move=> x_lt0; rewrite mulrC nmulr_rlt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
nmulr_llt0
nmulr_lle0x y : x < 0 -> (y * x <= 0) = (0 <= y). Proof. by move=> x_lt0; rewrite mulrC nmulr_rle0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
nmulr_lle0
mulr_ge0x y : 0 <= x -> 0 <= y -> 0 <= x * y. Proof. by move=> x_ge0 y_ge0; rewrite -(mulr0 x) ler_wpM2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
mulr_ge0
mulr_le0x y : x <= 0 -> y <= 0 -> 0 <= x * y. Proof. by move=> x_le0 y_le0; rewrite -(mulr0 x) ler_wnM2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
mulr_le0
mulr_ge0_le0x y : 0 <= x -> y <= 0 -> x * y <= 0. Proof. by move=> x_le0 y_le0; rewrite -(mulr0 x) ler_wpM2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
mulr_ge0_le0
mulr_le0_ge0x y : x <= 0 -> 0 <= y -> x * y <= 0. Proof. by move=> x_le0 y_le0; rewrite -(mulr0 x) ler_wnM2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
mulr_le0_ge0
mulr_gt0x y : 0 < x -> 0 < y -> 0 < x * y. Proof. by move=> x_gt0 y_gt0; rewrite pmulr_rgt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
mulr_gt0
mulr_ge0_gt0x y : 0 <= x -> 0 <= y -> (0 < x * y) = (0 < x) && (0 < y). Proof. rewrite le_eqVlt => /predU1P[<-|x0]; first by rewrite mul0r ltxx. rewrite le_eqVlt => /predU1P[<-|y0]; first by rewrite mulr0 ltxx andbC. by apply/idP/andP=> [|_]; rewrite pmulr_rgt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
mulr_ge0_gt0
prodr_ge0I r (P : pred I) (E : I -> R) : (forall i, P i -> 0 <= E i) -> 0 <= \prod_(i <- r | P i) E i. Proof. by move=> Ege0; rewrite -nnegrE rpred_prod. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
prodr_ge0
prodr_gt0I r (P : pred I) (E : I -> R) : (forall i, P i -> 0 < E i) -> 0 < \prod_(i <- r | P i) E i. Proof. by move=> Ege0; rewrite -posrE rpred_prod. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
prodr_gt0
ler_prodI r (P : pred I) (E1 E2 : I -> R) : (forall i, P i -> 0 <= E1 i <= E2 i) -> \prod_(i <- r | P i) E1 i <= \prod_(i <- r | P i) E2 i. Proof. move=> leE12; elim/(big_load (fun x => 0 <= x)): _. elim/big_rec2: _ => // i x2 x1 /leE12/andP[le0Ei leEi12] [x1ge0 le_x12]. by rewrite mulr_ge0 // ler_pM. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_prod
ltr_prodI r (P : pred I) (E1 E2 : I -> R) : has P r -> (forall i, P i -> 0 <= E1 i < E2 i) -> \prod_(i <- r | P i) E1 i < \prod_(i <- r | P i) E2 i. Proof. elim: r => //= i r IHr; rewrite !big_cons; case: ifP => {IHr}// Pi _ ltE12. have /andP[le0E1i ltE12i] := ltE12 i Pi; set E2r := \prod_(j <- r | P j) E2 j. apply: le_lt_trans (_ : E1 i * E2r < E2 i * E2r). by rewrite ler_wpM2l ?ler_prod // => j /ltE12/andP[-> /ltW]. by rewrite ltr_pM2r ?prodr_gt0 // => j /ltE12/andP[le0E1j /le_lt_trans->]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_prod
ltr_prod_nat(E1 E2 : nat -> R) (n m : nat) : (m < n)%N -> (forall i, (m <= i < n)%N -> 0 <= E1 i < E2 i) -> \prod_(m <= i < n) E1 i < \prod_(m <= i < n) E2 i. Proof. move=> lt_mn ltE12; rewrite !big_nat ltr_prod {ltE12}//. by apply/hasP; exists m; rewrite ?mem_index_iota leqnn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_prod_nat
realMrx y : x != 0 -> x \is real -> (x * y \is real) = (y \is real). Proof. move=> x_neq0 xR; case: real_ltgtP x_neq0 => // hx _; rewrite !realE. by rewrite nmulr_rge0 // nmulr_rle0 // orbC. by rewrite pmulr_rge0 // pmulr_rle0 // orbC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
realMr
realrMx y : y != 0 -> y \is real -> (x * y \is real) = (x \is real). Proof. by move=> y_neq0 yR; rewrite mulrC realMr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
realrM
realM: {in real &, forall x y, x * y \is real}. Proof. exact: rpredM. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
realM
realrMnx n : (n != 0)%N -> (x *+ n \is real) = (x \is real). Proof. by move=> n_neq0; rewrite -mulr_natl realMr ?realn ?pnatr_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
realrMn
ger_pMlx y : 0 < y -> (x * y <= y) = (x <= 1). Proof. by move=> hy; rewrite -{2}[y]mul1r ler_pM2r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ger_pMl
gtr_pMlx y : 0 < y -> (x * y < y) = (x < 1). Proof. by move=> hy; rewrite -{2}[y]mul1r ltr_pM2r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
gtr_pMl
ger_pMrx y : 0 < y -> (y * x <= y) = (x <= 1). Proof. by move=> hy; rewrite -{2}[y]mulr1 ler_pM2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ger_pMr
gtr_pMrx y : 0 < y -> (y * x < y) = (x < 1). Proof. by move=> hy; rewrite -{2}[y]mulr1 ltr_pM2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
gtr_pMr
ler_pMlx y : 0 < y -> (y <= x * y) = (1 <= x). Proof. by move=> hy; rewrite -{1}[y]mul1r ler_pM2r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_pMl
ltr_pMlx y : 0 < y -> (y < x * y) = (1 < x). Proof. by move=> hy; rewrite -{1}[y]mul1r ltr_pM2r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_pMl
ler_pMrx y : 0 < y -> (y <= y * x) = (1 <= x). Proof. by move=> hy; rewrite -{1}[y]mulr1 ler_pM2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_pMr
ltr_pMrx y : 0 < y -> (y < y * x) = (1 < x). Proof. by move=> hy; rewrite -{1}[y]mulr1 ltr_pM2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_pMr
ger_nMlx y : y < 0 -> (x * y <= y) = (1 <= x). Proof. by move=> hy; rewrite -{2}[y]mul1r ler_nM2r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ger_nMl
gtr_nMlx y : y < 0 -> (x * y < y) = (1 < x). Proof. by move=> hy; rewrite -{2}[y]mul1r ltr_nM2r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
gtr_nMl
ger_nMrx y : y < 0 -> (y * x <= y) = (1 <= x). Proof. by move=> hy; rewrite -{2}[y]mulr1 ler_nM2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ger_nMr
gtr_nMrx y : y < 0 -> (y * x < y) = (1 < x). Proof. by move=> hy; rewrite -{2}[y]mulr1 ltr_nM2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
gtr_nMr
ler_nMlx y : y < 0 -> (y <= x * y) = (x <= 1). Proof. by move=> hy; rewrite -{1}[y]mul1r ler_nM2r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_nMl
ltr_nMlx y : y < 0 -> (y < x * y) = (x < 1). Proof. by move=> hy; rewrite -{1}[y]mul1r ltr_nM2r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_nMl
ler_nMrx y : y < 0 -> (y <= y * x) = (x <= 1). Proof. by move=> hy; rewrite -{1}[y]mulr1 ler_nM2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_nMr
ltr_nMrx y : y < 0 -> (y < y * x) = (x < 1). Proof. by move=> hy; rewrite -{1}[y]mulr1 ltr_nM2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_nMr
ler_peMlx y : 0 <= y -> 1 <= x -> y <= x * y. Proof. by move=> hy hx; rewrite -{1}[y]mul1r ler_wpM2r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_peMl
ler_neMlx y : y <= 0 -> 1 <= x -> x * y <= y. Proof. by move=> hy hx; rewrite -{2}[y]mul1r ler_wnM2r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_neMl
ler_peMrx y : 0 <= y -> 1 <= x -> y <= y * x. Proof. by move=> hy hx; rewrite -{1}[y]mulr1 ler_wpM2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_peMr
ler_neMrx y : y <= 0 -> 1 <= x -> y * x <= y. Proof. by move=> hy hx; rewrite -{2}[y]mulr1 ler_wnM2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_neMr
ler_piMlx y : 0 <= y -> x <= 1 -> x * y <= y. Proof. by move=> hy hx; rewrite -{2}[y]mul1r ler_wpM2r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_piMl
ler_niMlx y : y <= 0 -> x <= 1 -> y <= x * y. Proof. by move=> hy hx; rewrite -{1}[y]mul1r ler_wnM2r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_niMl
ler_piMrx y : 0 <= y -> x <= 1 -> y * x <= y. Proof. by move=> hy hx; rewrite -{2}[y]mulr1 ler_wpM2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_piMr
ler_niMrx y : y <= 0 -> x <= 1 -> y <= y * x. Proof. by move=> hx hy; rewrite -{1}[y]mulr1 ler_wnM2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_niMr
mulr_ile1x y : 0 <= x -> 0 <= y -> x <= 1 -> y <= 1 -> x * y <= 1. Proof. by move=> *; rewrite (@le_trans _ _ y) ?ler_piMl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
mulr_ile1
prodr_ile1{I : Type} (s : seq I) (P : pred I) (F : I -> R) : (forall i, P i -> 0 <= F i <= 1) -> \prod_(j <- s | P j) F j <= 1. Proof. elim: s => [_ | y s ih xs01]; rewrite ?big_nil// big_cons. case: ifPn => Py; last by rewrite ih. have /andP[y0 y1] : 0 <= F y <= 1 by rewrite xs01// mem_head. rewrite mulr_ile1 ?andbT//; last first. by rewrite ih// => e xs; rewrite xs01// in_cons xs orbT. by rewrite prodr_ge0// => x /xs01 /andP[]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
prodr_ile1
mulr_ilt1x y : 0 <= x -> 0 <= y -> x < 1 -> y < 1 -> x * y < 1. Proof. by move=> *; rewrite (@le_lt_trans _ _ y) ?ler_piMl // ltW. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
mulr_ilt1
mulr_ilte1:= (mulr_ile1, mulr_ilt1).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
mulr_ilte1
mulr_ege1x y : 1 <= x -> 1 <= y -> 1 <= x * y. Proof. by move=> le1x le1y; rewrite (@le_trans _ _ y) ?ler_peMl // (le_trans ler01). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
mulr_ege1
mulr_egt1x y : 1 < x -> 1 < y -> 1 < x * y. Proof. by move=> le1x lt1y; rewrite (@lt_trans _ _ y) // ltr_pMl // (lt_trans ltr01). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
mulr_egt1
mulr_egte1:= (mulr_ege1, mulr_egt1).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
mulr_egte1
mulr_cp1:= (mulr_ilte1, mulr_egte1).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
mulr_cp1
invr_gt0x : (0 < x^-1) = (0 < x). Proof. have [ux | nux] := boolP (x \is a GRing.unit); last by rewrite invr_out. by apply/idP/idP=> /ltr_pM2r <-; rewrite mul0r (mulrV, mulVr) ?ltr01. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
invr_gt0
invr_ge0x : (0 <= x^-1) = (0 <= x). Proof. by rewrite !le0r invr_gt0 invr_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
invr_ge0
invr_lt0x : (x^-1 < 0) = (x < 0). Proof. by rewrite -oppr_cp0 -invrN invr_gt0 oppr_cp0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
invr_lt0
invr_le0x : (x^-1 <= 0) = (x <= 0). Proof. by rewrite -oppr_cp0 -invrN invr_ge0 oppr_cp0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
invr_le0
invr_gte0:= (invr_ge0, invr_gt0).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
invr_gte0
invr_lte0:= (invr_le0, invr_lt0).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
invr_lte0
divr_ge0x y : 0 <= x -> 0 <= y -> 0 <= x / y. Proof. by move=> x_ge0 y_ge0; rewrite mulr_ge0 ?invr_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
divr_ge0
divr_gt0x y : 0 < x -> 0 < y -> 0 < x / y. Proof. by move=> x_gt0 y_gt0; rewrite pmulr_rgt0 ?invr_gt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
divr_gt0
realV: {mono (@GRing.inv R) : x / x \is real}. Proof. exact: rpredV. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
realV
exprn_ge0n x : 0 <= x -> 0 <= x ^+ n. Proof. by move=> xge0; rewrite -nnegrE rpredX. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
exprn_ge0
realXn : {in real, forall x, x ^+ n \is real}. Proof. exact: rpredX. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
realX
exprn_gt0n x : 0 < x -> 0 < x ^+ n. Proof. by rewrite !lt0r expf_eq0 => /andP[/negPf-> /exprn_ge0->]; rewrite andbF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
exprn_gt0
exprn_gte0:= (exprn_ge0, exprn_gt0).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
exprn_gte0
exprn_ile1n x : 0 <= x -> x <= 1 -> x ^+ n <= 1. Proof. move=> xge0 xle1; elim: n=> [|*]; rewrite ?expr0 // exprS. by rewrite mulr_ile1 ?exprn_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
exprn_ile1
exprn_ilt1n x : 0 <= x -> x < 1 -> x ^+ n < 1 = (n != 0). Proof. move=> xge0 xlt1. case: n; [by rewrite eqxx ltxx | elim=> [|n ihn]; first by rewrite expr1]. by rewrite exprS mulr_ilt1 // exprn_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
exprn_ilt1
exprn_ilte1:= (exprn_ile1, exprn_ilt1).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
exprn_ilte1
exprn_ege1n x : 1 <= x -> 1 <= x ^+ n. Proof. by move=> x_ge1; elim: n=> [|n ihn]; rewrite ?expr0 // exprS mulr_ege1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
exprn_ege1
exprn_egt1n x : 1 < x -> 1 < x ^+ n = (n != 0). Proof. move=> xgt1; case: n; first by rewrite eqxx ltxx. by elim=> [|n ihn]; rewrite ?expr1// exprS mulr_egt1 // exprn_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
exprn_egt1
exprn_egte1:= (exprn_ege1, exprn_egt1).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
exprn_egte1
exprn_cp1:= (exprn_ilte1, exprn_egte1).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
exprn_cp1
ler_iXnrx n : (0 < n)%N -> 0 <= x -> x <= 1 -> x ^+ n <= x. Proof. by case: n => n // *; rewrite exprS ler_piMr // exprn_ile1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_iXnr
ltr_iXnrx n : 0 < x -> x < 1 -> (x ^+ n < x) = (1 < n)%N. Proof. case: n=> [|[|n]] //; first by rewrite expr0 => _ /lt_gtF ->. by move=> x0 x1; rewrite exprS gtr_pMr // ?exprn_ilt1 // ltW. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_iXnr
lter_iXnr:= (ler_iXnr, ltr_iXnr).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lter_iXnr
ler_eXnrx n : (0 < n)%N -> 1 <= x -> x <= x ^+ n. Proof. case: n => // n _ x_ge1. by rewrite exprS ler_peMr ?(le_trans _ x_ge1) // exprn_ege1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_eXnr
ltr_eXnrx n : 1 < x -> (x < x ^+ n) = (1 < n)%N. Proof. move=> x_ge1; case: n=> [|[|n]] //; first by rewrite expr0 lt_gtF. by rewrite exprS ltr_pMr ?(lt_trans _ x_ge1) ?exprn_egt1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_eXnr
lter_eXnr:= (ler_eXnr, ltr_eXnr).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lter_eXnr
lter_Xnr:= (lter_iXnr, lter_eXnr).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lter_Xnr
ler_wiXn2lx : 0 <= x -> x <= 1 -> {homo GRing.exp x : m n / (n <= m)%N >-> m <= n}. Proof. move=> xge0 xle1 m n /= hmn. by rewrite -(subnK hmn) exprD ler_piMl ?(exprn_ge0, exprn_ile1). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_wiXn2l
ler_weXn2lx : 1 <= x -> {homo GRing.exp x : m n / (m <= n)%N >-> m <= n}. Proof. move=> xge1 m n /= hmn; rewrite -(subnK hmn) exprD. by rewrite ler_peMl ?(exprn_ge0, exprn_ege1) // (le_trans _ xge1) ?ler01. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_weXn2l
ieexprn_weq1x n : 0 <= x -> (x ^+ n == 1) = ((n == 0) || (x == 1)). Proof. move=> xle0; case: n => [|n]; first by rewrite expr0 eqxx. case: (@real_ltgtP x 1); do ?by rewrite ?ger0_real. + by move=> x_lt1; rewrite 1?lt_eqF // exprn_ilt1. + by move=> x_lt1; rewrite 1?gt_eqF // exprn_egt1. by move->; rewrite expr1n eqxx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ieexprn_weq1
ieexprInx : 0 < x -> x != 1 -> injective (GRing.exp x). Proof. move=> x_gt0 x_neq1 m n; without loss /subnK <-: m n / (n <= m)%N. by move=> IH eq_xmn; case/orP: (leq_total m n) => /IH->. case: {m}(m - n)%N => // m /eqP/idPn[]; rewrite -[x ^+ n]mul1r exprD. by rewrite (inj_eq (mulIf _)) ?ieexprn_weq1 ?ltW // expf_neq0 ?gt_eqF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ieexprIn
ler_iXn2lx : 0 < x -> x < 1 -> {mono GRing.exp x : m n / (n <= m)%N >-> m <= n}. Proof. move=> xgt0 xlt1; apply: (le_nmono (inj_nhomo_lt _ _)); last first. by apply/ler_wiXn2l; exact/ltW. by apply: ieexprIn; rewrite ?lt_eqF ?ltr_cpable. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_iXn2l
ltr_iXn2lx : 0 < x -> x < 1 -> {mono GRing.exp x : m n / (n < m)%N >-> m < n}. Proof. by move=> xgt0 xlt1; apply: (leW_nmono (ler_iXn2l _ _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_iXn2l
lter_iXn2l:= (ler_iXn2l, ltr_iXn2l).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lter_iXn2l
ler_eXn2lx : 1 < x -> {mono GRing.exp x : m n / (m <= n)%N >-> m <= n}. Proof. move=> xgt1; apply: (le_mono (inj_homo_lt _ _)); last first. by apply: ler_weXn2l; rewrite ltW. by apply: ieexprIn; rewrite ?gt_eqF ?gtr_cpable //; apply: lt_trans xgt1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_eXn2l
ltr_eXn2lx : 1 < x -> {mono (GRing.exp x) : m n / (m < n)%N >-> m < n}. Proof. by move=> xgt1; apply: (leW_mono (ler_eXn2l _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_eXn2l
lter_eXn2l:= (ler_eXn2l, ltr_eXn2l).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lter_eXn2l
ltrXn2rn x y : 0 <= x -> x < y -> x ^+ n < y ^+ n = (n != 0). Proof. move=> xge0 xlty; case: n; first by rewrite ltxx. elim=> [|n IHn]; rewrite ?[_ ^+ _.+2]exprS //. rewrite (@le_lt_trans _ _ (x * y ^+ n.+1)) ?ler_wpM2l ?ltr_pM2r ?IHn //. by rewrite ltW. by rewrite exprn_gt0 // (le_lt_trans xge0). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltrXn2r
lerXn2rn : {in nneg & , {homo (@GRing.exp R)^~ n : x y / x <= y}}. Proof. move=> x y /= x0 y0 xy; elim: n => [|n IHn]; rewrite !(expr0, exprS) //. by rewrite (@le_trans _ _ (x * y ^+ n)) ?ler_wpM2l ?ler_wpM2r ?exprn_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lerXn2r
lterXn2r:= (lerXn2r, ltrXn2r).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lterXn2r
ltr_wpXn2rn : (0 < n)%N -> {in nneg & , {homo (@GRing.exp R)^~ n : x y / x < y}}. Proof. by move=> ngt0 x y /= x0 y0 hxy; rewrite ltrXn2r // -lt0n. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_wpXn2r
ler_pXn2rn : (0 < n)%N -> {in nneg & , {mono (@GRing.exp R)^~ n : x y / x <= y}}. Proof. case: n => // n _ x y; rewrite !qualifE /= => x_ge0 y_ge0. have [-> | nzx] := eqVneq x 0; first by rewrite exprS mul0r exprn_ge0. rewrite -subr_ge0 subrXX pmulr_lge0 ?subr_ge0 //= big_ord_recr /=. rewrite subnn expr0 mul1r /= ltr_pwDr // ?exprn_gt0 ?lt0r ?nzx //. by rewrite sumr_ge0 // => i _; rewrite mulr_ge0 ?exprn_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_pXn2r
ltr_pXn2rn : (0 < n)%N -> {in nneg & , {mono (@GRing.exp R)^~ n : x y / x < y}}. Proof. by move=> n_gt0 x y x_ge0 y_ge0; rewrite !lt_neqAle !eq_le !ler_pXn2r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_pXn2r
lter_pXn2r:= (ler_pXn2r, ltr_pXn2r).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lter_pXn2r
pexpIrnn : (0 < n)%N -> {in nneg &, injective ((@GRing.exp R)^~ n)}. Proof. by move=> n_gt0; apply: inc_inj_in (ler_pXn2r _). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
pexpIrn
expr_le1n x : (0 < n)%N -> 0 <= x -> (x ^+ n <= 1) = (x <= 1). Proof. by move=> ngt0 xge0; rewrite -{1}[1](expr1n _ n) ler_pXn2r // [_ \in _]ler01. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
expr_le1
expr_lt1n x : (0 < n)%N -> 0 <= x -> (x ^+ n < 1) = (x < 1). Proof. by move=> ngt0 xge0; rewrite -{1}[1](expr1n _ n) ltr_pXn2r // [_ \in _]ler01. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
expr_lt1
expr_lte1:= (expr_le1, expr_lt1).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
expr_lte1
expr_ge1n x : (0 < n)%N -> 0 <= x -> (1 <= x ^+ n) = (1 <= x). Proof. by move=> ngt0 xge0; rewrite -{1}[1](expr1n _ n) ler_pXn2r // [_ \in _]ler01. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
expr_ge1
expr_gt1n x : (0 < n)%N -> 0 <= x -> (1 < x ^+ n) = (1 < x). Proof. by move=> ngt0 xge0; rewrite -{1}[1](expr1n _ n) ltr_pXn2r // [_ \in _]ler01. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
expr_gt1