fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
oppr_lte0:= (oppr_le0, oppr_lt0).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
oppr_lte0
oppr_cp0:= (oppr_gte0, oppr_lte0).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
oppr_cp0
lterNE:= (oppr_cp0, lterN2).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lterNE
ge0_cpx : 0 <= x -> (- x <= 0) * (- x <= x). Proof. by move=> hx; rewrite oppr_cp0 hx (@le_trans _ _ 0) ?oppr_cp0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ge0_cp
gt0_cpx : 0 < x -> (0 <= x) * (- x <= 0) * (- x <= x) * (- x < 0) * (- x < x). Proof. move=> hx; move: (ltW hx) => hx'; rewrite !ge0_cp hx' //. by rewrite oppr_cp0 hx // (@lt_trans _ _ 0) ?oppr_cp0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
gt0_cp
le0_cpx : x <= 0 -> (0 <= - x) * (x <= - x). Proof. by move=> hx; rewrite oppr_cp0 hx (@le_trans _ _ 0) ?oppr_cp0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
le0_cp
lt0_cpx : x < 0 -> (x <= 0) * (0 <= - x) * (x <= - x) * (0 < - x) * (x < - x). Proof. move=> hx; move: (ltW hx) => hx'; rewrite !le0_cp // hx'. by rewrite oppr_cp0 hx // (@lt_trans _ _ 0) ?oppr_cp0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lt0_cp
ger0_realx : 0 <= x -> x \is real. Proof. by rewrite realE => ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ger0_real
ler0_realx : x <= 0 -> x \is real. Proof. by rewrite realE orbC => ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler0_real
gtr0_realx : 0 < x -> x \is real. Proof. by move=> /ltW/ger0_real. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
gtr0_real
ltr0_realx : x < 0 -> x \is real. Proof. by move=> /ltW/ler0_real. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr0_real
real0: 0 \is @real R. Proof. exact: rpred0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real0
real1: 1 \is @real R. Proof. exact: rpred1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real1
realnn : n%:R \is @real R. Proof. exact: rpred_nat. Qed. #[local] Hint Resolve real0 real1 : core.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
realn
ler_leVgex y : x <= 0 -> y <= 0 -> (x <= y) || (y <= x). Proof. by rewrite -!oppr_ge0 => /(ger_leVge _) /[apply]; rewrite !lerN2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_leVge
real_leVgex y : x \is real -> y \is real -> (x <= y) || (y <= x). Proof. by rewrite -comparabler0 -comparable0r => /comparabler_trans P/P. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_leVge
real_comparablex y : x \is real -> y \is real -> x >=< y. Proof. exact: real_leVge. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_comparable
realB: {in real &, forall x y, x - y \is real}. Proof. exact: rpredB. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
realB
realN: {mono (@GRing.opp R) : x / x \is real}. Proof. exact: rpredN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
realN
realBCx y : (x - y \is real) = (y - x \is real). Proof. exact: rpredBC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
realBC
realD: {in real &, forall x y, x + y \is real}. Proof. exact: rpredD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
realD
ler_xor_gt(x y : R) : R -> R -> R -> R -> R -> R -> bool -> bool -> Set := | LerNotGt of x <= y : ler_xor_gt x y x x y y (y - x) (y - x) true false | GtrNotLe of y < x : ler_xor_gt x y y y x x (x - y) (x - y) false true.
Variant
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_xor_gt
ltr_xor_ge(x y : R) : R -> R -> R -> R -> R -> R -> bool -> bool -> Set := | LtrNotGe of x < y : ltr_xor_ge x y x x y y (y - x) (y - x) false true | GerNotLt of y <= x : ltr_xor_ge x y y y x x (x - y) (x - y) true false.
Variant
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_xor_ge
comparerx y : R -> R -> R -> R -> R -> R -> bool -> bool -> bool -> bool -> bool -> bool -> Set := | ComparerLt of x < y : comparer x y x x y y (y - x) (y - x) false false false true false true | ComparerGt of x > y : comparer x y y y x x (x - y) (x - y) false false true false true false | ComparerEq of x = y : comparer x y x x x x 0 0 true true true true false false.
Variant
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
comparer
real_lePx y : x \is real -> y \is real -> ler_xor_gt x y (min y x) (min x y) (max y x) (max x y) `|x - y| `|y - x| (x <= y) (y < x). Proof. move=> xR yR; case: (comparable_leP (real_leVge xR yR)) => xy. - by rewrite [`|x - y|]distrC !ger0_norm ?subr_cp0 //; constructor. - by rewrite [`|y - x|]distrC !gtr0_norm ?subr_cp0 //; constructor. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_leP
real_ltPx y : x \is real -> y \is real -> ltr_xor_ge x y (min y x) (min x y) (max y x) (max x y) `|x - y| `|y - x| (y <= x) (x < y). Proof. by move=> xR yR; case: real_leP=> //; constructor. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_ltP
real_ltNge: {in real &, forall x y, (x < y) = ~~ (y <= x)}. Proof. by move=> x y xR yR /=; case: real_leP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_ltNge
real_leNgt: {in real &, forall x y, (x <= y) = ~~ (y < x)}. Proof. by move=> x y xR yR /=; case: real_leP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_leNgt
real_ltgtPx y : x \is real -> y \is real -> comparer x y (min y x) (min x y) (max y x) (max x y) `|x - y| `|y - x| (y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y). Proof. move=> xR yR; case: (comparable_ltgtP (real_leVge yR xR)) => [?|?|->]. - by rewrite [`|y - x|]distrC !gtr0_norm ?subr_gt0//; constructor. - by rewrite [`|x - y|]distrC !gtr0_norm ?subr_gt0//; constructor. - by rewrite subrr normr0; constructor. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_ltgtP
ger0_xor_lt0(x : R) : R -> R -> R -> R -> R -> bool -> bool -> Set := | Ger0NotLt0 of 0 <= x : ger0_xor_lt0 x 0 0 x x x false true | Ltr0NotGe0 of x < 0 : ger0_xor_lt0 x x x 0 0 (- x) true false.
Variant
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ger0_xor_lt0
ler0_xor_gt0(x : R) : R -> R -> R -> R -> R -> bool -> bool -> Set := | Ler0NotLe0 of x <= 0 : ler0_xor_gt0 x x x 0 0 (- x) false true | Gtr0NotGt0 of 0 < x : ler0_xor_gt0 x 0 0 x x x true false.
Variant
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler0_xor_gt0
comparer0x : R -> R -> R -> R -> R -> bool -> bool -> bool -> bool -> bool -> bool -> Set := | ComparerGt0 of 0 < x : comparer0 x 0 0 x x x false false false true false true | ComparerLt0 of x < 0 : comparer0 x x x 0 0 (- x) false false true false true false | ComparerEq0 of x = 0 : comparer0 x 0 0 0 0 0 true true true true false false.
Variant
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
comparer0
real_ge0Px : x \is real -> ger0_xor_lt0 x (min 0 x) (min x 0) (max 0 x) (max x 0) `|x| (x < 0) (0 <= x). Proof. move=> hx; rewrite -[X in `|X|]subr0; case: real_leP; by rewrite ?subr0 ?sub0r //; constructor. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_ge0P
real_le0Px : x \is real -> ler0_xor_gt0 x (min 0 x) (min x 0) (max 0 x) (max x 0) `|x| (0 < x) (x <= 0). Proof. move=> hx; rewrite -[X in `|X|]subr0; case: real_ltP; by rewrite ?subr0 ?sub0r //; constructor. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_le0P
real_ltgt0Px : x \is real -> comparer0 x (min 0 x) (min x 0) (max 0 x) (max x 0) `|x| (0 == x) (x == 0) (x <= 0) (0 <= x) (x < 0) (x > 0). Proof. move=> hx; rewrite -[X in `|X|]subr0; case: (@real_ltgtP 0 x); by rewrite ?subr0 ?sub0r //; constructor. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_ltgt0P
max_real: {in real &, forall x y, max x y \is real}. Proof. exact: comparable_maxr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
max_real
min_real: {in real &, forall x y, min x y \is real}. Proof. exact: comparable_minr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
min_real
bigmax_realI x0 (r : seq I) (P : pred I) (f : I -> R): x0 \is real -> {in P, forall i : I, f i \is real} -> \big[max/x0]_(i <- r | P i) f i \is real. Proof. exact/big_real/max_real. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
bigmax_real
bigmin_realI x0 (r : seq I) (P : pred I) (f : I -> R): x0 \is real -> {in P, forall i : I, f i \is real} -> \big[min/x0]_(i <- r | P i) f i \is real. Proof. exact/big_real/min_real. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
bigmin_real
real_neqr_lt: {in real &, forall x y, (x != y) = (x < y) || (y < x)}. Proof. by move=> * /=; case: real_ltgtP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_neqr_lt
lerB_realx y : x <= y -> y - x \is real. Proof. by move=> le_xy; rewrite ger0_real // subr_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lerB_real
gerB_realx y : x <= y -> x - y \is real. Proof. by move=> le_xy; rewrite ler0_real // subr_le0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
gerB_real
ler_realy x : x <= y -> (x \is real) = (y \is real). Proof. by move=> le_xy; rewrite -(addrNK x y) rpredDl ?lerB_real. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_real
ger_realx y : y <= x -> (x \is real) = (y \is real). Proof. by move=> le_yx; rewrite -(ler_real le_yx). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ger_real
ger1_realx : 1 <= x -> x \is real. Proof. by move=> /ger_real->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ger1_real
ler1_realx : x <= 1 -> x \is real. Proof. by move=> /ler_real->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler1_real
Nreal_leFx y : y \is real -> x \notin real -> (x <= y) = false. Proof. by move=> yR; apply: contraNF=> /ler_real->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
Nreal_leF
Nreal_geFx y : y \is real -> x \notin real -> (y <= x) = false. Proof. by move=> yR; apply: contraNF=> /ger_real->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
Nreal_geF
Nreal_ltFx y : y \is real -> x \notin real -> (x < y) = false. Proof. by move=> yR xNR; rewrite lt_def Nreal_leF ?andbF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
Nreal_ltF
Nreal_gtFx y : y \is real -> x \notin real -> (y < x) = false. Proof. by move=> yR xNR; rewrite lt_def Nreal_geF ?andbF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
Nreal_gtF
real_wlog_lerP : (forall a b, P b a -> P a b) -> (forall a b, a <= b -> P a b) -> forall a b : R, a \is real -> b \is real -> P a b. Proof. move=> sP hP a b ha hb; wlog: a b ha hb / a <= b => [hwlog|]; last exact: hP. by case: (real_leP ha hb)=> [/hP //|/ltW hba]; apply/sP/hP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_wlog_ler
real_wlog_ltrP : (forall a, P a a) -> (forall a b, (P b a -> P a b)) -> (forall a b, a < b -> P a b) -> forall a b : R, a \is real -> b \is real -> P a b. Proof. move=> rP sP hP; apply: real_wlog_ler=> // a b. by rewrite le_eqVlt; case: eqVneq => [->|] //= _ /hP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_wlog_ltr
lerD2lx : {mono +%R x : y z / y <= z}. Proof. by move=> y z; rewrite -subr_ge0 opprD addrAC addNKr addrC subr_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lerD2l
lerD2rx : {mono +%R^~ x : y z / y <= z}. Proof. by move=> y z; rewrite ![_ + x]addrC lerD2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lerD2r
ltrD2lx : {mono +%R x : y z / y < z}. Proof. by move=> y z; rewrite (leW_mono (lerD2l _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltrD2l
ltrD2rx : {mono +%R^~ x : y z / y < z}. Proof. by move=> y z /=; rewrite (leW_mono (lerD2r _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltrD2r
lerD2:= (lerD2l, lerD2r).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lerD2
ltrD2:= (ltrD2l, ltrD2r).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltrD2
lterD2:= (lerD2, ltrD2).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lterD2
lerDx y z t : x <= y -> z <= t -> x + z <= y + t. Proof. by move=> lxy lzt; rewrite (@le_trans _ _ (y + z)) ?lterD2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lerD
ler_ltDx y z t : x <= y -> z < t -> x + z < y + t. Proof. by move=> lxy lzt; rewrite (@le_lt_trans _ _ (y + z)) ?lterD2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_ltD
ltr_leDx y z t : x < y -> z <= t -> x + z < y + t. Proof. by move=> lxy lzt; rewrite (@lt_le_trans _ _ (y + z)) ?lterD2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_leD
ltrDx y z t : x < y -> z < t -> x + z < y + t. Proof. by move=> lxy lzt; rewrite ltr_leD // ltW. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltrD
lerBx y z t : x <= y -> t <= z -> x - z <= y - t. Proof. by move=> lxy ltz; rewrite lerD // lterN2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lerB
ler_ltBx y z t : x <= y -> t < z -> x - z < y - t. Proof. by move=> lxy lzt; rewrite ler_ltD // lterN2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_ltB
ltr_leBx y z t : x < y -> t <= z -> x - z < y - t. Proof. by move=> lxy lzt; rewrite ltr_leD // lterN2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_leB
ltrBx y z t : x < y -> t < z -> x - z < y - t. Proof. by move=> lxy lzt; rewrite ltrD // lterN2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltrB
lerBlDrx y z : (x - y <= z) = (x <= z + y). Proof. by rewrite (monoLR (addrK _) (lerD2r _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lerBlDr
ltrBlDrx y z : (x - y < z) = (x < z + y). Proof. by rewrite (monoLR (addrK _) (ltrD2r _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltrBlDr
lerBrDrx y z : (x <= y - z) = (x + z <= y). Proof. by rewrite (monoLR (addrNK _) (lerD2r _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lerBrDr
ltrBrDrx y z : (x < y - z) = (x + z < y). Proof. by rewrite (monoLR (addrNK _) (ltrD2r _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltrBrDr
lerBDr:= (lerBlDr, lerBrDr).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lerBDr
ltrBDr:= (ltrBlDr, ltrBrDr).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltrBDr
lterBDr:= (lerBDr, ltrBDr).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lterBDr
lerBlDlx y z : (x - y <= z) = (x <= y + z). Proof. by rewrite lterBDr addrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lerBlDl
ltrBlDlx y z : (x - y < z) = (x < y + z). Proof. by rewrite lterBDr addrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltrBlDl
lerBrDlx y z : (x <= y - z) = (z + x <= y). Proof. by rewrite lerBrDr addrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lerBrDl
ltrBrDlx y z : (x < y - z) = (z + x < y). Proof. by rewrite lterBDr addrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltrBrDl
lerBDl:= (lerBlDl, lerBrDl).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lerBDl
ltrBDl:= (ltrBlDl, ltrBrDl).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltrBDl
lterBDl:= (lerBDl, ltrBDl).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lterBDl
lerDlx y : (x <= x + y) = (0 <= y). Proof. by rewrite -{1}[x]addr0 lterD2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lerDl
ltrDlx y : (x < x + y) = (0 < y). Proof. by rewrite -{1}[x]addr0 lterD2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltrDl
lerDrx y : (x <= y + x) = (0 <= y). Proof. by rewrite -{1}[x]add0r lterD2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
lerDr
ltrDrx y : (x < y + x) = (0 < y). Proof. by rewrite -{1}[x]add0r lterD2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltrDr
gerDlx y : (x + y <= x) = (y <= 0). Proof. by rewrite -{2}[x]addr0 lterD2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
gerDl
gerBlx y : (x - y <= x) = (0 <= y). Proof. by rewrite lerBlDl lerDr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
gerBl
gtrDlx y : (x + y < x) = (y < 0). Proof. by rewrite -{2}[x]addr0 lterD2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
gtrDl
gtrBlx y : (x - y < x) = (0 < y). Proof. by rewrite ltrBlDl ltrDr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
gtrBl
gerDrx y : (y + x <= x) = (y <= 0). Proof. by rewrite -{2}[x]add0r lterD2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
gerDr
gtrDrx y : (y + x < x) = (y < 0). Proof. by rewrite -{2}[x]add0r lterD2. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
gtrDr
cprD:= (lerDl, lerDr, gerDl, gerDl, ltrDl, ltrDr, gtrDl, gtrDl).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
cprD
ler_wpDly x z : 0 <= x -> y <= z -> y <= x + z. Proof. by move=> *; rewrite -[y]add0r lerD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_wpDl
ltr_wpDly x z : 0 <= x -> y < z -> y < x + z. Proof. by move=> *; rewrite -[y]add0r ler_ltD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_wpDl
ltr_pwDly x z : 0 < x -> y <= z -> y < x + z. Proof. by move=> *; rewrite -[y]add0r ltr_leD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_pwDl
ltr_pDly x z : 0 < x -> y < z -> y < x + z. Proof. by move=> *; rewrite -[y]add0r ltrD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_pDl
ler_wnDly x z : x <= 0 -> y <= z -> x + y <= z. Proof. by move=> *; rewrite -[z]add0r lerD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ler_wnDl
ltr_wnDly x z : x <= 0 -> y < z -> x + y < z. Proof. by move=> *; rewrite -[z]add0r ler_ltD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_wnDl
ltr_nwDly x z : x < 0 -> y <= z -> x + y < z. Proof. by move=> *; rewrite -[z]add0r ltr_leD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_nwDl
ltr_nDly x z : x < 0 -> y < z -> x + y < z. Proof. by move=> *; rewrite -[z]add0r ltrD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ltr_nDl