fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
dtuple_on:= [set t : n.-tuple sT | uniq t & t \subset S].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat", "From mathcomp Require Import div seq fintype tuple finset", "From mathcomp Require Import fingroup action gseries" ]
solvable/primitive_action.v
dtuple_on
ntransitive:= [transitive A, on dtuple_on | to * n].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat", "From mathcomp Require Import div seq fintype tuple finset", "From mathcomp Require Import fingroup action gseries" ]
solvable/primitive_action.v
ntransitive
dtuple_onPt : reflect (injective (tnth t) /\ forall i, tnth t i \in S) (t \in dtuple_on). Proof. rewrite inE subset_all -forallb_tnth -[in uniq t]map_tnth_enum /=. by apply: (iffP andP) => -[/injectiveP-f_inj /forallP]. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat", "From mathcomp Require Import div seq fintype tuple finset", "From mathcomp Require Import fingroup action gseries" ]
solvable/primitive_action.v
dtuple_onP
n_act_dtuplet a : a \in 'N(S | to) -> t \in dtuple_on -> n_act to t a \in dtuple_on. Proof. move/astabsP=> toSa /dtuple_onP[t_inj St]; apply/dtuple_onP. split=> [i j | i]; rewrite !tnth_map ?[_ \in S]toSa //. by move/act_inj; apply: t_inj. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat", "From mathcomp Require Import div seq fintype tuple finset", "From mathcomp Require Import fingroup action gseries" ]
solvable/primitive_action.v
n_act_dtuple
card_uniq_tuplen (t : n.-tuple sT) : uniq t -> #|t| = n. Proof. by move/card_uniqP->; apply: size_tuple. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat", "From mathcomp Require Import div seq fintype tuple finset", "From mathcomp Require Import fingroup action gseries" ]
solvable/primitive_action.v
card_uniq_tuple
n_act0(t : 0.-tuple sT) a : n_act to t a = [tuple]. Proof. exact: tuple0. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat", "From mathcomp Require Import div seq fintype tuple finset", "From mathcomp Require Import fingroup action gseries" ]
solvable/primitive_action.v
n_act0
dtuple_on_addn x (t : n.-tuple sT) : ([tuple of x :: t] \in n.+1.-dtuple(S)) = [&& x \in S, x \notin t & t \in n.-dtuple(S)]. Proof. by rewrite !inE memtE !subset_all -!andbA; do !bool_congr. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat", "From mathcomp Require Import div seq fintype tuple finset", "From mathcomp Require Import fingroup action gseries" ]
solvable/primitive_action.v
dtuple_on_add
dtuple_on_add_D1n x (t : n.-tuple sT) : ([tuple of x :: t] \in n.+1.-dtuple(S)) = (x \in S) && (t \in n.-dtuple(S :\ x)). Proof. rewrite dtuple_on_add !inE (andbCA (~~ _)); do 2!congr (_ && _). rewrite -!(eq_subset (in_set [in t])) setDE setIC subsetI; congr (_ && _). by rewrite -setCS setCK sub1set !inE. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat", "From mathcomp Require Import div seq fintype tuple finset", "From mathcomp Require Import fingroup action gseries" ]
solvable/primitive_action.v
dtuple_on_add_D1
dtuple_on_subsetn (S1 S2 : {set sT}) t : S1 \subset S2 -> t \in n.-dtuple(S1) -> t \in n.-dtuple(S2). Proof. by move=> sS12 /[!inE] /andP[-> /subset_trans]; apply. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat", "From mathcomp Require Import div seq fintype tuple finset", "From mathcomp Require Import fingroup action gseries" ]
solvable/primitive_action.v
dtuple_on_subset
n_act_addn x (t : n.-tuple sT) a : n_act to [tuple of x :: t] a = [tuple of to x a :: n_act to t a]. Proof. exact: val_inj. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat", "From mathcomp Require Import div seq fintype tuple finset", "From mathcomp Require Import fingroup action gseries" ]
solvable/primitive_action.v
n_act_add
ntransitive0: [transitive^0 G, on S | to]. Proof. have dt0: [tuple] \in 0.-dtuple(S) by rewrite inE memtE subset_all. apply/imsetP; exists [tuple of Nil sT] => //. by apply/setP=> x; rewrite [x]tuple0 orbit_refl. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat", "From mathcomp Require Import div seq fintype tuple finset", "From mathcomp Require Import fingroup action gseries" ]
solvable/primitive_action.v
ntransitive0
ntransitive_weakk m : k <= m -> [transitive^m G, on S | to] -> [transitive^k G, on S | to]. Proof. move/subnKC <-; rewrite addnC; elim: {m}(m - k) => // m IHm. rewrite addSn => tr_m1; apply: IHm; move: {m k}(m + k) tr_m1 => m tr_m1. have ext_t t: t \in dtuple_on m S -> exists x, [tuple of x :: t] \in m.+1.-dtuple(S). - move=> dt. have [sSt | /subsetPn[x Sx ntx]] := boolP (S \subset t); last first. by exists x; rewrite dtuple_on_add andbA /= Sx ntx. case/imsetP: tr_m1 dt => t1 /[!inE] /andP[Ut1 St1] _ /andP[Ut _]. have /subset_leq_card := subset_trans St1 sSt. by rewrite !card_uniq_tuple // ltnn. case/imsetP: (tr_m1); case/tupleP=> [x t]; rewrite dtuple_on_add. case/and3P=> Sx ntx dt; set xt := [tuple of _] => tr_xt. apply/imsetP; exists t => //. apply/setP=> u; apply/idP/imsetP=> [du | [a Ga ->{u}]]. case: (ext_t u du) => y; rewrite tr_xt. by case/imsetP=> a Ga [_ def_u]; exists a => //; apply: val_inj. have: n_act to xt a \in dtuple_on _ S by rewrite tr_xt imset_f. by rewrite n_act_add dtuple_on_add; case/and3P. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat", "From mathcomp Require Import div seq fintype tuple finset", "From mathcomp Require Import fingroup action gseries" ]
solvable/primitive_action.v
ntransitive_weak
ntransitive1m : 0 < m -> [transitive^m G, on S | to] -> [transitive G, on S | to]. Proof. have trdom1 x: ([tuple x] \in 1.-dtuple(S)) = (x \in S). by rewrite dtuple_on_add !inE memtE subset_all andbT. move=> m_gt0 /(ntransitive_weak m_gt0) {m m_gt0}. case/imsetP; case/tupleP=> x t0; rewrite {t0}(tuple0 t0) trdom1 => Sx trx. apply/imsetP; exists x => //; apply/setP=> y; rewrite -trdom1 trx. by apply/imsetP/imsetP=> [[a ? [->]]|[a ? ->]]; exists a => //; apply: val_inj. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat", "From mathcomp Require Import div seq fintype tuple finset", "From mathcomp Require Import fingroup action gseries" ]
solvable/primitive_action.v
ntransitive1
ntransitive_primitivem : 1 < m -> [transitive^m G, on S | to] -> [primitive G, on S | to]. Proof. move=> lt1m /(ntransitive_weak lt1m) {m lt1m}tr2G. have trG: [transitive G, on S | to] by apply: ntransitive1 tr2G. have [x Sx _]:= imsetP trG; rewrite (trans_prim_astab Sx trG). apply/maximal_eqP; split=> [|H]; first exact: subsetIl; rewrite subEproper. case/predU1P; first by [left]; case/andP=> sCH /subsetPn[a Ha nCa] sHG. right; rewrite -(subgroup_transitiveP Sx sHG trG _) ?mulSGid //. have actH := subset_trans sHG (atrans_acts trG). pose y := to x a; have Sy: y \in S by rewrite (actsP actH). have{nCa} yx: y != x by rewrite inE (sameP astab1P eqP) (subsetP sHG) in nCa. apply/imsetP; exists y => //; apply/eqP. rewrite eqEsubset acts_sub_orbit // Sy andbT; apply/subsetP=> z Sz. have [-> | zx] := eqVneq z x; first by rewrite orbit_sym mem_orbit. pose ty := [tuple y; x]; pose tz := [tuple z; x]. have [Sty Stz]: ty \in 2.-dtuple(S) /\ tz \in 2.-dtuple(S). by rewrite !inE !memtE !subset_all /= !mem_seq1 !andbT; split; apply/and3P. case: (atransP2 tr2G Sty Stz) => b Gb [->] /esym/astab1P cxb. by rewrite mem_orbit // (subsetP sCH) // inE Gb. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat", "From mathcomp Require Import div seq fintype tuple finset", "From mathcomp Require Import fingroup action gseries" ]
solvable/primitive_action.v
ntransitive_primitive
stab_ntransitivem x : 0 < m -> x \in S -> [transitive^m.+1 G, on S | to] -> [transitive^m 'C_G[x | to], on S :\ x | to]. Proof. move=> m_gt0 Sx Gtr; have sSxS: S :\ x \subset S by rewrite subsetDl. case: (imsetP Gtr); case/tupleP=> x1 t1; rewrite dtuple_on_add. case/and3P=> Sx1 nt1x1 dt1 trt1; have Gtr1 := ntransitive1 (ltn0Sn _) Gtr. case: (atransP2 Gtr1 Sx1 Sx) => // a Ga x1ax. pose t := n_act to t1 a. have dxt: [tuple of x :: t] \in m.+1.-dtuple(S). by rewrite trt1 x1ax; apply/imsetP; exists a => //; apply: val_inj. apply/imsetP; exists t; first by rewrite dtuple_on_add_D1 Sx in dxt. apply/setP=> t2; apply/idP/imsetP => [dt2|[b]]. have: [tuple of x :: t2] \in dtuple_on _ S by rewrite dtuple_on_add_D1 Sx. case/(atransP2 Gtr dxt)=> b Gb [xbx tbt2]. by exists b; [rewrite inE Gb; apply/astab1P | apply: val_inj]. case/setIP=> Gb /astab1P xbx ->{t2}. rewrite n_act_dtuple //; last by rewrite dtuple_on_add_D1 Sx in dxt. apply/astabsP=> y; rewrite !inE -{1}xbx (inj_eq (act_inj _ _)). by rewrite (actsP (atrans_acts Gtr1)). Qed.
Theorem
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat", "From mathcomp Require Import div seq fintype tuple finset", "From mathcomp Require Import fingroup action gseries" ]
solvable/primitive_action.v
stab_ntransitive
stab_ntransitiveIm x : x \in S -> [transitive G, on S | to] -> [transitive^m 'C_G[x | to], on S :\ x | to] -> [transitive^m.+1 G, on S | to]. Proof. move=> Sx Gtr Gntr. have t_to_x t: t \in m.+1.-dtuple(S) -> exists2 a, a \in G & exists2 t', t' \in m.-dtuple(S :\ x) & t = n_act to [tuple of x :: t'] a. - case/tupleP: t => y t St. have Sy: y \in S by rewrite dtuple_on_add_D1 in St; case/andP: St. rewrite -(atransP Gtr _ Sy) in Sx; case/imsetP: Sx => a Ga toya. exists a^-1; first exact: groupVr. exists (n_act to t a); last by rewrite n_act_add toya !actK. move/(n_act_dtuple (subsetP (atrans_acts Gtr) a Ga)): St. by rewrite n_act_add -toya dtuple_on_add_D1 => /andP[]. case: (imsetP Gntr) => t dt S_tG; pose xt := [tuple of x :: t]. have dxt: xt \in m.+1.-dtuple(S) by rewrite dtuple_on_add_D1 Sx. apply/imsetP; exists xt => //; apply/setP=> t2. apply/esym; apply/imsetP/idP=> [[a Ga ->] | ]. by apply: n_act_dtuple; rewrite // (subsetP (atrans_acts Gtr)). case/t_to_x=> a2 Ga2 [t2']; rewrite S_tG. case/imsetP=> a /setIP[Ga /astab1P toxa] -> -> {t2 t2'}. by exists (a * a2); rewrite (groupM, actM) //= !n_act_add toxa. Qed.
Theorem
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat", "From mathcomp Require Import div seq fintype tuple finset", "From mathcomp Require Import fingroup action gseries" ]
solvable/primitive_action.v
stab_ntransitiveI
pgroup_fix_mod(p : nat) (G : {group aT}) (S : {set sT}) : p.-group G -> [acts G, on S | to] -> #|S| = #|'Fix_(S | to)(G)| %[mod p]. Proof. move=> pG nSG; have sGD: G \subset D := acts_dom nSG. apply/eqP; rewrite -(cardsID 'Fix_to(G)) eqn_mod_dvd (leq_addr, addKn) //. have: [acts G, on S :\: 'Fix_to(G) | to]; last move/acts_sum_card_orbit <-. rewrite actsD // -(setIidPr sGD); apply: subset_trans (acts_subnorm_fix _ _). by rewrite setIS ?normG. apply: dvdn_sum => _ /imsetP[x /setDP[_ nfx] ->]. have [k oGx]: {k | #|orbit to G x| = (p ^ k)%N}. by apply: p_natP; apply: pnat_dvd pG; rewrite card_orbit_in ?dvdn_indexg. case: k oGx => [/card_orbit1 fix_x | k ->]; last by rewrite expnS dvdn_mulr. by case/afixP: nfx => a Ga; apply/set1P; rewrite -fix_x mem_orbit. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
pgroup_fix_mod
nontrivial_gacent_pgroupG M : p.-group G -> p.-group M -> {acts G, on group M | to} -> M :!=: 1 -> 'C_(M | to)(G) :!=: 1. Proof. move=> pG pM [nMG sMR] ntM; have [p_pr p_dv_M _] := pgroup_pdiv pM ntM. rewrite -cardG_gt1 (leq_trans (prime_gt1 p_pr)) 1?dvdn_leq ?cardG_gt0 //= /dvdn. by rewrite gacentE ?(acts_dom nMG) // setIA (setIidPl sMR) -pgroup_fix_mod. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
nontrivial_gacent_pgroup
pcore_sub_astab_irrG M : p.-group M -> M \subset R -> acts_irreducibly G M to -> 'O_p(G) \subset 'C_G(M | to). Proof. move=> pM sMR /mingroupP[/andP[ntM nMG] minM]. have /andP[sGpG nGpG]: 'O_p(G) <| G := gFnormal _ G. have sGD := acts_dom nMG; have sGpD: 'O_p(G) \subset D := gFsub_trans _ sGD. rewrite subsetI sGpG -gacentC //=; apply/setIidPl; apply: minM (subsetIl _ _). rewrite nontrivial_gacent_pgroup ?pcore_pgroup //=; last first. by split; rewrite ?gFsub_trans. by apply: subset_trans (acts_subnorm_subgacent sGpD nMG); rewrite subsetI subxx. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
pcore_sub_astab_irr
pcore_faithful_irr_actG M : p.-group M -> M \subset R -> acts_irreducibly G M to -> [faithful G, on M | to] -> 'O_p(G) = 1. Proof. move=> pM sMR irrG ffulG; apply/trivgP; apply: subset_trans ffulG. exact: pcore_sub_astab_irr. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
pcore_faithful_irr_act
Sylow's_theorem: [/\ forall P, [max P | p.-subgroup(G) P] = p.-Sylow(G) P, [transitive G, on 'Syl_p(G) | 'JG], forall P, p.-Sylow(G) P -> #|'Syl_p(G)| = #|G : 'N_G(P)| & prime p -> #|'Syl_p(G)| %% p = 1%N]. Proof. pose maxp A P := [max P | p.-subgroup(A) P]; pose S := [set P | maxp G P]. pose oG := orbit 'JG%act G. have actS: [acts G, on S | 'JG]. apply/subsetP=> x Gx; rewrite 3!inE; apply/subsetP=> P; rewrite 3!inE. exact: max_pgroupJ. have S_pG P: P \in S -> P \subset G /\ p.-group P. by rewrite inE => /maxgroupp/andP[]. have SmaxN P Q: Q \in S -> Q \subset 'N(P) -> maxp 'N_G(P) Q. rewrite inE => /maxgroupP[/andP[sQG pQ] maxQ] nPQ. apply/maxgroupP; rewrite /psubgroup subsetI sQG nPQ. by split=> // R; rewrite subsetI -andbA andbCA => /andP[_]; apply: maxQ. have nrmG P: P \subset G -> P <| 'N_G(P). by move=> sPG; rewrite /normal subsetIr subsetI sPG normG. have sylS P: P \in S -> p.-Sylow('N_G(P)) P. move=> S_P; have [sPG pP] := S_pG P S_P. by rewrite normal_max_pgroup_Hall ?nrmG //; apply: SmaxN; rewrite ?normG. have{SmaxN} defCS P: P \in S -> 'Fix_(S |'JG)(P) = [set P]. move=> S_P; apply/setP=> Q; rewrite {1}in_setI {1}afixJG. apply/andP/set1P=> [[S_Q nQP]|->{Q}]; last by rewrite normG. apply/esym/val_inj; case: (S_pG Q) => //= sQG _. by apply: uniq_normal_Hall (SmaxN Q _ _ _) => //=; rewrite ?sylS ?nrmG. have{defCS} oG_mod: {in S &, forall P Q, #|oG P| = (Q \in oG P) %[mod p]}. move=> P Q S_P S_Q; have [sQG pQ] := S_pG _ S_Q. have soP_S: oG ...
Theorem
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
Sylow's_theorem
max_pgroup_SylowP : [max P | p.-subgroup(G) P] = p.-Sylow(G) P. Proof. by case Sylow's_theorem. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
max_pgroup_Sylow
Sylow_supersetQ : Q \subset G -> p.-group Q -> {P : {group gT} | p.-Sylow(G) P & Q \subset P}. Proof. move=> sQG pQ. have [|P] := @maxgroup_exists _ (p.-subgroup(G)) Q; first exact/andP. by rewrite max_pgroup_Sylow; exists P. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
Sylow_superset
Sylow_exists: {P : {group gT} | p.-Sylow(G) P}. Proof. by case: (Sylow_superset (sub1G G) (pgroup1 _ p)) => P; exists P. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
Sylow_exists
Syl_trans: [transitive G, on 'Syl_p(G) | 'JG]. Proof. by case Sylow's_theorem. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
Syl_trans
Sylow_transP Q : p.-Sylow(G) P -> p.-Sylow(G) Q -> exists2 x, x \in G & Q :=: P :^ x. Proof. move=> sylP sylQ; have /[!inE] := (atransP2 Syl_trans) P Q. by case=> // x Gx ->; exists x. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
Sylow_trans
Sylow_subJP Q : p.-Sylow(G) P -> Q \subset G -> p.-group Q -> exists2 x, x \in G & Q \subset P :^ x. Proof. move=> sylP sQG pQ; have [Px sylPx] := Sylow_superset sQG pQ. by have [x Gx ->] := Sylow_trans sylP sylPx; exists x. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
Sylow_subJ
Sylow_JsubP Q : p.-Sylow(G) P -> Q \subset G -> p.-group Q -> exists2 x, x \in G & Q :^ x \subset P. Proof. move=> sylP sQG pQ; have [x Gx] := Sylow_subJ sylP sQG pQ. by exists x^-1; rewrite (groupV, sub_conjgV). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
Sylow_Jsub
card_SylP : p.-Sylow(G) P -> #|'Syl_p(G)| = #|G : 'N_G(P)|. Proof. by case: Sylow's_theorem P. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
card_Syl
card_Syl_dvd: #|'Syl_p(G)| %| #|G|. Proof. by case Sylow_exists => P /card_Syl->; apply: dvdn_indexg. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
card_Syl_dvd
card_Syl_mod: prime p -> #|'Syl_p(G)| %% p = 1%N. Proof. by case Sylow's_theorem. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
card_Syl_mod
Frattini_argH P : G <| H -> p.-Sylow(G) P -> G * 'N_H(P) = H. Proof. case/andP=> sGH nGH sylP; rewrite -normC ?subIset ?nGH ?orbT // -astab1JG. move/subgroup_transitiveP: Syl_trans => ->; rewrite ?inE //. apply/imsetP; exists P; rewrite ?inE //. apply/eqP; rewrite eqEsubset -{1}((atransP Syl_trans) P) ?inE // imsetS //=. by apply/subsetP=> _ /imsetP[x Hx ->]; rewrite inE -(normsP nGH x Hx) pHallJ2. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
Frattini_arg
Sylow_setI_normalG H P : G <| H -> p.-Sylow(H) P -> p.-Sylow(G) (G :&: P). Proof. case/normalP=> sGH nGH sylP; have [Q sylQ] := Sylow_exists p G. have /maxgroupP[/andP[sQG pQ] maxQ] := Hall_max sylQ. have [R sylR sQR] := Sylow_superset (subset_trans sQG sGH) pQ. have [[x Hx ->] pR] := (Sylow_trans sylR sylP, pHall_pgroup sylR). rewrite -(nGH x Hx) -conjIg pHallJ2. have /maxQ-> //: Q \subset G :&: R by rewrite subsetI sQG. by rewrite /psubgroup subsetIl (pgroupS _ pR) ?subsetIr. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
Sylow_setI_normal
normal_sylowPG : reflect (exists2 P : {group gT}, p.-Sylow(G) P & P <| G) (#|'Syl_p(G)| == 1%N). Proof. apply: (iffP idP) => [syl1 | [P sylP nPG]]; last first. by rewrite (card_Syl sylP) (setIidPl _) (indexgg, normal_norm). have [P sylP] := Sylow_exists p G; exists P => //. rewrite /normal (pHall_sub sylP); apply/setIidPl; apply/eqP. rewrite eqEcard subsetIl -(LagrangeI G 'N(P)) -indexgI /=. by rewrite -(card_Syl sylP) (eqP syl1) muln1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
normal_sylowP
trivg_center_pgroupP : p.-group P -> 'Z(P) = 1 -> P :=: 1. Proof. move=> pP Z1; apply/eqP/idPn=> ntP. have{ntP} [p_pr p_dv_P _] := pgroup_pdiv pP ntP. suff: p %| #|'Z(P)| by rewrite Z1 cards1 gtnNdvd ?prime_gt1. by rewrite /center /dvdn -afixJ -pgroup_fix_mod // astabsJ normG. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
trivg_center_pgroup
p2group_abelianP : p.-group P -> logn p #|P| <= 2 -> abelian P. Proof. move=> pP lePp2; pose Z := 'Z(P); have sZP: Z \subset P := center_sub P. have [/(trivg_center_pgroup pP) ->|] := eqVneq Z 1; first exact: abelian1. case/(pgroup_pdiv (pgroupS sZP pP)) => p_pr _ [k oZ]. apply: cyclic_center_factor_abelian. have [->|] := eqVneq (P / Z) 1; first exact: cyclic1. have pPq := quotient_pgroup 'Z(P) pP; case/(pgroup_pdiv pPq) => _ _ [j oPq]. rewrite prime_cyclic // oPq; case: j oPq lePp2 => //= j. rewrite card_quotient ?gFnorm //. by rewrite -(Lagrange sZP) lognM // => ->; rewrite oZ !pfactorK ?addnS. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
p2group_abelian
card_p2group_abelianP : prime p -> #|P| = (p ^ 2)%N -> abelian P. Proof. move=> primep oP; have pP: p.-group P by rewrite /pgroup oP pnatX pnat_id. by rewrite (p2group_abelian pP) // oP pfactorK. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
card_p2group_abelian
Sylow_transversal_gen(T : {set {group gT}}) G : (forall P, P \in T -> P \subset G) -> (forall p, p \in \pi(G) -> exists2 P, P \in T & p.-Sylow(G) P) -> << \bigcup_(P in T) P >> = G. Proof. move=> G_T T_G; apply/eqP; rewrite eqEcard gen_subG. apply/andP; split; first exact/bigcupsP. apply: dvdn_leq (cardG_gt0 _) _; apply/dvdn_partP=> // q /T_G[P T_P sylP]. by rewrite -(card_Hall sylP); apply: cardSg; rewrite sub_gen // bigcup_sup. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
Sylow_transversal_gen
Sylow_genG : <<\bigcup_(P : {group gT} | Sylow G P) P>> = G. Proof. set T := [set P : {group gT} | Sylow G P]. rewrite -{2}(@Sylow_transversal_gen T G) => [|P | q _]. - by congr <<_>>; apply: eq_bigl => P; rewrite inE. - by rewrite inE => /and3P[]. by case: (Sylow_exists q G) => P sylP; exists P; rewrite // inE (p_Sylow sylP). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
Sylow_gen
Hall_pJsubp pi G H P : pi.-Hall(G) H -> p \in pi -> P \subset G -> p.-group P -> exists2 x, x \in G & P :^ x \subset H. Proof. move=> hallH pi_p sPG pP. have [S sylS] := Sylow_exists p H; have sylS_G := subHall_Sylow hallH pi_p sylS. have [x Gx sPxS] := Sylow_Jsub sylS_G sPG pP; exists x => //. exact: subset_trans sPxS (pHall_sub sylS). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
Hall_pJsub
Hall_psubJp pi G H P : pi.-Hall(G) H -> p \in pi -> P \subset G -> p.-group P -> exists2 x, x \in G & P \subset H :^ x. Proof. move=> hallH pi_p sPG pP; have [x Gx sPxH] := Hall_pJsub hallH pi_p sPG pP. by exists x^-1; rewrite ?groupV -?sub_conjg. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
Hall_psubJ
Hall_setI_normalpi G K H : K <| G -> pi.-Hall(G) H -> pi.-Hall(K) (H :&: K). Proof. move=> nsKG hallH; have [sHG piH _] := and3P hallH. have [sHK_H sHK_K] := (subsetIl H K, subsetIr H K). rewrite pHallE sHK_K /= -(part_pnat_id (pgroupS sHK_H piH)); apply/eqP. rewrite (widen_partn _ (subset_leq_card sHK_K)); apply: eq_bigr => p pi_p. have [P sylP] := Sylow_exists p H. have sylPK := Sylow_setI_normal nsKG (subHall_Sylow hallH pi_p sylP). rewrite -!p_part -(card_Hall sylPK); symmetry; apply: card_Hall. by rewrite (pHall_subl _ sHK_K) //= setIC setSI ?(pHall_sub sylP). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
Hall_setI_normal
coprime_mulG_setI_normH G K R : K * R = G -> G \subset 'N(H) -> coprime #|K| #|R| -> (K :&: H) * (R :&: H) = G :&: H. Proof. move=> defG nHG coKR; apply/eqP; rewrite eqEcard mulG_subG /= -defG. rewrite !setSI ?mulG_subl ?mulG_subr //=. rewrite coprime_cardMg ?(coKR, coprimeSg (subsetIl _ _), coprime_sym) //=. pose pi := \pi(K); have piK: pi.-group K by apply: pgroup_pi. have pi'R: pi^'.-group R by rewrite /pgroup -coprime_pi' /=. have [hallK hallR] := coprime_mulpG_Hall defG piK pi'R. have nsHG: H :&: G <| G by rewrite /normal subsetIr normsI ?normG. rewrite -!(setIC H) defG -(partnC pi (cardG_gt0 _)). rewrite -(card_Hall (Hall_setI_normal nsHG hallR)) /= setICA. rewrite -(card_Hall (Hall_setI_normal nsHG hallK)) /= setICA. by rewrite -defG (setIidPl (mulG_subl _ _)) (setIidPl (mulG_subr _ _)). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
coprime_mulG_setI_norm
pgroup_nilp P : p.-group P -> nilpotent P. Proof. move: {2}_.+1 (ltnSn #|P|) => n. elim: n gT P => // n IHn pT P; rewrite ltnS=> lePn pP. have [Z1 | ntZ] := eqVneq 'Z(P) 1. by rewrite (trivg_center_pgroup pP Z1) nilpotent1. rewrite -quotient_center_nil IHn ?morphim_pgroup // (leq_trans _ lePn) //. rewrite card_quotient ?normal_norm ?center_normal // -divgS ?subsetIl //. by rewrite ltn_Pdiv // ltnNge -trivg_card_le1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
pgroup_nil
pgroup_solp P : p.-group P -> solvable P. Proof. by move/pgroup_nil; apply: nilpotent_sol. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
pgroup_sol
small_nil_classG : nil_class G <= 5 -> nilpotent G. Proof. move=> leK5; case: (ltnP 5 #|G|) => [lt5G | leG5 {leK5}]. by rewrite nilpotent_class (leq_ltn_trans leK5). apply: pgroup_nil (pdiv #|G|) _ _; apply/andP; split=> //. by case: #|G| leG5 => //; do 5!case=> //. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
small_nil_class
nil_class2G : (nil_class G <= 2) = (G^`(1) \subset 'Z(G)). Proof. rewrite subsetI der_sub; apply/idP/commG1P=> [clG2 | L3G1]. by apply/(lcn_nil_classP 2); rewrite ?small_nil_class ?(leq_trans clG2). by apply/(lcn_nil_classP 2) => //; apply/lcnP; exists 2. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
nil_class2
nil_class3G : (nil_class G <= 3) = ('L_3(G) \subset 'Z(G)). Proof. rewrite subsetI lcn_sub; apply/idP/commG1P=> [clG3 | L4G1]. by apply/(lcn_nil_classP 3); rewrite ?small_nil_class ?(leq_trans clG3). by apply/(lcn_nil_classP 3) => //; apply/lcnP; exists 3. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
nil_class3
nilpotent_maxp_normalpi G H : nilpotent G -> [max H | pi.-subgroup(G) H] -> H <| G. Proof. move=> nilG /maxgroupP[/andP[sHG piH] maxH]. have nHN: H <| 'N_G(H) by rewrite normal_subnorm. have{maxH} hallH: pi.-Hall('N_G(H)) H. apply: normal_max_pgroup_Hall => //; apply/maxgroupP. rewrite /psubgroup normal_sub // piH; split=> // K. by rewrite subsetI -andbA andbCA => /andP[_ /maxH]. rewrite /normal sHG; apply/setIidPl/esym. apply: nilpotent_sub_norm; rewrite ?subsetIl ?setIS //= char_norms //. by congr (_ \char _): (pcore_char pi 'N_G(H)); apply: normal_Hall_pcore. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
nilpotent_maxp_normal
nilpotent_Hall_pcorepi G H : nilpotent G -> pi.-Hall(G) H -> H :=: 'O_pi(G). Proof. move=> nilG hallH; have maxH := Hall_max hallH; apply/eqP. rewrite eqEsubset pcore_max ?(pHall_pgroup hallH) //. by rewrite (normal_sub_max_pgroup maxH) ?pcore_pgroup ?pcore_normal. exact: nilpotent_maxp_normal maxH. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
nilpotent_Hall_pcore
nilpotent_pcore_Hallpi G : nilpotent G -> pi.-Hall(G) 'O_pi(G). Proof. move=> nilG; case: (@maxgroup_exists _ (psubgroup pi G) 1) => [|H maxH _]. by rewrite /psubgroup sub1G pgroup1. have hallH := normal_max_pgroup_Hall maxH (nilpotent_maxp_normal nilG maxH). by rewrite -(nilpotent_Hall_pcore nilG hallH). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
nilpotent_pcore_Hall
nilpotent_pcoreCpi G : nilpotent G -> 'O_pi(G) \x 'O_pi^'(G) = G. Proof. move=> nilG; have trO: 'O_pi(G) :&: 'O_pi^'(G) = 1. by apply: coprime_TIg; apply: (@pnat_coprime pi); apply: pcore_pgroup. rewrite dprodE //. apply/eqP; rewrite eqEcard mul_subG ?pcore_sub // (TI_cardMg trO). by rewrite !(card_Hall (nilpotent_pcore_Hall _ _)) // partnC ?leqnn. rewrite (sameP commG1P trivgP) -trO subsetI commg_subl commg_subr. by rewrite !gFsub_trans ?gFnorm. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
nilpotent_pcoreC
sub_nilpotent_cent2H K G : nilpotent G -> K \subset G -> H \subset G -> coprime #|K| #|H| -> H \subset 'C(K). Proof. move=> nilG sKG sHG; rewrite coprime_pi' // => p'H. have sub_Gp := sub_Hall_pcore (nilpotent_pcore_Hall _ nilG). have [_ _ cGpp' _] := dprodP (nilpotent_pcoreC \pi(K) nilG). by apply: centSS cGpp'; rewrite sub_Gp ?pgroup_pi. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
sub_nilpotent_cent2
pi_center_nilpotentG : nilpotent G -> \pi('Z(G)) = \pi(G). Proof. move=> nilG; apply/eq_piP => /= p. apply/idP/idP=> [|pG]; first exact: (piSg (center_sub _)). move: (pG); rewrite !mem_primes !cardG_gt0; case/andP=> p_pr _. pose Z := 'O_p(G) :&: 'Z(G); have ntZ: Z != 1. rewrite meet_center_nil ?pcore_normal // trivg_card_le1 -ltnNge. rewrite (card_Hall (nilpotent_pcore_Hall p nilG)) p_part. by rewrite (ltn_exp2l 0 _ (prime_gt1 p_pr)) logn_gt0. have pZ: p.-group Z := pgroupS (subsetIl _ _) (pcore_pgroup _ _). have{ntZ pZ} [_ pZ _] := pgroup_pdiv pZ ntZ. by rewrite p_pr (dvdn_trans pZ) // cardSg ?subsetIr. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
pi_center_nilpotent
Sylow_subnormp G P : p.-Sylow('N_G(P)) P = p.-Sylow(G) P. Proof. apply/idP/idP=> sylP; last first. apply: pHall_subl (subsetIl _ _) (sylP). by rewrite subsetI normG (pHall_sub sylP). have [/subsetIP[sPG sPN] pP _] := and3P sylP. have [Q sylQ sPQ] := Sylow_superset sPG pP; have [sQG pQ _] := and3P sylQ. rewrite -(nilpotent_sub_norm (pgroup_nil pQ) sPQ) {sylQ}//. rewrite subEproper eq_sym eqEcard subsetI sPQ sPN dvdn_leq //. rewrite -(part_pnat_id (pgroupS (subsetIl _ _) pQ)) (card_Hall sylP). by rewrite partn_dvd // cardSg ?setSI. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
Sylow_subnorm
nil_class_pgroup(gT : finGroupType) (p : nat) (P : {group gT}) : p.-group P -> nil_class P <= maxn 1 (logn p #|P|).-1. Proof. move=> pP; move def_c: (nil_class P) => c. elim: c => // c IHc in gT P def_c pP *; set e := logn p _. have nilP := pgroup_nil pP; have sZP := center_sub P. have [e_le2 | e_gt2] := leqP e 2. by rewrite -def_c leq_max nil_class1 (p2group_abelian pP). have pPq: p.-group (P / 'Z(P)) by apply: quotient_pgroup. rewrite -(subnKC e_gt2) ltnS (leq_trans (IHc _ _ _ pPq)) //. by rewrite nil_class_quotient_center ?def_c. rewrite geq_max /= -add1n -leq_subLR -subn1 -subnDA -subSS leq_sub2r //. rewrite ltn_log_quotient //= -(setIidPr sZP) meet_center_nil //. by rewrite -nil_class0 def_c. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
nil_class_pgroup
Zgroup(gT : finGroupType) (A : {set gT}) := [forall (V : {group gT} | Sylow A V), cyclic V].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
Zgroup
ZgroupSG H : H \subset G -> Zgroup G -> Zgroup H. Proof. move=> sHG /forallP zgG; apply/forall_inP=> V /SylowP[p p_pr /and3P[sVH]]. case/(Sylow_superset (subset_trans sVH sHG))=> P sylP sVP _. by have:= zgG P; rewrite (p_Sylow sylP); apply: cyclicS. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
ZgroupS
morphim_ZgroupG : Zgroup G -> Zgroup (f @* G). Proof. move=> zgG; wlog sGD: G zgG / G \subset D. by rewrite -morphimIdom; apply; rewrite (ZgroupS _ zgG, subsetIl) ?subsetIr. apply/forall_inP=> fV /SylowP[p pr_p sylfV]. have [P sylP] := Sylow_exists p G. have [|z _ ->] := @Sylow_trans p _ _ (f @* P)%G _ _ sylfV. by apply: morphim_pHall (sylP); apply: subset_trans (pHall_sub sylP) sGD. by rewrite cyclicJ morphim_cyclic ?(forall_inP zgG) //; apply/SylowP; exists p. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
morphim_Zgroup
nil_Zgroup_cyclicG : Zgroup G -> nilpotent G -> cyclic G. Proof. have [n] := ubnP #|G|; elim: n G => // n IHn G /ltnSE-leGn ZgG nilG. have [->|[p pr_p pG]] := trivgVpdiv G; first by rewrite -cycle1 cycle_cyclic. have /dprodP[_ defG Cpp' _] := nilpotent_pcoreC p nilG. have /cyclicP[x def_p]: cyclic 'O_p(G). have:= forallP ZgG 'O_p(G)%G. by rewrite (p_Sylow (nilpotent_pcore_Hall p nilG)). have /cyclicP[x' def_p']: cyclic 'O_p^'(G). have sp'G := pcore_sub p^' G. apply: IHn (leq_trans _ leGn) (ZgroupS sp'G _) (nilpotentS sp'G _) => //. rewrite proper_card // properEneq sp'G andbT; case: eqP => //= def_p'. by have:= pcore_pgroup p^' G; rewrite def_p' /pgroup p'natE ?pG. apply/cyclicP; exists (x * x'); rewrite -{}defG def_p def_p' cycleM //. by red; rewrite -(centsP Cpp') // (def_p, def_p') cycle_id. by rewrite /order -def_p -def_p' (@pnat_coprime p) //; apply: pcore_pgroup. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
nil_Zgroup_cyclic
normal_pgroupr P N : p.-group P -> N <| P -> r <= logn p #|N| -> exists Q : {group gT}, [/\ Q \subset N, Q <| P & #|Q| = (p ^ r)%N]. Proof. elim: r gT P N => [|r IHr] gTr P N pP nNP le_r. by exists (1%G : {group gTr}); rewrite sub1G normal1 cards1. have [NZ_1 | ntNZ] := eqVneq (N :&: 'Z(P)) 1. by rewrite (TI_center_nil (pgroup_nil pP)) // cards1 logn1 in le_r. have: p.-group (N :&: 'Z(P)) by apply: pgroupS pP; rewrite /= setICA subsetIl. case/pgroup_pdiv=> // p_pr /Cauchy[// | z]. rewrite -cycle_subG !subsetI => /and3P[szN szP cPz] ozp _. have{cPz} nzP: P \subset 'N(<[z]>) by rewrite cents_norm // centsC. have: N / <[z]> <| P / <[z]> by rewrite morphim_normal. case/IHr=> [||Qb [sQNb nQPb]]; first exact: morphim_pgroup. rewrite card_quotient ?(subset_trans (normal_sub nNP)) // -ltnS. apply: (leq_trans le_r); rewrite -(Lagrange szN) [#|_|]ozp. by rewrite lognM // ?prime_gt0 // logn_prime ?eqxx. case/(inv_quotientN _): nQPb sQNb => [|Q -> szQ nQP]; first exact/andP. have nzQ := subset_trans (normal_sub nQP) nzP. rewrite quotientSGK // card_quotient // => sQN izQ. by exists Q; split=> //; rewrite expnS -izQ -ozp Lagrange. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
normal_pgroup
Baer_Suzukix G : x \in G -> (forall y, y \in G -> p.-group <<[set x; x ^ y]>>) -> x \in 'O_p(G). Proof. have [n] := ubnP #|G|; elim: n G x => // n IHn G x /ltnSE-leGn Gx pE. set E := x ^: G; have{} pE: {in E &, forall x1 x2, p.-group <<[set x1; x2]>>}. move=> _ _ /imsetP[y1 Gy1 ->] /imsetP[y2 Gy2 ->]. rewrite -(mulgKV y1 y2) conjgM -2!conjg_set1 -conjUg genJ pgroupJ. by rewrite pE // groupMl ?groupV. have sEG: <<E>> \subset G by rewrite gen_subG class_subG. have nEG: G \subset 'N(E) by apply: class_norm. have Ex: x \in E by apply: class_refl. have [P Px sylP]: exists2 P : {group gT}, x \in P & p.-Sylow(<<E>>) P. have sxxE: <<[set x; x]>> \subset <<E>> by rewrite genS // setUid sub1set. have{sxxE} [P sylP sxxP] := Sylow_superset sxxE (pE _ _ Ex Ex). by exists P => //; rewrite (subsetP sxxP) ?mem_gen ?setU11. case sEP: (E \subset P). apply: subsetP Ex; rewrite -gen_subG; apply: pcore_max. by apply: pgroupS (pHall_pgroup sylP); rewrite gen_subG. by rewrite /normal gen_subG class_subG // norms_gen. pose P_yD D := [pred y in E :\: P | p.-group <<y |: D>>]. pose P_D := [pred D : {set gT} | D \subset P :&: E & [exists y, P_yD D y]]. have{Ex Px}: P_D [set x]. rewrite /= sub1set inE Px Ex; apply/existsP=> /=. by case/subsetPn: sEP => y Ey Py; exists y; rewrite inE Ey Py pE. case/(@maxset_exists _ P_D)=> D /maxsetP[]; rewrite {P_yD P_D}/=. rewrite subsetI sub1set -andbA => /and3P[sDP sDE /existsP[y0]]. set B := _ |: D; rewrite inE -andbA => /and3P[Py0 Ey0 pB] maxD Dx ...
Theorem
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype prime bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action cyclic gproduct ", "From mathcomp Require Import gfunctor commutator pgroup center nilpotent" ]
solvable/sylow.v
Baer_Suzuki
tree:= Node { children : seq tree }.
Inductive
test_suite
[ "From mathcomp Require Import all_boot" ]
test_suite/test_guard.v
tree
ptree(T : Type) := singleton of T | branch of list (ptree T).
Inductive
test_suite
[ "From mathcomp Require Import all_boot" ]
test_suite/test_guard.v
ptree
tree_has(T : Type) (p : pred T) (t : ptree T) : bool := match t with | singleton x => p x | branch ts => has (tree_has p) ts end.
Fixpoint
test_suite
[ "From mathcomp Require Import all_boot" ]
test_suite/test_guard.v
tree_has
tree_all(T : Type) (p : pred T) (t : ptree T) : bool := match t with | singleton x => p x | branch ts => all (tree_all p) ts end.
Fixpoint
test_suite
[ "From mathcomp Require Import all_boot" ]
test_suite/test_guard.v
tree_all
traverse_id(t : tree) : tree := Node (map traverse_id (children t)).
Fixpoint
test_suite
[ "From mathcomp Require Import all_boot" ]
test_suite/test_guard.v
traverse_id
tree_foldr(T R : Type) (f : T -> R -> R) (z : R) (t : ptree T) : R := match t with | singleton x => f x z | branch ts => foldr (fun t z' => tree_foldr f z' t) z ts end.
Fixpoint
test_suite
[ "From mathcomp Require Import all_boot" ]
test_suite/test_guard.v
tree_foldr
tree_foldl(T R : Type) (f : R -> T -> R) (z : R) (t : ptree T) : R := match t with | singleton x => f z x | branch ts => foldl (tree_foldl f) z ts end.
Fixpoint
test_suite
[ "From mathcomp Require Import all_boot" ]
test_suite/test_guard.v
tree_foldl
eq_tree(x y : tree) {struct x} : bool := all2 eq_tree (children x) (children y).
Fixpoint
test_suite
[ "From mathcomp Require Import all_boot" ]
test_suite/test_guard.v
eq_tree
test_dup1: forall n : nat, odd n. Proof. move=> /[dup] m n; suff: odd n by []. Abort.
Lemma
test_suite
[ "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat" ]
test_suite/test_intro_rw.v
test_dup1
test_dup2: let n := 1 in False. Proof. move=> /[dup] m n; have : m = n := erefl. Abort.
Lemma
test_suite
[ "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat" ]
test_suite/test_intro_rw.v
test_dup2
test_swap1: forall (n : nat) (b : bool), odd n = b. Proof. move=> /[swap] b n; suff: odd n = b by []. Abort.
Lemma
test_suite
[ "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat" ]
test_suite/test_intro_rw.v
test_swap1
test_swap1: let n := 1 in let b := true in False. Proof. move=> /[swap] b n; have : odd n = b := erefl. Abort.
Lemma
test_suite
[ "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat" ]
test_suite/test_intro_rw.v
test_swap1
test_applyA B : forall (f : A -> B) (a : A), False. Proof. move=> /[apply] b. Check (b : B). Abort.
Lemma
test_suite
[ "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat" ]
test_suite/test_intro_rw.v
test_apply
test_swap_plusP Q : P -> Q -> False. Proof. move=> + /[dup] q. suff: P -> Q -> False by []. Abort.
Lemma
test_suite
[ "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat" ]
test_suite/test_intro_rw.v
test_swap_plus
test_dup_plus2P : P -> let x := 0 in False. Proof. move=> + /[dup] y. suff: P -> let x := 0 in False by []. Abort.
Lemma
test_suite
[ "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat" ]
test_suite/test_intro_rw.v
test_dup_plus2
test_swap_plusP Q R : P -> Q -> R -> False. Proof. move=> + /[swap]. suff: P -> R -> Q -> False by []. Abort.
Lemma
test_suite
[ "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat" ]
test_suite/test_intro_rw.v
test_swap_plus
test_swap_plus2P : P -> let x := 0 in let y := 1 in False. Proof. move=> + /[swap]. suff: P -> let y := 1 in let x := 0 in False by []. Abort.
Lemma
test_suite
[ "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat" ]
test_suite/test_intro_rw.v
test_swap_plus2
test_orb(a b c d : bool) : (a || b) || (c || d) = (a || c) || (b || d). Proof. time by rewrite orbACA. Abort.
Lemma
test_suite
[ "From mathcomp Require Import all_boot ssralg" ]
test_suite/test_ssrAC.v
test_orb
test_orb(a b c d : bool) : (a || b) || (c || d) = (a || c) || (b || d). Proof. time by rewrite (AC (2*2) ((1*3)*(2*4))). Abort.
Lemma
test_suite
[ "From mathcomp Require Import all_boot ssralg" ]
test_suite/test_ssrAC.v
test_orb
test_orb(a b c d : bool) : (a || b) || (c || d) = (a || c) || (b || d). Proof. time by rewrite orb.[AC (2*2) ((1*3)*(2*4))]. Qed.
Lemma
test_suite
[ "From mathcomp Require Import all_boot ssralg" ]
test_suite/test_ssrAC.v
test_orb
test_addn(a b c d : nat) : a + b + c + d = a + c + b + d. Proof. time by rewrite -addnA addnAC addnA addnAC. Abort.
Lemma
test_suite
[ "From mathcomp Require Import all_boot ssralg" ]
test_suite/test_ssrAC.v
test_addn
test_addn(a b c d : nat) : a + b + c + d = a + c + b + d. Proof. time by rewrite (ACl (1*3*2*4)). Abort.
Lemma
test_suite
[ "From mathcomp Require Import all_boot ssralg" ]
test_suite/test_ssrAC.v
test_addn
test_addn(a b c d : nat) : a + b + c + d = a + c + b + d. Proof. time by rewrite addn.[ACl 1*3*2*4]. Qed.
Lemma
test_suite
[ "From mathcomp Require Import all_boot ssralg" ]
test_suite/test_ssrAC.v
test_addn
test_addr(R : comRingType) (a b c d : R) : (a + b + c + d = a + c + b + d)%R. Proof. time by rewrite -GRing.addrA GRing.addrAC GRing.addrA GRing.addrAC. Abort.
Lemma
test_suite
[ "From mathcomp Require Import all_boot ssralg" ]
test_suite/test_ssrAC.v
test_addr
test_addr(R : comRingType) (a b c d : R) : (a + b + c + d = a + c + b + d)%R. Proof. time by rewrite (ACl (1*3*2*4)). Abort.
Lemma
test_suite
[ "From mathcomp Require Import all_boot ssralg" ]
test_suite/test_ssrAC.v
test_addr
test_addr(R : comRingType) (a b c d : R) : (a + b + c + d = a + c + b + d)%R. Proof. time by rewrite (@GRing.add R).[ACl 1*3*2*4]. Qed. Local Open Scope ring_scope. Import GRing.Theory.
Lemma
test_suite
[ "From mathcomp Require Import all_boot ssralg" ]
test_suite/test_ssrAC.v
test_addr
test_mulr(R : comRingType) (x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 : R) (x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 : R) : (x0 * x1) * (x2 * x3) * (x4 * x5) * (x6 * x7 * x8 * x9) * (x10 * x11) * (x12 * x13) * (x14 * x15) * (x16 * x17 * x18 * x19) * (x0 * x1) * (x2 * x3) * (x4 * x5) * (x6 * x7 * x8 * x9) * (x10 * x11) * (x12 * x13) * (x14 * x15) * (x16 * x17 * x18 * x19) = (x0 * x2 * x4 * x9) * (x1 * x3 * x5 * x7) * x6 * x8 * (x10 * x12 * x14 * x19) * (x11 * x13 * x15 * x17) * x16 * x18 * (x0 * x1) * (x2 * x3) * (x4 * x5) * (x6 * x7 * x8 * x9) * (x10 * x11) * (x12 * x13) * (x14 * x15) * (x16 * x17 * x18 * x19) *(x0 * x1) * (x2 * x3) * (x4 * x5) * (x6 * x7 * x8 * x9) * (x10 * x11) * (x12 * x13) * (x14 * x15) * (x16 * x17 * x18 * x19) * (x0 * x1) * (x2 * x3) * (x4 * x5) * (x6 * x7 * x8 * x9) *(x0 * x1) * (x2 * x3) * (x4 * x5) * (x6 * x7 * x8 * x9) * (x10 * x11) * (x12 * x13) * (x14 * x15) * (x16 * x17 * x18 * x19) * (x0 * x1) * (x2 * x3) * (x4 * x5) * (x6 * x7 * x8 * x9) * (x0 * x1) * (x2 * x3) * (x4 * x5) * (x6 * x7 * x8 * x9) * (x10 * x11) * (x12 * x13) * (x14 * x15) * (x16 * x17 * x18 * x19) *(x0 * x1) * (x2 * x3) * (x4 * x5) * (x6 * x7 * x8 * x9) * (x10 * x11) * (x12 * x13) * (x14 * x15) * (x16 * x17 * x18 * x19) * (x0 * x1) * (x2 * x3) * (x4 * x5) * (x6 * x7 * x8 * x9) *(x0 * x1) * (x2 * x3) * (x4 * x5) * (x6 * x7 * x8 * x9) * (x10 * x11) * (x12 * x13) * (x14 * x15) * (x16 * x17 * x18 * x19) * (x0 * x1) * (x2 * x3) * (x4 * x5) * (x6 * x ...
Lemma
test_suite
[ "From mathcomp Require Import all_boot ssralg" ]
test_suite/test_ssrAC.v
test_mulr
RecordZmodule_isSemiNormed (R : POrderedZmodule.type) M of GRing.Zmodule M := { norm : M -> R; ler_normD : forall x y, norm (x + y) <= norm x + norm y; normrMn : forall x n, norm (x *+ n) = norm x *+ n; normrN : forall x, norm (- x) = norm x; }. #[short(type="semiNormedZmodType")] HB.structure Definition SemiNormedZmodule (R : porderZmodType) := { M of Zmodule_isSemiNormed R M & GRing.Zmodule M }. HB.mixin Record SemiNormedZmodule_isPositiveDefinite (R : POrderedZmodule.type) M of @SemiNormedZmodule R M := { normr0_eq0 : forall x : M, norm x = 0 -> x = 0; }. #[short(type="normedZmodType")] HB.structure Definition NormedZmodule (R : porderZmodType) := { M of SemiNormedZmodule_isPositiveDefinite R M & SemiNormedZmodule R M }. Arguments norm {R M} x : rename. HB.factory Record Zmodule_isNormed (R : POrderedZmodule.type) M of GRing.Zmodule M := { norm : M -> R; ler_normD : forall x y, norm (x + y) <= norm x + norm y; normr0_eq0 : forall x, norm x = 0 -> x = 0; normrMn : forall x n, norm (x *+ n) = norm x *+ n; normrN : forall x, norm (- x) = norm x; }. HB.builders Context (R : POrderedZmodule.type) M of Zmodule_isNormed R M. HB.instance Definition _ := Zmodule_isSemiNormed.Build R M ler_normD normrMn normrN. HB.instance Definition _ := SemiNormedZmodule_isPositiveDefinite.Build R M normr0_eq0. HB.end.
HB.mixin
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
Record
RecordisNumRing R of GRing.NzRing R & POrderedZmodule R & NormedZmodule (POrderedZmodule.clone R _) R := { addr_gt0 : forall x y : R, 0 < x -> 0 < y -> 0 < (x + y); ger_leVge : forall x y : R, 0 <= x -> 0 <= y -> (x <= y) || (y <= x); normrM : {morph (norm : R -> R) : x y / x * y}; ler_def : forall x y : R, (x <= y) = (norm (y - x) == (y - x)); }. #[short(type="numDomainType")] HB.structure Definition NumDomain := { R of GRing.IntegralDomain R & POrderedZmodule R & NormedZmodule (POrderedZmodule.clone R _) R & isNumRing R }. Arguments addr_gt0 {_} [x y] : rename. Arguments ger_leVge {_} [x y] : rename.
HB.mixin
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
Record
normr:= norm.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
normr
sgr(x : R) : R := if x == 0 then 0 else if x < 0 then -1 else 1.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sgr
sg:= sgr.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
sg
real_axiom: Prop := forall x : R, x \is real.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_axiom
archimedean_axiom: Prop := forall x : R, exists ub, `|x| < ub%:R.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
archimedean_axiom
real_closed_axiom: Prop := forall (p : {poly R}) (a b : R), a <= b -> p.[a] <= 0 <= p.[b] -> exists2 x, a <= x <= b & root p x.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
real_closed_axiom
DefinitionRealDomain := { R of Order.Total ring_display R & NumDomain R }.
HB.structure
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
Definition
ger0_defx : (0 <= x) = (`|x| == x). Proof. by rewrite ler_def subr0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
ger0_def
subr_ge0x y : (0 <= x - y) = (y <= x). Proof. by rewrite ger0_def -ler_def. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod" ]
algebra/num_theory/numdomain.v
subr_ge0