fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
p'groupEpip G : p^'.-group G = (p \notin \pi(G)). Proof. exact: p'natEpi (cardG_gt0 G). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
p'groupEpi
pgroup_piG : \pi(G).-group G. Proof. by rewrite /=; apply: pnat_pi. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pgroup_pi
partG_eq1pi G : (#|G|`_pi == 1)%N = pi^'.-group G. Proof. exact: partn_eq1 (cardG_gt0 G). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
partG_eq1
pgroupPpi G : reflect (forall p, prime p -> p %| #|G| -> p \in pi) (pi.-group G). Proof. exact: pnatP. Qed. Arguments pgroupP {pi G}.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pgroupP
pgroup1pi : pi.-group [1 gT]. Proof. by rewrite /pgroup cards1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pgroup1
pgroupSpi G H : H \subset G -> pi.-group G -> pi.-group H. Proof. by move=> sHG; apply: pnat_dvd (cardSg sHG). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pgroupS
oddSgG H : H \subset G -> odd #|G| -> odd #|H|. Proof. by rewrite !odd_2'nat; apply: pgroupS. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
oddSg
odd_pgroup_oddp G : odd p -> p.-group G -> odd #|G|. Proof. move=> p_odd pG; rewrite odd_2'nat (pi_pnat pG) // !inE. by case: eqP p_odd => // ->. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
odd_pgroup_odd
card_pgroupp G : p.-group G -> #|G| = (p ^ logn p #|G|)%N. Proof. by move=> pG; rewrite -p_part part_pnat_id. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
card_pgroup
properG_ltn_logp G H : p.-group G -> H \proper G -> logn p #|H| < logn p #|G|. Proof. move=> pG; rewrite properEneq eqEcard andbC ltnNge => /andP[sHG]. rewrite sHG /= {1}(card_pgroup pG) {1}(card_pgroup (pgroupS sHG pG)). by apply: contra; case: p {pG} => [|p] leHG; rewrite ?logn0 // leq_pexp2l. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
properG_ltn_log
pgroupMpi G H : pi.-group (G * H) = pi.-group G && pi.-group H. Proof. have GH_gt0: 0 < #|G :&: H| := cardG_gt0 _. rewrite /pgroup -(mulnK #|_| GH_gt0) -mul_cardG -(LagrangeI G H) -mulnA. by rewrite mulKn // -(LagrangeI H G) setIC !pnatM andbCA; case: (pnat _). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pgroupM
pgroupJpi G x : pi.-group (G :^ x) = pi.-group G. Proof. by rewrite /pgroup cardJg. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pgroupJ
pgroup_pp P : p.-group P -> p_group P. Proof. case: (leqP #|P| 1); first by move=> /card_le1_trivg-> _; apply: pgroup1. move/pdiv_prime=> pr_q pgP; have:= pgroupP pgP _ pr_q (pdiv_dvd _). by rewrite /p_group => /eqnP->. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pgroup_p
p_groupPP : p_group P -> exists2 p, prime p & p.-group P. Proof. case: (ltnP 1 #|P|); first by move/pdiv_prime; exists (pdiv #|P|). by move/card_le1_trivg=> -> _; exists 2 => //; apply: pgroup1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
p_groupP
pgroup_pdivp G : p.-group G -> G :!=: 1 -> [/\ prime p, p %| #|G| & exists m, #|G| = p ^ m.+1]%N. Proof. move=> pG; rewrite trivg_card1; case/p_groupP: (pgroup_p pG) => q q_pr qG. move/implyP: (pgroupP pG q q_pr); case/p_natP: qG => // [[|m] ->] //. by rewrite dvdn_exp // => /eqnP <- _; split; rewrite ?dvdn_exp //; exists m. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pgroup_pdiv
coprime_p'groupp K R : coprime #|K| #|R| -> p.-group R -> R :!=: 1 -> p^'.-group K. Proof. move=> coKR pR ntR; have [p_pr _ [e oK]] := pgroup_pdiv pR ntR. by rewrite oK coprime_sym coprime_pexpl // prime_coprime // -p'natE in coKR. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
coprime_p'group
card_Hallpi G H : pi.-Hall(G) H -> #|H| = (#|G|`_pi)%N. Proof. case/and3P=> sHG piH pi'H; rewrite -(Lagrange sHG). by rewrite partnM ?Lagrange // part_pnat_id ?part_p'nat ?muln1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
card_Hall
pHall_subpi A B : pi.-Hall(A) B -> B \subset A. Proof. by case/andP. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pHall_sub
pHall_pgrouppi A B : pi.-Hall(A) B -> pi.-group B. Proof. by case/and3P. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pHall_pgroup
pHallPpi G H : reflect (H \subset G /\ #|H| = #|G|`_pi)%N (pi.-Hall(G) H). Proof. apply: (iffP idP) => [piH | [sHG oH]]. by split; [apply: pHall_sub piH | apply: card_Hall]. rewrite /pHall sHG -divgS // /pgroup oH. by rewrite -{2}(@partnC pi #|G|) ?mulKn ?part_pnat. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pHallP
pHallEpi G H : pi.-Hall(G) H = (H \subset G) && (#|H| == #|G|`_pi)%N. Proof. by apply/pHallP/andP=> [] [->] /eqP. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pHallE
coprime_mulpG_Hallpi G K R : K * R = G -> pi.-group K -> pi^'.-group R -> pi.-Hall(G) K /\ pi^'.-Hall(G) R. Proof. move=> defG piK pi'R; apply/andP. rewrite /pHall piK -!divgS /= -defG ?mulG_subl ?mulg_subr //= pnatNK. by rewrite coprime_cardMg ?(pnat_coprime piK) // mulKn ?mulnK //; apply/and3P. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
coprime_mulpG_Hall
coprime_mulGp_Hallpi G K R : K * R = G -> pi^'.-group K -> pi.-group R -> pi^'.-Hall(G) K /\ pi.-Hall(G) R. Proof. move=> defG pi'K piR; apply/andP; rewrite andbC; apply/andP. by apply: coprime_mulpG_Hall => //; rewrite -(comm_group_setP _) defG ?groupP. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
coprime_mulGp_Hall
eq_in_pHallpi rho G H : {in \pi(G), pi =i rho} -> pi.-Hall(G) H = rho.-Hall(G) H. Proof. move=> eq_pi_rho; apply: andb_id2l => sHG. congr (_ && _); apply: eq_in_pnat => p piHp. by apply: eq_pi_rho; apply: (piSg sHG). by congr (~~ _); apply: eq_pi_rho; apply: (pi_of_dvd (dvdn_indexg G H)). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
eq_in_pHall
eq_pHallpi rho G H : pi =i rho -> pi.-Hall(G) H = rho.-Hall(G) H. Proof. by move=> eq_pi_rho; apply: eq_in_pHall (in1W eq_pi_rho). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
eq_pHall
eq_p'Hallpi rho G H : pi =i rho -> pi^'.-Hall(G) H = rho^'.-Hall(G) H. Proof. by move=> eq_pi_rho; apply: eq_pHall (eq_negn _). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
eq_p'Hall
pHallNKpi G H : pi^'^'.-Hall(G) H = pi.-Hall(G) H. Proof. exact: eq_pHall (negnK _). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pHallNK
subHall_Hallpi rho G H K : rho.-Hall(G) H -> {subset pi <= rho} -> pi.-Hall(H) K -> pi.-Hall(G) K. Proof. move=> hallH pi_sub_rho hallK. rewrite pHallE (subset_trans (pHall_sub hallK) (pHall_sub hallH)) /=. by rewrite (card_Hall hallK) (card_Hall hallH) partn_part. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
subHall_Hall
subHall_Sylowpi p G H P : pi.-Hall(G) H -> p \in pi -> p.-Sylow(H) P -> p.-Sylow(G) P. Proof. move=> hallH pi_p sylP; have [sHG piH _] := and3P hallH. rewrite pHallE (subset_trans (pHall_sub sylP) sHG) /=. by rewrite (card_Hall sylP) (card_Hall hallH) partn_part // => q; move/eqnP->. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
subHall_Sylow
pHall_Hallpi A B : pi.-Hall(A) B -> Hall A B. Proof. by case/and3P=> sBA piB pi'B; rewrite /Hall sBA (pnat_coprime piB). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pHall_Hall
Hall_piG H : Hall G H -> \pi(H).-Hall(G) H. Proof. by case/andP=> sHG coHG /=; rewrite /pHall sHG /pgroup pnat_pi -?coprime_pi'. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
Hall_pi
HallPG H : Hall G H -> exists pi, pi.-Hall(G) H. Proof. by exists \pi(H); apply: Hall_pi. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
HallP
sdprod_HallG K H : K ><| H = G -> Hall G K = Hall G H. Proof. case/sdprod_context=> /andP[sKG _] sHG defG _ tiKH. by rewrite /Hall sKG sHG -!divgS // -defG TI_cardMg // coprime_sym mulKn ?mulnK. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
sdprod_Hall
coprime_sdprod_Hall_lG K H : K ><| H = G -> coprime #|K| #|H| = Hall G K. Proof. case/sdprod_context=> /andP[sKG _] _ defG _ tiKH. by rewrite /Hall sKG -divgS // -defG TI_cardMg ?mulKn. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
coprime_sdprod_Hall_l
coprime_sdprod_Hall_rG K H : K ><| H = G -> coprime #|K| #|H| = Hall G H. Proof. by move=> defG; rewrite (coprime_sdprod_Hall_l defG) (sdprod_Hall defG). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
coprime_sdprod_Hall_r
compl_pHallpi K H G : pi.-Hall(G) K -> (H \in [complements to K in G]) = pi^'.-Hall(G) H. Proof. move=> hallK; apply/complP/idP=> [[tiKH mulKH] | hallH]. have [_] := andP hallK; rewrite /pHall pnatNK -{3}(invGid G) -mulKH mulG_subr. rewrite invMG !indexMg -indexgI andbC. by rewrite -[#|K : H|]indexgI setIC tiKH !indexg1. have [[sKG piK _] [sHG pi'H _]] := (and3P hallK, and3P hallH). have tiKH: K :&: H = 1 := coprime_TIg (pnat_coprime piK pi'H). split=> //; apply/eqP; rewrite eqEcard mul_subG //= TI_cardMg //. by rewrite (card_Hall hallK) (card_Hall hallH) partnC. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
compl_pHall
compl_p'Hallpi K H G : pi^'.-Hall(G) K -> (H \in [complements to K in G]) = pi.-Hall(G) H. Proof. by move/compl_pHall->; apply: eq_pHall (negnK pi). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
compl_p'Hall
sdprod_normal_p'HallPpi K H G : K <| G -> pi^'.-Hall(G) H -> reflect (K ><| H = G) (pi.-Hall(G) K). Proof. move=> nsKG hallH; rewrite -(compl_p'Hall K hallH). exact: sdprod_normal_complP. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
sdprod_normal_p'HallP
sdprod_normal_pHallPpi K H G : K <| G -> pi.-Hall(G) H -> reflect (K ><| H = G) (pi^'.-Hall(G) K). Proof. by move=> nsKG hallH; apply: sdprod_normal_p'HallP; rewrite ?pHallNK. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
sdprod_normal_pHallP
pHallJ2pi G H x : pi.-Hall(G :^ x) (H :^ x) = pi.-Hall(G) H. Proof. by rewrite !pHallE conjSg !cardJg. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pHallJ2
pHallJnormpi G H x : x \in 'N(G) -> pi.-Hall(G) (H :^ x) = pi.-Hall(G) H. Proof. by move=> Nx; rewrite -{1}(normP Nx) pHallJ2. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pHallJnorm
pHallJpi G H x : x \in G -> pi.-Hall(G) (H :^ x) = pi.-Hall(G) H. Proof. by move=> Gx; rewrite -{1}(conjGid Gx) pHallJ2. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pHallJ
HallJG H x : x \in G -> Hall G (H :^ x) = Hall G H. Proof. by move=> Gx; rewrite /Hall -!divgI -{1 3}(conjGid Gx) conjSg -conjIg !cardJg. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
HallJ
psubgroupJpi G H x : x \in G -> pi.-subgroup(G) (H :^ x) = pi.-subgroup(G) H. Proof. by move=> Gx; rewrite /psubgroup pgroupJ -{1}(conjGid Gx) conjSg. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
psubgroupJ
p_groupJP x : p_group (P :^ x) = p_group P. Proof. by rewrite /p_group cardJg pgroupJ. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
p_groupJ
SylowJG P x : x \in G -> Sylow G (P :^ x) = Sylow G P. Proof. by move=> Gx; rewrite /Sylow p_groupJ HallJ. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
SylowJ
p_Sylowp G P : p.-Sylow(G) P -> Sylow G P. Proof. by move=> pP; rewrite /Sylow (pgroup_p (pHall_pgroup pP)) (pHall_Hall pP). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
p_Sylow
pHall_sublpi G K H : H \subset K -> K \subset G -> pi.-Hall(G) H -> pi.-Hall(K) H. Proof. by move=> sHK sKG; rewrite /pHall sHK => /and3P[_ ->]; apply/pnat_dvd/indexSg. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pHall_subl
Hall1G : Hall G 1. Proof. by rewrite /Hall sub1G cards1 coprime1n. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
Hall1
p_group1: @p_group gT 1. Proof. by rewrite (@pgroup_p 2) ?pgroup1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
p_group1
Sylow1G : Sylow G 1. Proof. by rewrite /Sylow p_group1 Hall1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
Sylow1
SylowPG P : reflect (exists2 p, prime p & p.-Sylow(G) P) (Sylow G P). Proof. apply: (iffP idP) => [| [p _]]; last exact: p_Sylow. case/andP=> /p_groupP[p p_pr] /p_natP[[P1 _ | n oP /Hall_pi]]; last first. by rewrite /= oP pi_of_exp // (eq_pHall _ _ (pi_of_prime _)) //; exists p. have{p p_pr P1} ->: P :=: 1 by apply: card1_trivg; rewrite P1. pose p := pdiv #|G|.+1; have p_pr: prime p by rewrite pdiv_prime ?ltnS. exists p; rewrite // pHallE sub1G cards1 part_p'nat //. apply/pgroupP=> q pr_q qG; apply/eqnP=> def_q. have: p %| #|G| + 1 by rewrite addn1 pdiv_dvd. by rewrite dvdn_addr -def_q // Euclid_dvd1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
SylowP
p_elt_exppi x m : pi.-elt (x ^+ m) = (#[x]`_pi^' %| m). Proof. apply/idP/idP=> [pi_xm | /dvdnP[q ->{m}]]; last first. rewrite mulnC; apply: pnat_dvd (part_pnat pi #[x]). by rewrite order_dvdn -expgM mulnC mulnA partnC // -order_dvdn dvdn_mulr. rewrite -(@Gauss_dvdr _ #[x ^+ m]); last first. by rewrite coprime_sym (pnat_coprime pi_xm) ?part_pnat. apply: (@dvdn_trans #[x]); first by rewrite -{2}[#[x]](partnC pi) ?dvdn_mull. by rewrite order_dvdn mulnC expgM expg_order. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
p_elt_exp
mem_p_eltpi x G : pi.-group G -> x \in G -> pi.-elt x. Proof. by move=> piG Gx; apply: pgroupS piG; rewrite cycle_subG. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
mem_p_elt
p_eltM_normpi x y : x \in 'N(<[y]>) -> pi.-elt x -> pi.-elt y -> pi.-elt (x * y). Proof. move=> nyx pi_x pi_y; apply: (@mem_p_elt pi _ (<[x]> <*> <[y]>)%G). by rewrite /= norm_joinEl ?cycle_subG // pgroupM; apply/andP. by rewrite groupM // mem_gen // inE cycle_id ?orbT. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
p_eltM_norm
p_eltMpi x y : commute x y -> pi.-elt x -> pi.-elt y -> pi.-elt (x * y). Proof. move=> cxy; apply: p_eltM_norm; apply: (subsetP (cent_sub _)). by rewrite cent_gen cent_set1; apply/cent1P. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
p_eltM
p_elt1pi : pi.-elt (1 : gT). Proof. by rewrite /p_elt order1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
p_elt1
p_eltVpi x : pi.-elt x^-1 = pi.-elt x. Proof. by rewrite /p_elt orderV. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
p_eltV
p_eltXpi x n : pi.-elt x -> pi.-elt (x ^+ n). Proof. by rewrite -{1}[x]expg1 !p_elt_exp dvdn1 => /eqnP->. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
p_eltX
p_eltJpi x y : pi.-elt (x ^ y) = pi.-elt x. Proof. by congr pnat; rewrite orderJ. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
p_eltJ
sub_p_eltpi1 pi2 x : {subset pi1 <= pi2} -> pi1.-elt x -> pi2.-elt x. Proof. by move=> pi12; apply: sub_in_pnat => q _; apply: pi12. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
sub_p_elt
eq_p_eltpi1 pi2 x : pi1 =i pi2 -> pi1.-elt x = pi2.-elt x. Proof. by move=> pi12; apply: eq_pnat. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
eq_p_elt
p_eltNKpi x : pi^'^'.-elt x = pi.-elt x. Proof. exact: pnatNK. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
p_eltNK
eq_consttpi1 pi2 x : pi1 =i pi2 -> x.`_pi1 = x.`_pi2. Proof. move=> pi12; congr (x ^+ (chinese _ _ 1 0)); apply: eq_partn => // a. by congr (~~ _); apply: pi12. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
eq_constt
consttNKpi x : x.`_pi^'^' = x.`_pi. Proof. by rewrite /constt !partnNK. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
consttNK
cycle_consttpi x : x.`_pi \in <[x]>. Proof. exact: mem_cycle. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
cycle_constt
consttVpi x : (x^-1).`_pi = (x.`_pi)^-1. Proof. by rewrite /constt expgVn orderV. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
consttV
constt1pi : 1.`_pi = 1 :> gT. Proof. exact: expg1n. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
constt1
consttJpi x y : (x ^ y).`_pi = x.`_pi ^ y. Proof. by rewrite /constt orderJ conjXg. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
consttJ
p_elt_consttpi x : pi.-elt x.`_pi. Proof. by rewrite p_elt_exp /chinese addn0 mul1n dvdn_mulr. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
p_elt_constt
consttCpi x : x.`_pi * x.`_pi^' = x. Proof. apply/eqP; rewrite -{3}[x]expg1 -expgD eq_expg_mod_order. rewrite partnNK -{5 6}(@partnC pi #[x]) // /chinese !addn0. by rewrite chinese_remainder ?chinese_modl ?chinese_modr ?coprime_partC ?eqxx. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
consttC
p'_elt_consttpi x : pi^'.-elt (x * (x.`_pi)^-1). Proof. by rewrite -{1}(consttC pi^' x) consttNK mulgK p_elt_constt. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
p'_elt_constt
order_consttpi (x : gT) : #[x.`_pi] = (#[x]`_pi)%N. Proof. rewrite -{2}(consttC pi x) orderM; [|exact: commuteX2|]; last first. by apply: (@pnat_coprime pi); apply: p_elt_constt. by rewrite partnM // part_pnat_id ?part_p'nat ?muln1 //; apply: p_elt_constt. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
order_constt
consttMpi x y : commute x y -> (x * y).`_pi = x.`_pi * y.`_pi. Proof. move=> cxy; pose m := #|<<[set x; y]>>|; have m_gt0: 0 < m := cardG_gt0 _. pose k := chinese m`_pi m`_pi^' 1 0. suffices kXpi z: z \in <<[set x; y]>> -> z.`_pi = z ^+ k. by rewrite !kXpi ?expgMn // ?groupM ?mem_gen // !inE eqxx ?orbT. move=> xyz; have{xyz} zm: #[z] %| m by rewrite cardSg ?cycle_subG. apply/eqP; rewrite eq_expg_mod_order -{3 4}[#[z]](partnC pi) //. rewrite chinese_remainder ?chinese_modl ?chinese_modr ?coprime_partC //. rewrite -!(modn_dvdm k (partn_dvd _ m_gt0 zm)). rewrite chinese_modl ?chinese_modr ?coprime_partC //. by rewrite !modn_dvdm ?partn_dvd ?eqxx. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
consttM
consttXpi x n : (x ^+ n).`_pi = x.`_pi ^+ n. Proof. elim: n => [|n IHn]; first exact: constt1. by rewrite !expgS consttM ?IHn //; apply: commuteX. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
consttX
constt1Ppi x : reflect (x.`_pi = 1) (pi^'.-elt x). Proof. rewrite -{2}[x]expg1 p_elt_exp -order_constt consttNK order_dvdn expg1. exact: eqP. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
constt1P
constt_p_eltpi x : pi.-elt x -> x.`_pi = x. Proof. by rewrite -p_eltNK -{3}(consttC pi x) => /constt1P->; rewrite mulg1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
constt_p_elt
sub_in_consttpi1 pi2 x : {in \pi(#[x]), {subset pi1 <= pi2}} -> x.`_pi2.`_pi1 = x.`_pi1. Proof. move=> pi12; rewrite -{2}(consttC pi2 x) consttM; last exact: commuteX2. rewrite (constt1P _ x.`_pi2^' _) ?mulg1 //. apply: sub_in_pnat (p_elt_constt _ x) => p; rewrite order_constt => pi_p. by apply/contra/pi12; rewrite -[#[x]](partnC pi2^') // primesM // pi_p. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
sub_in_constt
prod_consttx : \prod_(0 <= p < #[x].+1) x.`_p = x. Proof. pose lp n := [pred p | p < n]. have: (lp #[x].+1).-elt x by apply/pnatP=> // p _; apply: dvdn_leq. move/constt_p_elt=> def_x; symmetry; rewrite -{1}def_x {def_x}. elim: _.+1 => [|p IHp]. by rewrite big_nil; apply/constt1P; apply/pgroupP. rewrite big_nat_recr //= -{}IHp -(consttC (lp p) x.`__); congr (_ * _). by rewrite sub_in_constt // => q _; apply: leqW. set y := _.`__; rewrite -(consttC p y) (constt1P p^' _ _) ?mulg1. by rewrite 2?sub_in_constt // => q _; move/eqnP->; rewrite !inE ?ltnn. rewrite /p_elt pnatNK !order_constt -partnI. apply: sub_in_pnat (part_pnat _ _) => q _. by rewrite !inE ltnS -leqNgt -eqn_leq. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
prod_constt
max_pgroupJpi M G x : x \in G -> [max M | pi.-subgroup(G) M] -> [max M :^ x of M | pi.-subgroup(G) M]. Proof. move=> Gx /maxgroupP[piM maxM]; apply/maxgroupP. split=> [|H piH]; first by rewrite psubgroupJ. by rewrite -(conjsgKV x H) conjSg => /maxM/=-> //; rewrite psubgroupJ ?groupV. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
max_pgroupJ
comm_sub_max_pgrouppi H M G : [max M | pi.-subgroup(G) M] -> pi.-group H -> H \subset G -> commute H M -> H \subset M. Proof. case/maxgroupP=> /andP[sMG piM] maxM piH sHG cHM. rewrite -(maxM (H <*> M)%G) /= comm_joingE ?(mulG_subl, mulG_subr) //. by rewrite /psubgroup pgroupM piM piH mul_subG. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
comm_sub_max_pgroup
normal_sub_max_pgrouppi H M G : [max M | pi.-subgroup(G) M] -> pi.-group H -> H <| G -> H \subset M. Proof. move=> maxM piH /andP[sHG nHG]. apply: comm_sub_max_pgroup piH sHG _ => //; apply: commute_sym; apply: normC. by apply: subset_trans nHG; case/andP: (maxgroupp maxM). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
normal_sub_max_pgroup
norm_sub_max_pgrouppi H M G : [max M | pi.-subgroup(G) M] -> pi.-group H -> H \subset G -> H \subset 'N(M) -> H \subset M. Proof. by move=> maxM piH sHG /normC; apply: comm_sub_max_pgroup piH sHG. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
norm_sub_max_pgroup
sub_pHallpi H G K : pi.-Hall(G) H -> pi.-group K -> H \subset K -> K \subset G -> K :=: H. Proof. move=> hallH piK sHK sKG; apply/eqP; rewrite eq_sym eqEcard sHK. by rewrite (card_Hall hallH) -(part_pnat_id piK) dvdn_leq ?partn_dvd ?cardSg. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
sub_pHall
Hall_maxpi H G : pi.-Hall(G) H -> [max H | pi.-subgroup(G) H]. Proof. move=> hallH; apply/maxgroupP; split=> [|K /andP[sKG piK] sHK]. by rewrite /psubgroup; case/and3P: hallH => ->. exact: (sub_pHall hallH). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
Hall_max
pHall_idpi H G : pi.-Hall(G) H -> pi.-group G -> H :=: G. Proof. by move=> hallH piG; rewrite (sub_pHall hallH piG) ?(pHall_sub hallH). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pHall_id
psubgroup1pi G : pi.-subgroup(G) 1. Proof. by rewrite /psubgroup sub1G pgroup1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
psubgroup1
Cauchyp G : prime p -> p %| #|G| -> {x | x \in G & #[x] = p}. Proof. move=> p_pr; have [n] := ubnP #|G|; elim: n G => // n IHn G /ltnSE-leGn pG. pose xpG := [pred x in G | #[x] == p]. have [x /andP[Gx /eqP] | no_x] := pickP xpG; first by exists x. have{pG n leGn IHn} pZ: p %| #|'C_G(G)|. suffices /dvdn_addl <-: p %| #|G :\: 'C(G)| by rewrite cardsID. have /acts_sum_card_orbit <-: [acts G, on G :\: 'C(G) | 'J]. by apply/actsP=> x Gx y; rewrite !inE -!mem_conjgV -centJ conjGid ?groupV. elim/big_rec: _ => // _ _ /imsetP[x /setDP[Gx nCx] ->] /dvdn_addl->. have ltCx: 'C_G[x] \proper G by rewrite properE subsetIl subsetIidl sub_cent1. have /negP: ~ p %| #|'C_G[x]|. case/(IHn _ (leq_trans (proper_card ltCx) leGn))=> y /setIP[Gy _] /eqP-oy. by have /andP[] := no_x y. by apply/implyP; rewrite -index_cent1 indexgI implyNb -Euclid_dvdM ?LagrangeI. have [Q maxQ _]: {Q | [max Q | p^'.-subgroup('C_G(G)) Q] & 1%G \subset Q}. by apply: maxgroup_exists; apply: psubgroup1. case/andP: (maxgroupp maxQ) => sQC; rewrite /pgroup p'natE // => /negP[]. apply: dvdn_trans pZ (cardSg _); apply/subsetP=> x /setIP[Gx Cx]. rewrite -sub1set -gen_subG (normal_sub_max_pgroup maxQ) //; last first. rewrite /normal subsetI !cycle_subG ?Gx ?cents_norm ?subIset ?andbT //=. by rewrite centsC cycle_subG Cx. rewrite /pgroup p'natE //= -[#|_|]/#[x]; apply/dvdnP=> [[m oxm]]. have m_gt0: 0 < m by apply: dvdn_gt0 (order_gt0 x) _; rewrite oxm dvdn_mulr. case/idP: (no_x (x ^+ m)); rewrite /= groupX ...
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
Cauchy
sub_normal_Hallpi G H K : pi.-Hall(G) H -> H <| G -> K \subset G -> (K \subset H) = pi.-group K. Proof. move=> hallH nsHG sKG; apply/idP/idP=> [sKH | piK]. by rewrite (pgroupS sKH) ?(pHall_pgroup hallH). apply: norm_sub_max_pgroup (Hall_max hallH) piK _ _ => //. exact: subset_trans sKG (normal_norm nsHG). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
sub_normal_Hall
mem_normal_Hallpi H G x : pi.-Hall(G) H -> H <| G -> x \in G -> (x \in H) = pi.-elt x. Proof. by rewrite -!cycle_subG; apply: sub_normal_Hall. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
mem_normal_Hall
uniq_normal_Hallpi H G K : pi.-Hall(G) H -> H <| G -> [max K | pi.-subgroup(G) K] -> K :=: H. Proof. move=> hallH nHG /maxgroupP[/andP[sKG piK] /(_ H) -> //]. exact: (maxgroupp (Hall_max hallH)). by rewrite (sub_normal_Hall hallH). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
uniq_normal_Hall
normal_max_pgroup_HallG H : [max H | pi.-subgroup(G) H] -> H <| G -> pi.-Hall(G) H. Proof. case/maxgroupP=> /andP[sHG piH] maxH nsHG; have [_ nHG] := andP nsHG. rewrite /pHall sHG piH; apply/pnatP=> // p p_pr. rewrite inE /= -pnatE // -card_quotient //. case/Cauchy=> //= Hx; rewrite -sub1set -gen_subG -/<[Hx]> /order. case/inv_quotientS=> //= K -> sHK sKG {Hx}. rewrite card_quotient ?(subset_trans sKG) // => iKH; apply/negP=> pi_p. rewrite -iKH -divgS // (maxH K) ?divnn ?cardG_gt0 // in p_pr. by rewrite /psubgroup sKG /pgroup -(Lagrange sHK) mulnC pnatM iKH pi_p. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
normal_max_pgroup_Hall
setI_normal_HallG H K : H <| G -> pi.-Hall(G) H -> K \subset G -> pi.-Hall(K) (H :&: K). Proof. move=> nsHG hallH sKG; apply: normal_max_pgroup_Hall; last first. by rewrite /= setIC (normalGI sKG nsHG). apply/maxgroupP; split=> [|M /andP[sMK piM] sHK_M]. by rewrite /psubgroup subsetIr (pgroupS (subsetIl _ _) (pHall_pgroup hallH)). apply/eqP; rewrite eqEsubset sHK_M subsetI sMK !andbT. by rewrite (sub_normal_Hall hallH) // (subset_trans sMK). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
setI_normal_Hall
morphim_pgrouppi G : pi.-group G -> pi.-group (f @* G). Proof. by apply: pnat_dvd; apply: dvdn_morphim. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
morphim_pgroup
morphim_oddG : odd #|G| -> odd #|f @* G|. Proof. by rewrite !odd_2'nat; apply: morphim_pgroup. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
morphim_odd
pmorphim_pgrouppi G : pi.-group ('ker f) -> G \subset D -> pi.-group (f @* G) = pi.-group G. Proof. move=> piker sGD; apply/idP/idP=> [pifG|]; last exact: morphim_pgroup. apply: (@pgroupS _ _ (f @*^-1 (f @* G))); first by rewrite -sub_morphim_pre. by rewrite /pgroup card_morphpre ?morphimS // pnatM; apply/andP. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pmorphim_pgroup
morphim_p_indexpi G H : H \subset D -> pi.-nat #|G : H| -> pi.-nat #|f @* G : f @* H|. Proof. by move=> sHD; apply: pnat_dvd; rewrite index_morphim ?subIset // sHD orbT. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
morphim_p_index
morphim_pHallpi G H : H \subset D -> pi.-Hall(G) H -> pi.-Hall(f @* G) (f @* H). Proof. move=> sHD /and3P[sHG piH pi'GH]. by rewrite /pHall morphimS // morphim_pgroup // morphim_p_index. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
morphim_pHall
pmorphim_pHallpi G H : G \subset D -> H \subset D -> pi.-subgroup(H :&: G) ('ker f) -> pi.-Hall(f @* G) (f @* H) = pi.-Hall(G) H. Proof. move=> sGD sHD /andP[/subsetIP[sKH sKG] piK]; rewrite !pHallE morphimSGK //. apply: andb_id2l => sHG; rewrite -(Lagrange sKH) -(Lagrange sKG) partnM //. by rewrite (part_pnat_id piK) !card_morphim !(setIidPr _) // eqn_pmul2l. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pmorphim_pHall
morphim_HallG H : H \subset D -> Hall G H -> Hall (f @* G) (f @* H). Proof. by move=> sHD /HallP[pi piH]; apply: (@pHall_Hall _ pi); apply: morphim_pHall. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
morphim_Hall