fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
morphim_pSylowp G P : P \subset D -> p.-Sylow(G) P -> p.-Sylow(f @* G) (f @* P). Proof. exact: morphim_pHall. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
morphim_pSylow
morphim_p_groupP : p_group P -> p_group (f @* P). Proof. by move/morphim_pgroup; apply: pgroup_p. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
morphim_p_group
morphim_SylowG P : P \subset D -> Sylow G P -> Sylow (f @* G) (f @* P). Proof. by move=> sPD /andP[pP hallP]; rewrite /Sylow morphim_p_group // morphim_Hall. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
morphim_Sylow
morph_p_eltpi x : x \in D -> pi.-elt x -> pi.-elt (f x). Proof. by move=> Dx; apply: pnat_dvd; apply: morph_order. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
morph_p_elt
morph_consttpi x : x \in D -> f x.`_pi = (f x).`_pi. Proof. move=> Dx; rewrite -{2}(consttC pi x) morphM ?groupX //. rewrite consttM; last by rewrite !morphX //; apply: commuteX2. have: pi.-elt (f x.`_pi) by rewrite morph_p_elt ?groupX ?p_elt_constt //. have: pi^'.-elt (f x.`_pi^') by rewrite morph_p_elt ?groupX ?p_elt_constt //. by move/constt1P->; move/constt_p_elt->; rewrite mulg1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
morph_constt
quotient_pgroup: pi.-group (K / H). Proof. exact: morphim_pgroup. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
quotient_pgroup
quotient_pHall: K \subset 'N(H) -> pi.-Hall(G) K -> pi.-Hall(G / H) (K / H). Proof. exact: morphim_pHall. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
quotient_pHall
quotient_odd: odd #|K| -> odd #|K / H|. Proof. exact: morphim_odd. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
quotient_odd
pquotient_pgroup: G \subset 'N(K) -> pi.-group (G / K) = pi.-group G. Proof. by move=> nKG; rewrite pmorphim_pgroup ?ker_coset. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pquotient_pgroup
pquotient_pHall: K <| G -> K <| H -> pi.-Hall(G / K) (H / K) = pi.-Hall(G) H. Proof. case/andP=> sKG nKG; case/andP=> sKH nKH. by rewrite pmorphim_pHall // ker_coset /psubgroup subsetI sKH sKG. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pquotient_pHall
ltn_log_quotient: p.-group G -> H :!=: 1 -> H \subset G -> logn p #|G / H| < logn p #|G|. Proof. move=> pG ntH sHG; apply: contraLR (ltn_quotient ntH sHG); rewrite -!leqNgt. rewrite {2}(card_pgroup pG) {2}(card_pgroup (morphim_pgroup _ pG)). by case: (posnP p) => [-> //|]; apply: leq_pexp2l. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
ltn_log_quotient
logn_quotient_cent_cyclic_pgroup: p.-group C -> cyclic C -> logn p #|G / 'C_G(C)| <= (logn p #|C|).-1. Proof. move=> pC cycC; have [-> | ntC] := eqsVneq C 1. by rewrite cent1T setIT trivg_quotient cards1 logn1. have [p_pr _ [e oC]] := pgroup_pdiv pC ntC. rewrite -ker_conj_aut (card_isog (first_isog_loc _ _)) //. apply: leq_trans (dvdn_leq_log _ _ (cardSg (Aut_conj_aut _ _))) _ => //. rewrite card_Aut_cyclic // oC totient_pfactor //= logn_Gauss ?pfactorK //. by rewrite prime_coprime // gtnNdvd // -(subnKC (prime_gt1 p_pr)). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
logn_quotient_cent_cyclic_pgroup
p'group_quotient_cent_prime: prime p -> #|C| %| p -> p^'.-group (G / 'C_G(C)). Proof. move=> p_pr pC; have pgC: p.-group C := pnat_dvd pC (pnat_id p_pr). have [_ dv_p] := primeP p_pr; case/pred2P: {dv_p pC}(dv_p _ pC) => [|pC]. by move/card1_trivg->; rewrite cent1T setIT trivg_quotient pgroup1. have le_oGC := logn_quotient_cent_cyclic_pgroup pgC. rewrite /pgroup -partn_eq1 ?cardG_gt0 // -dvdn1 p_part pfactor_dvdn // logn1. by rewrite (leq_trans (le_oGC _)) ?prime_cyclic // pC ?(pfactorK 1). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
p'group_quotient_cent_prime
pcore:= \bigcap_(G | [max G | pi.-subgroup(A) G]) G.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pcore
pcore_group: {group gT} := Eval hnf in [group of pcore].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pcore_group
pcore_modpi B := coset B @*^-1 'O_pi(A / B).
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pcore_mod
pcore_mod_grouppi B : {group gT} := Eval hnf in [group of pcore_mod pi B].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pcore_mod_group
pseries:= foldr pcore_mod 1 (rev pis).
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pseries
pseries_group_set: group_set pseries. Proof. by rewrite /pseries; case: rev => [|pi1 pi1']; apply: groupP. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pseries_group_set
pseries_group: {group gT} := group pseries_group_set.
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pseries_group
pcore_psubgroupG : pi.-subgroup(G) 'O_pi(G). Proof. have [M maxM _]: {M | [max M | pi.-subgroup(G) M] & 1%G \subset M}. by apply: maxgroup_exists; rewrite /psubgroup sub1G pgroup1. have sOM: 'O_pi(G) \subset M by apply: bigcap_inf. have /andP[piM sMG] := maxgroupp maxM. by rewrite /psubgroup (pgroupS sOM) // (subset_trans sOM). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pcore_psubgroup
pcore_pgroupG : pi.-group 'O_pi(G). Proof. by case/andP: (pcore_psubgroup G). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pcore_pgroup
pcore_subG : 'O_pi(G) \subset G. Proof. by case/andP: (pcore_psubgroup G). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pcore_sub
pcore_sub_HallG H : pi.-Hall(G) H -> 'O_pi(G) \subset H. Proof. by move/Hall_max=> maxH; apply: bigcap_inf. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pcore_sub_Hall
pcore_maxG H : pi.-group H -> H <| G -> H \subset 'O_pi(G). Proof. move=> piH nHG; apply/bigcapsP=> M maxM. exact: normal_sub_max_pgroup piH nHG. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pcore_max
pcore_pgroup_idG : pi.-group G -> 'O_pi(G) = G. Proof. by move=> piG; apply/eqP; rewrite eqEsubset pcore_sub pcore_max. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pcore_pgroup_id
pcore_normalG : 'O_pi(G) <| G. Proof. rewrite /(_ <| G) pcore_sub; apply/subsetP=> x Gx. rewrite inE; apply/bigcapsP=> M maxM; rewrite sub_conjg. by apply: bigcap_inf; apply: max_pgroupJ; rewrite ?groupV. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pcore_normal
normal_Hall_pcoreH G : pi.-Hall(G) H -> H <| G -> 'O_pi(G) = H. Proof. move=> hallH nHG; apply/eqP. rewrite eqEsubset (sub_normal_Hall hallH) ?pcore_sub ?pcore_pgroup //=. by rewrite pcore_max //= (pHall_pgroup hallH). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
normal_Hall_pcore
eq_Hall_pcoreG H : pi.-Hall(G) 'O_pi(G) -> pi.-Hall(G) H -> H :=: 'O_pi(G). Proof. move=> hallGpi hallH. exact: uniq_normal_Hall (pcore_normal G) (Hall_max hallH). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
eq_Hall_pcore
sub_Hall_pcoreG K : pi.-Hall(G) 'O_pi(G) -> K \subset G -> (K \subset 'O_pi(G)) = pi.-group K. Proof. by move=> hallGpi; apply: sub_normal_Hall (pcore_normal G). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
sub_Hall_pcore
mem_Hall_pcoreG x : pi.-Hall(G) 'O_pi(G) -> x \in G -> (x \in 'O_pi(G)) = pi.-elt x. Proof. by move=> hallGpi; apply: mem_normal_Hall (pcore_normal G). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
mem_Hall_pcore
sdprod_Hall_pcorePH G : pi.-Hall(G) 'O_pi(G) -> reflect ('O_pi(G) ><| H = G) (pi^'.-Hall(G) H). Proof. move=> hallGpi; rewrite -(compl_pHall H hallGpi) complgC. exact: sdprod_normal_complP (pcore_normal G). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
sdprod_Hall_pcoreP
sdprod_pcore_HallPH G : pi^'.-Hall(G) H -> reflect ('O_pi(G) ><| H = G) (pi.-Hall(G) 'O_pi(G)). Proof. exact: sdprod_normal_p'HallP (pcore_normal G). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
sdprod_pcore_HallP
pcoreJG x : 'O_pi(G :^ x) = 'O_pi(G) :^ x. Proof. apply/eqP; rewrite eqEsubset -sub_conjgV. rewrite !pcore_max ?pgroupJ ?pcore_pgroup ?normalJ ?pcore_normal //. by rewrite -(normalJ _ _ x) conjsgKV pcore_normal. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pcoreJ
morphim_pcorepi : GFunctor.pcontinuous (@pcore pi). Proof. move=> gT rT D G f; apply/bigcapsP=> M /normal_sub_max_pgroup; apply. by rewrite morphim_pgroup ?pcore_pgroup. by apply: morphim_normal; apply: pcore_normal. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
morphim_pcore
pcoreSpi gT (G H : {group gT}) : H \subset G -> H :&: 'O_pi(G) \subset 'O_pi(H). Proof. move=> sHG; rewrite -{2}(setIidPl sHG). by do 2!rewrite -(morphim_idm (subsetIl H _)) morphimIdom; apply: morphim_pcore. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pcoreS
pcore_igFunpi := [igFun by pcore_sub pi & morphim_pcore pi].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pcore_igFun
pcore_gFunpi := [gFun by morphim_pcore pi].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pcore_gFun
pcore_pgFunpi := [pgFun by morphim_pcore pi].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pcore_pgFun
pcore_charpi gT (G : {group gT}) : 'O_pi(G) \char G. Proof. exact: gFchar. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pcore_char
pcore_mod_subpi gT (G : {group gT}) : pcore_mod G pi (F _ G) \subset G. Proof. by rewrite sub_morphpre_im ?gFsub_trans ?morphimS ?gFnorm //= ker_coset gFsub. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pcore_mod_sub
quotient_pcore_modpi gT (G : {group gT}) (B : {set gT}) : pcore_mod G pi B / B = 'O_pi(G / B). Proof. exact/morphpreK/gFsub_trans/morphim_sub. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
quotient_pcore_mod
morphim_pcore_modpi gT rT (D G : {group gT}) (f : {morphism D >-> rT}) : f @* pcore_mod G pi (F _ G) \subset pcore_mod (f @* G) pi (F _ (f @* G)). Proof. have sDF: D :&: G \subset 'dom (coset (F _ G)). by rewrite setIC subIset ?gFnorm. have sDFf: D :&: G \subset 'dom (coset (F _ (f @* G)) \o f). by rewrite -sub_morphim_pre ?subsetIl // morphimIdom gFnorm. pose K := 'ker (restrm sDFf (coset (F _ (f @* G)) \o f)). have sFK: 'ker (restrm sDF (coset (F _ G))) \subset K. rewrite /K !ker_restrm ker_comp /= subsetI subsetIl /= -setIA. rewrite -sub_morphim_pre ?subsetIl //. by rewrite morphimIdom !ker_coset (setIidPr _) ?pmorphimF ?gFsub. have sOF := pcore_sub pi (G / F _ G); have sDD: D :&: G \subset D :&: G by []. rewrite -sub_morphim_pre -?quotientE; last first. by apply: subset_trans (gFnorm F _); rewrite morphimS ?pcore_mod_sub. suffices im_fact (H : {group gT}) : F _ G \subset H -> H \subset G -> factm sFK sDD @* (H / F _ G) = f @* H / F _ (f @* G). - rewrite -2?im_fact ?pcore_mod_sub ?gFsub //; try by rewrite -{1}[F _ G]ker_coset morphpreS ?sub1G. by rewrite quotient_pcore_mod morphim_pcore. move=> sFH sHG; rewrite -(morphimIdom _ (H / _)) /= {2}morphim_restrm setIid. rewrite -morphimIG ?ker_coset //. rewrite -(morphim_restrm sDF) morphim_factm morphim_restrm. by rewrite morphim_comp -quotientE -setIA morphimIdom (setIidPr _). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
morphim_pcore_mod
pcore_mod_respi gT rT (D : {group gT}) (f : {morphism D >-> rT}) : f @* pcore_mod D pi (F _ D) \subset pcore_mod (f @* D) pi (F _ (f @* D)). Proof. exact: morphim_pcore_mod. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pcore_mod_res
pcore_mod1pi gT (G : {group gT}) : pcore_mod G pi 1 = 'O_pi(G). Proof. rewrite /pcore_mod; have inj1 := coset1_injm gT; rewrite -injmF ?norms1 //. by rewrite -(morphim_invmE inj1) morphim_invm ?norms1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pcore_mod1
pseries_rconspi pis gT (A : {set gT}) : pseries (rcons pis pi) A = pcore_mod A pi (pseries pis A). Proof. by rewrite /pseries rev_rcons. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pseries_rcons
pseries_subfunpis : GFunctor.closed (@pseries pis) /\ GFunctor.pcontinuous (@pseries pis). Proof. elim/last_ind: pis => [|pis pi [sFpi fFpi]]. by split=> [gT G | gT rT D G f]; rewrite (sub1G, morphim1). pose fF := [gFun by fFpi : GFunctor.continuous [igFun by sFpi & fFpi]]. pose F := [pgFun by fFpi : GFunctor.hereditary fF]. split=> [gT G | gT rT D G f]; rewrite !pseries_rcons ?(pcore_mod_sub F) //. exact: (morphim_pcore_mod F). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pseries_subfun
pseries_subpis : GFunctor.closed (@pseries pis). Proof. by case: (pseries_subfun pis). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pseries_sub
morphim_pseriespis : GFunctor.pcontinuous (@pseries pis). Proof. by case: (pseries_subfun pis). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
morphim_pseries
pseriesSpis : GFunctor.hereditary (@pseries pis). Proof. exact: (morphim_pseries pis). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pseriesS
pseries_igFunpis := [igFun by pseries_sub pis & morphim_pseries pis].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pseries_igFun
pseries_gFunpis := [gFun by morphim_pseries pis].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pseries_gFun
pseries_pgFunpis := [pgFun by morphim_pseries pis].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pseries_pgFun
pseries_charpis gT (G : {group gT}) : pseries pis G \char G. Proof. exact: gFchar. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pseries_char
pseries_normalpis gT (G : {group gT}) : pseries pis G <| G. Proof. exact: gFnormal. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pseries_normal
pseriesJpis gT (G : {group gT}) x : pseries pis (G :^ x) = pseries pis G :^ x. Proof. rewrite -{1}(setIid G) -morphim_conj -(injmF _ (injm_conj G x)) //=. by rewrite morphim_conj (setIidPr (pseries_sub _ _)). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pseriesJ
pseries1pi gT (G : {group gT}) : 'O_{pi}(G) = 'O_pi(G). Proof. exact: pcore_mod1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pseries1
pseries_poppi pis gT (G : {group gT}) : 'O_pi(G) = 1 -> pseries (pi :: pis) G = pseries pis G. Proof. by move=> OG1; rewrite /pseries rev_cons -cats1 foldr_cat /= pcore_mod1 OG1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pseries_pop
pseries_pop2pi1 pi2 gT (G : {group gT}) : 'O_pi1(G) = 1 -> 'O_{pi1, pi2}(G) = 'O_pi2(G). Proof. by move/pseries_pop->; apply: pseries1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pseries_pop2
pseries_sub_catlpi1s pi2s gT (G : {group gT}) : pseries pi1s G \subset pseries (pi1s ++ pi2s) G. Proof. elim/last_ind: pi2s => [|pi pis IHpi]; rewrite ?cats0 // -rcons_cat. by rewrite pseries_rcons; apply: subset_trans IHpi _; rewrite sub_cosetpre. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pseries_sub_catl
quotient_pseriespis pi gT (G : {group gT}) : pseries (rcons pis pi) G / pseries pis G = 'O_pi(G / pseries pis G). Proof. by rewrite pseries_rcons quotient_pcore_mod. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
quotient_pseries
pseries_norm2pi1s pi2s gT (G : {group gT}) : pseries pi2s G \subset 'N(pseries pi1s G). Proof. by rewrite gFsub_trans ?gFnorm. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pseries_norm2
pseries_sub_catrpi1s pi2s gT (G : {group gT}) : pseries pi2s G \subset pseries (pi1s ++ pi2s) G. Proof. elim: pi1s => //= pi1 pi1s /subset_trans; apply. elim/last_ind: {pi1s pi2s}(_ ++ _) => [|pis pi IHpi]; first exact: sub1G. rewrite -rcons_cons (pseries_rcons _ (pi1 :: pis)). rewrite -sub_morphim_pre ?pseries_norm2 //. apply: pcore_max; last by rewrite morphim_normal ?pseries_normal. have: pi.-group (pseries (rcons pis pi) G / pseries pis G). by rewrite quotient_pseries pcore_pgroup. by apply: pnat_dvd; rewrite !card_quotient ?pseries_norm2 // indexgS. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pseries_sub_catr
quotient_pseries2pi1 pi2 gT (G : {group gT}) : 'O_{pi1, pi2}(G) / 'O_pi1(G) = 'O_pi2(G / 'O_pi1(G)). Proof. by rewrite -pseries1 -quotient_pseries. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
quotient_pseries2
quotient_pseries_catpi1s pi2s gT (G : {group gT}) : pseries (pi1s ++ pi2s) G / pseries pi1s G = pseries pi2s (G / pseries pi1s G). Proof. elim/last_ind: pi2s => [|pi2s pi IHpi]; first by rewrite cats0 trivg_quotient. have psN := pseries_normal _ G; set K := pseries _ G. case: (third_isom (pseries_sub_catl pi1s pi2s G) (psN _)) => //= f inj_f im_f. have nH2H: pseries pi2s (G / K) <| pseries (pi1s ++ rcons pi2s pi) G / K. rewrite -IHpi morphim_normal // -cats1 catA. by apply/andP; rewrite pseries_sub_catl pseries_norm2. apply: (quotient_inj nH2H). by apply/andP; rewrite /= -cats1 pseries_sub_catl pseries_norm2. rewrite /= quotient_pseries /= -IHpi -rcons_cat. rewrite -[G / _ / _](morphim_invm inj_f) //= {2}im_f //. rewrite -(@injmF [igFun of @pcore pi]) /= ?injm_invm ?im_f // -quotient_pseries. by rewrite -im_f ?morphim_invm ?morphimS ?normal_sub. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
quotient_pseries_cat
pseries_catl_idpi1s pi2s gT (G : {group gT}) : pseries pi1s (pseries (pi1s ++ pi2s) G) = pseries pi1s G. Proof. elim/last_ind: pi1s => [//|pi1s pi IHpi] in pi2s *. apply: (@quotient_inj _ (pseries_group pi1s G)). - rewrite /= -(IHpi (pi :: pi2s)) cat_rcons /(_ <| _) pseries_norm2. by rewrite -cats1 pseries_sub_catl. - by rewrite /= /(_ <| _) pseries_norm2 -cats1 pseries_sub_catl. rewrite /= cat_rcons -(IHpi (pi :: pi2s)) {1}quotient_pseries IHpi. apply/eqP; rewrite quotient_pseries eqEsubset !pcore_max ?pcore_pgroup //=. rewrite -quotient_pseries morphim_normal // /(_ <| _) pseries_norm2. by rewrite -cat_rcons pseries_sub_catl. by rewrite gFnormal_trans ?quotient_normal ?gFnormal. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pseries_catl_id
pseries_char_catlpi1s pi2s gT (G : {group gT}) : pseries pi1s G \char pseries (pi1s ++ pi2s) G. Proof. by rewrite -(pseries_catl_id pi1s pi2s G) pseries_char. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pseries_char_catl
pseries_catr_idpi1s pi2s gT (G : {group gT}) : pseries pi2s (pseries (pi1s ++ pi2s) G) = pseries pi2s G. Proof. elim/last_ind: pi2s => [//|pi2s pi IHpi] in G *. have Epis: pseries pi2s (pseries (pi1s ++ rcons pi2s pi) G) = pseries pi2s G. by rewrite -cats1 catA -[RHS]IHpi -[LHS]IHpi /= [pseries (_ ++ _) _]pseries_catl_id. apply: (@quotient_inj _ (pseries_group pi2s G)). - by rewrite /= -Epis /(_ <| _) pseries_norm2 -cats1 pseries_sub_catl. - by rewrite /= /(_ <| _) pseries_norm2 -cats1 pseries_sub_catl. rewrite /= -Epis {1}quotient_pseries Epis quotient_pseries. apply/eqP; rewrite eqEsubset !pcore_max ?pcore_pgroup //=. rewrite -quotient_pseries morphim_normal // /(_ <| _) pseries_norm2. by rewrite pseries_sub_catr. by rewrite gFnormal_trans ?morphim_normal ?gFnormal. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pseries_catr_id
pseries_char_catrpi1s pi2s gT (G : {group gT}) : pseries pi2s G \char pseries (pi1s ++ pi2s) G. Proof. by rewrite -(pseries_catr_id pi1s pi2s G) pseries_char. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pseries_char_catr
pcore_modppi gT (G H : {group gT}) : H <| G -> pi.-group H -> pcore_mod G pi H = 'O_pi(G). Proof. move=> nsHG piH; have nHG := normal_norm nsHG; apply/eqP. rewrite eqEsubset andbC -sub_morphim_pre ?(gFsub_trans, morphim_pcore) //=. rewrite -[G in 'O_pi(G)](quotientGK nsHG) pcore_max //. by rewrite -(pquotient_pgroup piH) ?subsetIl // cosetpreK pcore_pgroup. by rewrite morphpre_normal ?gFnormal ?gFsub_trans ?morphim_sub. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pcore_modp
pquotient_pcorepi gT (G H : {group gT}) : H <| G -> pi.-group H -> 'O_pi(G / H) = 'O_pi(G) / H. Proof. by move=> nsHG piH; rewrite -quotient_pcore_mod pcore_modp. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pquotient_pcore
trivg_pcore_quotientpi gT (G : {group gT}) : 'O_pi(G / 'O_pi(G)) = 1. Proof. by rewrite pquotient_pcore ?gFnormal ?pcore_pgroup ?trivg_quotient. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
trivg_pcore_quotient
pseries_rcons_idpis pi gT (G : {group gT}) : pseries (rcons (rcons pis pi) pi) G = pseries (rcons pis pi) G. Proof. apply/eqP; rewrite -!cats1 eqEsubset pseries_sub_catl andbT -catA. rewrite -(quotientSGK _ (pseries_sub_catl _ _ _)) ?pseries_norm2 //. rewrite !quotient_pseries_cat -quotient_sub1 ?pseries_norm2 //. by rewrite quotient_pseries_cat /= !pseries1 trivg_pcore_quotient. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pseries_rcons_id
sub_in_pcorepi rho G : {in \pi(G), {subset pi <= rho}} -> 'O_pi(G) \subset 'O_rho(G). Proof. move=> pi_sub_rho; rewrite pcore_max ?pcore_normal //. apply: sub_in_pnat (pcore_pgroup _ _) => p. by move/(piSg (pcore_sub _ _)); apply: pi_sub_rho. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
sub_in_pcore
sub_pcorepi rho G : {subset pi <= rho} -> 'O_pi(G) \subset 'O_rho(G). Proof. by move=> pi_sub_rho; apply: sub_in_pcore (in1W pi_sub_rho). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
sub_pcore
eq_in_pcorepi rho G : {in \pi(G), pi =i rho} -> 'O_pi(G) = 'O_rho(G). Proof. move=> eq_pi_rho; apply/eqP; rewrite eqEsubset. by rewrite !sub_in_pcore // => p /eq_pi_rho->. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
eq_in_pcore
eq_pcorepi rho G : pi =i rho -> 'O_pi(G) = 'O_rho(G). Proof. by move=> eq_pi_rho; apply: eq_in_pcore (in1W eq_pi_rho). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
eq_pcore
pcoreNKpi G : 'O_pi^'^'(G) = 'O_pi(G). Proof. by apply: eq_pcore; apply: negnK. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pcoreNK
eq_p'corepi rho G : pi =i rho -> 'O_pi^'(G) = 'O_rho^'(G). Proof. by move/eq_negn; apply: eq_pcore. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
eq_p'core
sdprod_Hall_p'corePpi H G : pi^'.-Hall(G) 'O_pi^'(G) -> reflect ('O_pi^'(G) ><| H = G) (pi.-Hall(G) H). Proof. by rewrite -(pHallNK pi G H); apply: sdprod_Hall_pcoreP. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
sdprod_Hall_p'coreP
sdprod_p'core_HallPpi H G : pi.-Hall(G) H -> reflect ('O_pi^'(G) ><| H = G) (pi^'.-Hall(G) 'O_pi^'(G)). Proof. by rewrite -(pHallNK pi G H); apply: sdprod_pcore_HallP. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
sdprod_p'core_HallP
pcoreIpi rho G : 'O_[predI pi & rho](G) = 'O_pi('O_rho(G)). Proof. apply/eqP; rewrite eqEsubset !pcore_max //. - rewrite /pgroup pnatI -!pgroupE. by rewrite pcore_pgroup (pgroupS (pcore_sub pi _))// pcore_pgroup. - by rewrite !gFnormal_trans. - by apply: sub_pgroup (pcore_pgroup _ _) => p /andP[]. apply/andP; split; first by apply: sub_pcore => p /andP[]. by rewrite gFnorm_trans ?normsG ?gFsub. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pcoreI
bigcap_p'corepi G : G :&: \bigcap_(p < #|G|.+1 | (p : nat) \in pi) 'O_p^'(G) = 'O_pi^'(G). Proof. apply/eqP; rewrite eqEsubset subsetI pcore_sub pcore_max /=. - by apply/bigcapsP=> p pi_p; apply: sub_pcore => r; apply: contraNneq => ->. - apply/pgroupP=> q q_pr qGpi'; apply: contraL (eqxx q) => /= pi_q. apply: (pgroupP (pcore_pgroup q^' G)) => //. have qG: q %| #|G| by rewrite (dvdn_trans qGpi') // cardSg ?subsetIl. have ltqG: q < #|G|.+1 by rewrite ltnS dvdn_leq. rewrite (dvdn_trans qGpi') ?cardSg ?subIset //= orbC. by rewrite (bigcap_inf (Ordinal ltqG)). rewrite /normal subsetIl normsI ?normG // norms_bigcap //. by apply/bigcapsP => p _; apply: gFnorm. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
bigcap_p'core
coprime_pcoreC(rT : finGroupType) pi G (R : {group rT}) : coprime #|'O_pi(G)| #|'O_pi^'(R)|. Proof. exact: pnat_coprime (pcore_pgroup _ _) (pcore_pgroup _ _). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
coprime_pcoreC
TI_pcoreCpi G H : 'O_pi(G) :&: 'O_pi^'(H) = 1. Proof. by rewrite coprime_TIg ?coprime_pcoreC. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
TI_pcoreC
pcore_setI_normalpi G H : H <| G -> 'O_pi(G) :&: H = 'O_pi(H). Proof. move=> nsHG; apply/eqP; rewrite eqEsubset subsetI pcore_sub setIC. rewrite !pcore_max ?(pgroupS (subsetIr H _)) ?pcore_pgroup ?gFnormal_trans //=. by rewrite norm_normalI ?gFnorm_trans ?normsG ?normal_sub. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pcore_setI_normal
injm_pgrouppi A : A \subset D -> pi.-group (f @* A) = pi.-group A. Proof. by move=> sAD; rewrite /pgroup card_injm. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
injm_pgroup
injm_peltpi x : x \in D -> pi.-elt (f x) = pi.-elt x. Proof. by move=> Dx; rewrite /p_elt order_injm. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
injm_pelt
injm_pHallpi G H : G \subset D -> H \subset D -> pi.-Hall(f @* G) (f @* H) = pi.-Hall(G) H. Proof. by move=> sGD sGH; rewrite !pHallE injmSK ?card_injm. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
injm_pHall
injm_pcorepi G : G \subset D -> f @* 'O_pi(G) = 'O_pi(f @* G). Proof. exact: injmF. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
injm_pcore
injm_pseriespis G : G \subset D -> f @* pseries pis G = pseries pis (f @* G). Proof. exact: injmF. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
injm_pseries
isog_pgrouppi : G \isog H -> pi.-group G = pi.-group H. Proof. by move=> isoGH; rewrite /pgroup (card_isog isoGH). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
isog_pgroup
isog_pcorepi : G \isog H -> 'O_pi(G) \isog 'O_pi(H). Proof. exact: gFisog. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
isog_pcore
isog_pseriespis : G \isog H -> pseries pis G \isog pseries pis H. Proof. exact: gFisog. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
isog_pseries
imprimitivity_systemQ := [&& partition Q S, [acts A, on Q | to^*] & 1 < #|Q| < #|S|].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat", "From mathcomp Require Import div seq fintype tuple finset", "From mathcomp Require Import fingroup action gseries" ]
solvable/primitive_action.v
imprimitivity_system
primitive:= [transitive A, on S | to] && ~~ [exists Q, imprimitivity_system Q].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat", "From mathcomp Require Import div seq fintype tuple finset", "From mathcomp Require Import fingroup action gseries" ]
solvable/primitive_action.v
primitive
trans_prim_astabx : x \in S -> [transitive G, on S | to] -> [primitive G, on S | to] = maximal_eq 'C_G[x | to] G. Proof. move=> Sx trG; rewrite /primitive trG negb_exists. apply/forallP/maximal_eqP=> /= [primG | [_ maxCx] Q]. split=> [|H sCH sHG]; first exact: subsetIl. pose X := orbit to H x; pose Q := orbit (to^*)%act G X. have Xx: x \in X by apply: orbit_refl. have defH: 'N_(G)(X | to) = H. have trH: [transitive H, on X | to] by apply/imsetP; exists x. have sHN: H \subset 'N_G(X | to) by rewrite subsetI sHG atrans_acts. move/(subgroup_transitiveP Xx sHN): (trH) => /= <-. by rewrite mulSGid //= setIAC subIset ?sCH. apply/imsetP; exists x => //; apply/eqP. by rewrite eqEsubset imsetS // acts_sub_orbit ?subsetIr. have [|/proper_card oCH] := eqVproper sCH; [by left | right]. apply/eqP; rewrite eqEcard sHG leqNgt. apply: contra {primG}(primG Q) => oHG; apply/and3P; split; last first. - rewrite card_orbit astab1_set defH -(@ltn_pmul2l #|H|) ?Lagrange // muln1. rewrite oHG -(@ltn_pmul2l #|H|) ?Lagrange // -(card_orbit_stab to G x). by rewrite -(atransP trG x Sx) mulnC card_orbit ltn_pmul2r. - by apply/actsP=> a Ga Y; apply/orbit_transl/mem_orbit. apply/and3P; split; last 1 first. - rewrite orbit_sym; apply/imsetP=> [[a _]] /= defX. by rewrite defX /setact imset0 inE in Xx. - apply/eqP/setP=> y; apply/bigcupP/idP=> [[_ /imsetP[a Ga ->]] | Sy]. case/imsetP=> _ /imsetP[b Hb ->] ->. by rewrite !(actsP (atrans_acts trG)) ...
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat", "From mathcomp Require Import div seq fintype tuple finset", "From mathcomp Require Import fingroup action gseries" ]
solvable/primitive_action.v
trans_prim_astab
prim_trans_norm(H : {group aT}) : [primitive G, on S | to] -> H <| G -> H \subset 'C_G(S | to) \/ [transitive H, on S | to]. Proof. move=> primG /andP[sHG nHG]; rewrite subsetI sHG. have [trG _] := andP primG; have [x Sx defS] := imsetP trG. move: primG; rewrite (trans_prim_astab Sx) // => /maximal_eqP[_]. case/(_ ('C_G[x | to] <*> H)%G) => /= [||cxH|]; first exact: joing_subl. - by rewrite join_subG subsetIl. - have{} cxH: H \subset 'C_G[x | to] by rewrite -cxH joing_subr. rewrite subsetI sHG /= in cxH; left; apply/subsetP=> a Ha. apply/astabP=> y Sy; have [b Gb ->] := atransP2 trG Sx Sy. rewrite actCJV [to x (a ^ _)](astab1P _) ?(subsetP cxH) //. by rewrite -mem_conjg (normsP nHG). rewrite norm_joinEl 1?subIset ?nHG //. by move/(subgroup_transitiveP Sx sHG trG); right. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat", "From mathcomp Require Import div seq fintype tuple finset", "From mathcomp Require Import fingroup action gseries" ]
solvable/primitive_action.v
prim_trans_norm
n_act(t : n.-tuple sT) a := [tuple of map (to^~ a) t]. Fact n_act_is_action : is_action setT n_act. Proof. by apply: is_total_action => [t|t a b]; apply: eq_from_tnth => i; rewrite !tnth_map ?act1 ?actM. Qed.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat", "From mathcomp Require Import div seq fintype tuple finset", "From mathcomp Require Import fingroup action gseries" ]
solvable/primitive_action.v
n_act
n_act_action:= Action n_act_is_action.
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat", "From mathcomp Require Import div seq fintype tuple finset", "From mathcomp Require Import fingroup action gseries" ]
solvable/primitive_action.v
n_act_action