fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
lcn_bigcprodn I r P (F : I -> {set gT}) G : \big[cprod/1]_(i <- r | P i) F i = G -> \big[cprod/1]_(i <- r | P i) 'L_n(F i) = 'L_n(G). Proof. elim/big_rec2: _ G => [_ <- | i A Z _ IH G dG]; first exact/esym/trivgP/lcn_sub. by rewrite -(lcn_cprod n dG); have [[_ H _ dH]] := cprodP dG; rewrite dH (IH H). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
lcn_bigcprod
lcn_bigdprodn I r P (F : I -> {set gT}) G : \big[dprod/1]_(i <- r | P i) F i = G -> \big[dprod/1]_(i <- r | P i) 'L_n(F i) = 'L_n(G). Proof. elim/big_rec2: _ G => [_ <- | i A Z _ IH G dG]; first exact/esym/trivgP/lcn_sub. by rewrite -(lcn_dprod n dG); have [[_ H _ dH]] := dprodP dG; rewrite dH (IH H). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
lcn_bigdprod
der_bigcprodn I r P (F : I -> {set gT}) G : \big[cprod/1]_(i <- r | P i) F i = G -> \big[cprod/1]_(i <- r | P i) (F i)^`(n) = G^`(n). Proof. elim/big_rec2: _ G => [_ <- | i A Z _ IH G dG]; first by rewrite gF1. by rewrite -(der_cprod n dG); have [[_ H _ dH]] := cprodP dG; rewrite dH (IH H). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
der_bigcprod
der_bigdprodn I r P (F : I -> {set gT}) G : \big[dprod/1]_(i <- r | P i) F i = G -> \big[dprod/1]_(i <- r | P i) (F i)^`(n) = G^`(n). Proof. elim/big_rec2: _ G => [_ <- | i A Z _ IH G dG]; first by rewrite gF1. by rewrite -(der_dprod n dG); have [[_ H _ dH]] := dprodP dG; rewrite dH (IH H). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
der_bigdprod
nilpotent_classG : nilpotent G = (nil_class G < #|G|). Proof. rewrite /nil_class; set s := mkseq _ _. transitivity (1 \in s); last by rewrite -index_mem size_mkseq. apply/idP/mapP=> {s}/= [nilG | [n _ Ln1]]; last first. apply/forall_inP=> H /subsetIP[sHG sHR]. rewrite -subG1 {}Ln1; elim: n => // n IHn. by rewrite (subset_trans sHR) ?commSg. pose m := #|G|.-1; exists m; first by rewrite mem_iota /= prednK. set n := m; rewrite ['L__(G)]card_le1_trivg //= -(subnn m) -[m in _ - m]/n. elim: n => [|n]; [by rewrite subn0 prednK | rewrite lcnSn subnS]. case: (eqsVneq 'L_n.+1(G) 1) => [-> | ntLn]; first by rewrite comm1G cards1. case: (m - n) => [|m' /= IHn]; first by rewrite leqNgt cardG_gt1 ntLn. rewrite -ltnS (leq_trans (proper_card _) IHn) //. by rewrite (nil_comm_properl nilG) ?lcn_sub // subsetI subxx lcn_norm. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
nilpotent_class
lcn_nil_classPn G : nilpotent G -> reflect ('L_n.+1(G) = 1) (nil_class G <= n). Proof. rewrite nilpotent_class /nil_class; set s := mkseq _ _. set c := index 1 s => lt_c_G; case: leqP => [le_c_n | lt_n_c]. have Lc1: nth 1 s c = 1 by rewrite nth_index // -index_mem size_mkseq. by left; apply/trivgP; rewrite -Lc1 nth_mkseq ?lcn_sub_leq. right; apply/eqP/negPf; rewrite -(before_find 1 lt_n_c) nth_mkseq //. exact: ltn_trans lt_n_c lt_c_G. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
lcn_nil_classP
lcnPG : reflect (exists n, 'L_n.+1(G) = 1) (nilpotent G). Proof. apply: (iffP idP) => [nilG | [n Ln1]]. by exists (nil_class G); apply/lcn_nil_classP. apply/forall_inP=> H /subsetIP[sHG sHR]; rewrite -subG1 -{}Ln1. by elim: n => // n IHn; rewrite (subset_trans sHR) ?commSg. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
lcnP
abelian_nilG : abelian G -> nilpotent G. Proof. by move=> abG; apply/lcnP; exists 1%N; apply/commG1P. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
abelian_nil
nil_class0G : (nil_class G == 0) = (G :==: 1). Proof. apply/idP/eqP=> [nilG | ->]. by apply/(lcn_nil_classP 0); rewrite ?nilpotent_class (eqP nilG) ?cardG_gt0. by rewrite -leqn0; apply/(lcn_nil_classP 0); rewrite ?nilpotent1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
nil_class0
nil_class1G : (nil_class G <= 1) = abelian G. Proof. have [-> | ntG] := eqsVneq G 1. by rewrite abelian1 leq_eqVlt ltnS leqn0 nil_class0 eqxx orbT. apply/idP/idP=> cGG. apply/commG1P; apply/(lcn_nil_classP 1); rewrite // nilpotent_class. by rewrite (leq_ltn_trans cGG) // cardG_gt1. by apply/(lcn_nil_classP 1); rewrite ?abelian_nil //; apply/commG1P. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
nil_class1
cprod_nilA B G : A \* B = G -> nilpotent G = nilpotent A && nilpotent B. Proof. move=> defG; case/cprodP: defG (defG) => [[H K -> ->{A B}] defG _] defGc. apply/idP/andP=> [nilG | [/lcnP[m LmH1] /lcnP[n LnK1]]]. by rewrite !(nilpotentS _ nilG) // -defG (mulG_subr, mulG_subl). apply/lcnP; exists (m + n.+1); apply/trivgP. case/cprodP: (lcn_cprod (m.+1 + n.+1) defGc) => _ <- _. by rewrite mulG_subG /= -{1}LmH1 -LnK1 !lcn_sub_leq ?leq_addl ?leq_addr. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
cprod_nil
mulg_nilG H : H \subset 'C(G) -> nilpotent (G * H) = nilpotent G && nilpotent H. Proof. by move=> cGH; rewrite -(cprod_nil (cprodEY cGH)) /= cent_joinEr. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
mulg_nil
dprod_nilA B G : A \x B = G -> nilpotent G = nilpotent A && nilpotent B. Proof. by case/dprodP=> [[H K -> ->] <- cHK _]; rewrite mulg_nil. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
dprod_nil
bigdprod_nilI r (P : pred I) (A_ : I -> {set gT}) G : \big[dprod/1]_(i <- r | P i) A_ i = G -> (forall i, P i -> nilpotent (A_ i)) -> nilpotent G. Proof. move=> defG nilA; elim/big_rec: _ => [|i B Pi nilB] in G defG *. by rewrite -defG nilpotent1. have [[_ H _ defB] _ _ _] := dprodP defG. by rewrite (dprod_nil defG) nilA //= defB nilB. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
bigdprod_nil
lcn_contn : GFunctor.continuous (@lower_central_at n). Proof. case: n => //; elim=> // n IHn g0T h0T H phi. by rewrite !lcnSn morphimR ?lcn_sub // commSg ?IHn. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
lcn_cont
lcn_igFunn := [igFun by lcn_sub^~ n & lcn_cont n].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
lcn_igFun
lcn_gFunn := [gFun by lcn_cont n].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
lcn_gFun
lcn_mgFunn := [mgFun by fun _ G H => @lcnS _ n G H].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
lcn_mgFun
ucn_pmap: exists hZ : GFunctor.pmap, @upper_central_at n = hZ. Proof. elim: n => [|n' [hZ defZ]]; first by exists trivGfun_pgFun. by exists [pgFun of @center %% hZ]; rewrite /= -defZ. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
ucn_pmap
ucn_group_setgT (G : {group gT}) : group_set 'Z_n(G). Proof. by have [hZ ->] := ucn_pmap; apply: groupP. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
ucn_group_set
upper_central_at_groupgT G := Group (@ucn_group_set gT G).
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
upper_central_at_group
ucn_subgT (G : {group gT}) : 'Z_n(G) \subset G. Proof. by have [hZ ->] := ucn_pmap; apply: gFsub. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
ucn_sub
morphim_ucn: GFunctor.pcontinuous (@upper_central_at n). Proof. by have [hZ ->] := ucn_pmap; apply: pmorphimF. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
morphim_ucn
ucn_igFun:= [igFun by ucn_sub & morphim_ucn].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
ucn_igFun
ucn_gFun:= [gFun by morphim_ucn].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
ucn_gFun
ucn_pgFun:= [pgFun by morphim_ucn]. Variable (gT : finGroupType) (G : {group gT}).
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
ucn_pgFun
ucn_char: 'Z_n(G) \char G. Proof. exact: gFchar. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
ucn_char
ucn_norm: G \subset 'N('Z_n(G)). Proof. exact: gFnorm. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
ucn_norm
ucn_normal: 'Z_n(G) <| G. Proof. exact: gFnormal. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
ucn_normal
ucn0A : 'Z_0(A) = 1. Proof. by []. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
ucn0
ucnSnn A : 'Z_n.+1(A) = coset 'Z_n(A) @*^-1 'Z(A / 'Z_n(A)). Proof. by []. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
ucnSn
ucnEn A : 'Z_n(A) = iter n (fun B => coset B @*^-1 'Z(A / B)) 1. Proof. by []. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
ucnE
ucn_subSn G : 'Z_n(G) \subset 'Z_n.+1(G). Proof. by rewrite -{1}['Z_n(G)]ker_coset morphpreS ?sub1G. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
ucn_subS
ucn_sub_geqm n G : n >= m -> 'Z_m(G) \subset 'Z_n(G). Proof. move/subnK <-; elim: {n}(n - m) => // n IHn. exact: subset_trans (ucn_subS _ _). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
ucn_sub_geq
ucn_centraln G : 'Z_n.+1(G) / 'Z_n(G) = 'Z(G / 'Z_n(G)). Proof. by rewrite ucnSn cosetpreK. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
ucn_central
ucn_normalSn G : 'Z_n(G) <| 'Z_n.+1(G). Proof. by rewrite (normalS _ _ (ucn_normal n G)) ?ucn_subS ?ucn_sub. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
ucn_normalS
ucn_commn G : [~: 'Z_n.+1(G), G] \subset 'Z_n(G). Proof. rewrite -quotient_cents2 ?normal_norm ?ucn_normal ?ucn_normalS //. by rewrite ucn_central subsetIr. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
ucn_comm
ucn1G : 'Z_1(G) = 'Z(G). Proof. apply: (quotient_inj (normal1 _) (normal1 _)). by rewrite /= (ucn_central 0) -injmF ?norms1 ?coset1_injm. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
ucn1
ucnSnRn G : 'Z_n.+1(G) = [set x in G | [~: [set x], G] \subset 'Z_n(G)]. Proof.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
ucnSnR
ucn_cprodn A B G : A \* B = G -> 'Z_n(A) \* 'Z_n(B) = 'Z_n(G). Proof. case/cprodP=> [[H K -> ->{A B}] mulHK cHK]. elim: n => [|n /cprodP[_ /= defZ cZn]]; first exact: cprod1g. set Z := 'Z_n(G) in defZ cZn; rewrite (ucnSn n G) /= -/Z. have /mulGsubP[nZH nZK]: H * K \subset 'N(Z) by rewrite mulHK gFnorm. have <-: 'Z(H / Z) * 'Z(K / Z) = 'Z(G / Z). by rewrite -mulHK quotientMl // center_prod ?quotient_cents. have ZquoZ (B A : {group gT}): B \subset 'C(A) -> 'Z_n(A) * 'Z_n(B) = Z -> 'Z(A / Z) = 'Z_n.+1(A) / Z. - move=> cAB {}defZ; have cAZnB: 'Z_n(B) \subset 'C(A) := gFsub_trans _ cAB. have /second_isom[/=]: A \subset 'N(Z). by rewrite -defZ normsM ?gFnorm ?cents_norm // centsC. suffices ->: Z :&: A = 'Z_n(A). by move=> f inj_f im_f; rewrite -!im_f ?gFsub // ucn_central injm_center. rewrite -defZ -group_modl ?gFsub //; apply/mulGidPl. have [-> | n_gt0] := posnP n; first exact: subsetIl. by apply: subset_trans (ucn_sub_geq A n_gt0); rewrite /= setIC ucn1 setIS. rewrite (ZquoZ H K) 1?centsC 1?(centC cZn) // {ZquoZ}(ZquoZ K H) //. have cZn1: 'Z_n.+1(K) \subset 'C('Z_n.+1(H)) by apply: centSS cHK; apply: gFsub. rewrite -quotientMl ?quotientK ?mul_subG ?gFsub_trans //=. rewrite cprodE // -cent_joinEr ?mulSGid //= cent_joinEr //= -/Z. by rewrite -defZ mulgSS ?ucn_subS. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
ucn_cprod
ucn_dprodn A B G : A \x B = G -> 'Z_n(A) \x 'Z_n(B) = 'Z_n(G). Proof. move=> defG; have [[K H defA defB] _ _ tiAB] := dprodP defG. rewrite !dprodEcp // in defG *; first exact: ucn_cprod. by rewrite defA defB; apply/trivgP; rewrite -tiAB defA defB setISS ?ucn_sub. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
ucn_dprod
ucn_bigcprodn I r P (F : I -> {set gT}) G : \big[cprod/1]_(i <- r | P i) F i = G -> \big[cprod/1]_(i <- r | P i) 'Z_n(F i) = 'Z_n(G). Proof. elim/big_rec2: _ G => [_ <- | i A Z _ IH G dG]; first by rewrite gF1. by rewrite -(ucn_cprod n dG); have [[_ H _ dH]] := cprodP dG; rewrite dH (IH H). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
ucn_bigcprod
ucn_bigdprodn I r P (F : I -> {set gT}) G : \big[dprod/1]_(i <- r | P i) F i = G -> \big[dprod/1]_(i <- r | P i) 'Z_n(F i) = 'Z_n(G). Proof. elim/big_rec2: _ G => [_ <- | i A Z _ IH G dG]; first by rewrite gF1. by rewrite -(ucn_dprod n dG); have [[_ H _ dH]] := dprodP dG; rewrite dH (IH H). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
ucn_bigdprod
ucn_lcnPn G : ('L_n.+1(G) == 1) = ('Z_n(G) == G). Proof. rewrite !eqEsubset sub1G ucn_sub /= andbT -(ucn0 G); set i := (n in LHS). have: i + 0 = n by [rewrite addn0]; elim: i 0 => [j <- //|i IHi j]. rewrite addSnnS => /IHi <- {IHi}; rewrite ucnSn lcnSn. rewrite -sub_morphim_pre ?gFsub_trans ?gFnorm_trans // subsetI. by rewrite morphimS ?gFsub // quotient_cents2 ?gFsub_trans ?gFnorm_trans. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
ucn_lcnP
ucnPG : reflect (exists n, 'Z_n(G) = G) (nilpotent G). Proof. apply: (iffP (lcnP G)) => -[n /eqP-clGn]; by exists n; apply/eqP; rewrite ucn_lcnP in clGn *. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
ucnP
ucn_nil_classPn G : nilpotent G -> reflect ('Z_n(G) = G) (nil_class G <= n). Proof. move=> nilG; rewrite (sameP (lcn_nil_classP n nilG) eqP) ucn_lcnP; apply: eqP. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
ucn_nil_classP
ucn_idn G : 'Z_n('Z_n(G)) = 'Z_n(G). Proof. exact: gFid. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
ucn_id
ucn_nilpotentn G : nilpotent 'Z_n(G). Proof. by apply/ucnP; exists n; rewrite ucn_id. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
ucn_nilpotent
nil_class_ucnn G : nil_class 'Z_n(G) <= n. Proof. by apply/ucn_nil_classP; rewrite ?ucn_nilpotent // ucn_id. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
nil_class_ucn
morphim_lcnn G : G \subset D -> f @* 'L_n(G) = 'L_n(f @* G). Proof. move=> sHG; case: n => //; elim=> // n IHn. by rewrite !lcnSn -IHn morphimR // (subset_trans _ sHG) // lcn_sub. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
morphim_lcn
injm_ucnn G : 'injm f -> G \subset D -> f @* 'Z_n(G) = 'Z_n(f @* G). Proof. exact: injmF. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
injm_ucn
morphim_nilG : nilpotent G -> nilpotent (f @* G). Proof. case/ucnP=> n ZnG; apply/ucnP; exists n; apply/eqP. by rewrite eqEsubset ucn_sub /= -{1}ZnG morphim_ucn. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
morphim_nil
injm_nilG : 'injm f -> G \subset D -> nilpotent (f @* G) = nilpotent G. Proof. move=> injf sGD; apply/idP/idP; last exact: morphim_nil. case/ucnP=> n; rewrite -injm_ucn // => /injm_morphim_inj defZ. by apply/ucnP; exists n; rewrite defZ ?gFsub_trans. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
injm_nil
nil_class_morphimG : nilpotent G -> nil_class (f @* G) <= nil_class G. Proof. move=> nilG; rewrite (sameP (ucn_nil_classP _ (morphim_nil nilG)) eqP) /=. by rewrite eqEsubset ucn_sub -{1}(ucn_nil_classP _ nilG (leqnn _)) morphim_ucn. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
nil_class_morphim
nil_class_injmG : 'injm f -> G \subset D -> nil_class (f @* G) = nil_class G. Proof. move=> injf sGD; case nilG: (nilpotent G). apply/eqP; rewrite eqn_leq nil_class_morphim //. rewrite (sameP (lcn_nil_classP _ nilG) eqP) -subG1. rewrite -(injmSK injf) ?gFsub_trans // morphim1. by rewrite morphim_lcn // (lcn_nil_classP _ _ (leqnn _)) //= injm_nil. transitivity #|G|; apply/eqP; rewrite eqn_leq. rewrite -(card_injm injf sGD) (leq_trans (index_size _ _)) ?size_mkseq //. by rewrite leqNgt -nilpotent_class injm_nil ?nilG. rewrite (leq_trans (index_size _ _)) ?size_mkseq // leqNgt -nilpotent_class. by rewrite nilG. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
nil_class_injm
quotient_ucn_addm n G : 'Z_(m + n)(G) / 'Z_n(G) = 'Z_m(G / 'Z_n(G)). Proof. elim: m => [|m IHm]; first exact: trivg_quotient. apply/setP=> Zx; have [x Nx ->{Zx}] := cosetP Zx. have [sZG nZG] := andP (ucn_normal n G). rewrite (ucnSnR m) inE -!sub1set -morphim_set1 //= -quotientR ?sub1set // -IHm. rewrite !quotientSGK ?(ucn_sub_geq, leq_addl, comm_subG _ nZG, sub1set) //=. by rewrite addSn /= ucnSnR inE. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
quotient_ucn_add
isog_nilrT G (L : {group rT}) : G \isog L -> nilpotent G = nilpotent L. Proof. by case/isogP=> f injf <-; rewrite injm_nil. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
isog_nil
isog_nil_classrT G (L : {group rT}) : G \isog L -> nil_class G = nil_class L. Proof. by case/isogP=> f injf <-; rewrite nil_class_injm. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
isog_nil_class
quotient_nilG H : nilpotent G -> nilpotent (G / H). Proof. exact: morphim_nil. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
quotient_nil
quotient_center_nilG : nilpotent (G / 'Z(G)) = nilpotent G. Proof. rewrite -ucn1; apply/idP/idP; last exact: quotient_nil. case/ucnP=> c nilGq; apply/ucnP; exists c.+1; have nsZ1G := ucn_normal 1 G. apply: (quotient_inj _ nsZ1G); last by rewrite /= -(addn1 c) quotient_ucn_add. by rewrite (normalS _ _ nsZ1G) ?ucn_sub ?ucn_sub_geq. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
quotient_center_nil
nil_class_quotient_centerG : nilpotent (G) -> nil_class (G / 'Z(G)) = (nil_class G).-1. Proof. move=> nilG; have nsZ1G := ucn_normal 1 G. apply/eqP; rewrite -ucn1 eqn_leq; apply/andP; split. apply/ucn_nil_classP; rewrite ?quotient_nil //= -quotient_ucn_add ucn1. by rewrite (ucn_nil_classP _ _ _) ?addn1 ?leqSpred. rewrite -subn1 leq_subLR addnC; apply/ucn_nil_classP => //=. apply: (quotient_inj _ nsZ1G) => /=. by apply: normalS (ucn_sub _ _) nsZ1G; rewrite /= addnS ucn_sub_geq. by rewrite quotient_ucn_add; apply/ucn_nil_classP; rewrite //= quotient_nil. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
nil_class_quotient_center
nilpotent_sub_normG H : nilpotent G -> H \subset G -> 'N_G(H) \subset H -> G :=: H. Proof. move=> nilG sHG sNH; apply/eqP; rewrite eqEsubset sHG andbT; apply/negP=> nsGH. have{nsGH} [i sZH []]: exists2 i, 'Z_i(G) \subset H & ~ 'Z_i.+1(G) \subset H. case/ucnP: nilG => n ZnG; rewrite -{}ZnG in nsGH. elim: n => [|i IHi] in nsGH *; first by rewrite sub1G in nsGH. by case sZH: ('Z_i(G) \subset H); [exists i | apply: IHi; rewrite sZH]. apply: subset_trans sNH; rewrite subsetI ucn_sub -commg_subr. by apply: subset_trans sZH; apply: subset_trans (ucn_comm i G); apply: commgS. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
nilpotent_sub_norm
nilpotent_proper_normG H : nilpotent G -> H \proper G -> H \proper 'N_G(H). Proof. move=> nilG; rewrite properEneq properE subsetI normG => /andP[neHG sHG]. by rewrite sHG; apply: contra neHG => /(nilpotent_sub_norm nilG)->. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
nilpotent_proper_norm
nilpotent_subnormalG H : nilpotent G -> H \subset G -> H <|<| G. Proof. move=> nilG; have [m] := ubnP (#|G| - #|H|). elim: m H => // m IHm H /ltnSE-leGHm sHG. have [->|] := eqVproper sHG; first exact: subnormal_refl. move/(nilpotent_proper_norm nilG); set K := 'N_G(H) => prHK. have snHK: H <|<| K by rewrite normal_subnormal ?normalSG. have sKG: K \subset G by rewrite subsetIl. apply: subnormal_trans snHK (IHm _ (leq_trans _ leGHm) sKG). by rewrite ltn_sub2l ?proper_card ?(proper_sub_trans prHK). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
nilpotent_subnormal
TI_center_nilG H : nilpotent G -> H <| G -> H :&: 'Z(G) = 1 -> H :=: 1. Proof. move=> nilG /andP[sHG nHG] tiHZ. rewrite -{1}(setIidPl sHG); have{nilG} /ucnP[n <-] := nilG. elim: n => [|n IHn]; apply/trivgP; rewrite ?subsetIr // -tiHZ. rewrite [H :&: 'Z(G)]setIA subsetI setIS ?ucn_sub //= (sameP commG1P trivgP). rewrite -commg_subr commGC in nHG. rewrite -IHn subsetI (subset_trans _ nHG) ?commSg ?subsetIl //=. by rewrite (subset_trans _ (ucn_comm n G)) ?commSg ?subsetIr. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
TI_center_nil
meet_center_nilG H : nilpotent G -> H <| G -> H :!=: 1 -> H :&: 'Z(G) != 1. Proof. by move=> nilG nsHG; apply: contraNneq => /TI_center_nil->. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
meet_center_nil
center_nil_eq1G : nilpotent G -> ('Z(G) == 1) = (G :==: 1). Proof. move=> nilG; apply/eqP/eqP=> [Z1 | ->]; last exact: center1. by rewrite (TI_center_nil nilG) // (setIidPr (center_sub G)). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
center_nil_eq1
cyclic_nilpotent_quo_der1_cyclicG : nilpotent G -> cyclic (G / G^`(1)) -> cyclic G. Proof. move=> nG; rewrite (isog_cyclic (quotient1_isog G)). have [-> // | ntG' cGG'] := (eqVneq G^`(1) 1)%g. suffices: 'L_2(G) \subset G :&: 'L_3(G) by move/(eqfun_inP nG)=> <-. rewrite subsetI lcn_sub /= -quotient_cents2 ?lcn_norm //. apply: cyclic_factor_abelian (lcn_central 2 G) _. by rewrite (isog_cyclic (third_isog _ _ _)) ?lcn_normal // lcn_subS. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
cyclic_nilpotent_quo_der1_cyclic
nilpotent_solG : nilpotent G -> solvable G. Proof. move=> nilG; apply/forall_inP=> H /subsetIP[sHG sHH']. by rewrite (forall_inP nilG) // subsetI sHG (subset_trans sHH') ?commgS. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
nilpotent_sol
abelian_solG : abelian G -> solvable G. Proof. by move/abelian_nil/nilpotent_sol. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
abelian_sol
solvable1: solvable [1 gT]. Proof. exact: abelian_sol (abelian1 gT). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
solvable1
solvableSG H : H \subset G -> solvable G -> solvable H. Proof. move=> sHG solG; apply/forall_inP=> K /subsetIP[sKH sKK']. by rewrite (forall_inP solG) // subsetI (subset_trans sKH). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
solvableS
sol_der1_properG H : solvable G -> H \subset G -> H :!=: 1 -> H^`(1) \proper H. Proof. move=> solG sHG ntH; rewrite properE comm_subG //; apply: implyP ntH. by have:= forallP solG H; rewrite subsetI sHG implybNN. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
sol_der1_proper
derivedPG : reflect (exists n, G^`(n) = 1) (solvable G). Proof. apply: (iffP idP) => [solG | [n solGn]]; last first. apply/forall_inP=> H /subsetIP[sHG sHH']. rewrite -subG1 -{}solGn; elim: n => // n IHn. exact: subset_trans sHH' (commgSS _ _). suffices IHn n: #|G^`(n)| <= (#|G|.-1 - n).+1. by exists #|G|.-1; rewrite [G^`(_)]card_le1_trivg ?(leq_trans (IHn _)) ?subnn. elim: n => [|n IHn]; first by rewrite subn0 prednK. rewrite dergSn subnS -ltnS. have [-> | ntGn] := eqVneq G^`(n) 1; first by rewrite commG1 cards1. case: (_ - _) IHn => [|n']; first by rewrite leqNgt cardG_gt1 ntGn. by apply: leq_trans (proper_card _); apply: sol_der1_proper (der_sub _ _) _. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
derivedP
morphim_sol: solvable G -> solvable (f @* G). Proof. move/(solvableS (subsetIr D G)); case/derivedP=> n Gn1; apply/derivedP. by exists n; rewrite /= -morphimIdom -morphim_der ?subsetIl // Gn1 morphim1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
morphim_sol
injm_sol: 'injm f -> G \subset D -> solvable (f @* G) = solvable G. Proof. move=> injf sGD; apply/idP/idP; last exact: morphim_sol. case/derivedP=> n Gn1; apply/derivedP; exists n; apply/trivgP. by rewrite -(injmSK injf) ?gFsub_trans ?morphim_der // Gn1 morphim1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
injm_sol
isog_solG (L : {group rT}) : G \isog L -> solvable G = solvable L. Proof. by case/isogP=> f injf <-; rewrite injm_sol. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
isog_sol
quotient_solG H : solvable G -> solvable (G / H). Proof. exact: morphim_sol. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
quotient_sol
series_solG H : H <| G -> solvable G = solvable H && solvable (G / H). Proof. case/andP=> sHG nHG; apply/idP/andP=> [solG | [solH solGH]]. by rewrite quotient_sol // (solvableS sHG). apply/forall_inP=> K /subsetIP[sKG sK'K]. suffices sKH: K \subset H by rewrite (forall_inP solH) // subsetI sKH. have nHK := subset_trans sKG nHG. rewrite -quotient_sub1 // subG1 (forall_inP solGH) //. by rewrite subsetI -morphimR ?morphimS. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
series_sol
metacyclic_solG : metacyclic G -> solvable G. Proof. case/metacyclicP=> K [cycK nsKG cycGq]. by rewrite (series_sol nsKG) !abelian_sol ?cyclic_abelian. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
metacyclic_sol
setXn_soln (gT : 'I_n -> finGroupType) (G : forall i, {group gT i}) : (forall i, solvable (G i)) -> solvable (setXn G). Proof. elim: n => [|n IHn] in gT G * => solG; first by rewrite groupX0 solvable1. pose gT' (i : 'I_n) := gT (lift ord0 i). pose prod_group_gT := [the finGroupType of {dffun forall i, gT i}]. pose prod_group_gT' := [the finGroupType of {dffun forall i, gT' i}]. pose f (x : prod_group_gT) : prod_group_gT' := [ffun i => x (lift ord0 i)]. have fm : morphic (setXn G) f. apply/'forall_implyP => -[a b]; rewrite !inE/=. by move=> /andP[/forallP aG /forallP bG]; apply/eqP/ffunP => i; rewrite !ffunE. rewrite (@series_sol _ [group of setXn G] ('ker (morphm fm))) ?ker_normal//=. rewrite (isog_sol (first_isog _))/=. have -> : (morphm fm @* setXn G)%g = setXn (fun i => G (lift ord0 i)). apply/setP => v; rewrite !inE morphimEdom; apply/idP/forallP => /=. move=> /imsetP[/=x]; rewrite inE => /forallP/= xG ->. by move=> i; rewrite morphmE ffunE xG. move=> vG; apply/imsetP. pose w := [ffun i : 'I_n.+1 => match unliftP ord0 i return (gT i) : Type with | UnliftSome j i_eq => ecast i (gT i) (esym i_eq) (v j) | UnliftNone i0 => 1%g end]. have wl i : w (lift ord0 i) = v i. rewrite ffunE; case: unliftP => //= j elij. have eij : i = j by case: elij; apply/val_inj. by rewrite [elij](eq_irrelevance _ (congr1 _ eij)); case: _ / eij. have w0 : w ord0 = 1%g by rewrite ffunE; case: unliftP. exists w; last by a ...
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype div bigop prime finset fingroup morphism", "From mathcomp Require Import automorphism quotient commutator gproduct", "From mathcomp Require Import perm gfunctor center gseries cyclic", "From mathcomp Require finfun" ]
solvable/nilpotent.v
setXn_sol
pgrouppi A := pi.-nat #|A|.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pgroup
psubgrouppi A B := (B \subset A) && pgroup pi B.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
psubgroup
p_groupA := pgroup (pdiv #|A|) A.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
p_group
p_eltpi x := pi.-nat #[x].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
p_elt
consttx pi := x ^+ (chinese #[x]`_pi #[x]`_pi^' 1 0).
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
constt
HallA B := (B \subset A) && coprime #|B| #|A : B|.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
Hall
pHallpi A B := [&& B \subset A, pgroup pi B & pi^'.-nat #|A : B|].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pHall
Sylp A := [set P : {group gT} | pHall p A P].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
Syl
SylowA B := p_group B && Hall A B.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
Sylow
trivgVpdivG : G :=: 1 \/ (exists2 p, prime p & p %| #|G|). Proof. have [leG1|lt1G] := leqP #|G| 1; first by left; apply: card_le1_trivg. by right; exists (pdiv #|G|); rewrite ?pdiv_dvd ?pdiv_prime. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
trivgVpdiv
prime_subgroupVtiG H : prime #|G| -> G \subset H \/ H :&: G = 1. Proof. move=> prG; have [|[p p_pr pG]] := trivgVpdiv (H :&: G); first by right. left; rewrite (sameP setIidPr eqP) eqEcard subsetIr. suffices <-: p = #|G| by rewrite dvdn_leq ?cardG_gt0. by apply/eqP; rewrite -dvdn_prime2 // -(LagrangeI G H) setIC dvdn_mulr. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
prime_subgroupVti
pgroupEpi A : pi.-group A = pi.-nat #|A|. Proof. by []. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pgroupE
sub_pgrouppi rho A : {subset pi <= rho} -> pi.-group A -> rho.-group A. Proof. by move=> pi_sub_rho; apply: sub_in_pnat (in1W pi_sub_rho). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
sub_pgroup
eq_pgrouppi rho A : pi =i rho -> pi.-group A = rho.-group A. Proof. exact: eq_pnat. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
eq_pgroup
eq_p'grouppi rho A : pi =i rho -> pi^'.-group A = rho^'.-group A. Proof. by move/eq_negn; apply: eq_pnat. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
eq_p'group
pgroupNKpi A : pi^'^'.-group A = pi.-group A. Proof. exact: pnatNK. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pgroupNK
pi_pgroupp pi A : p.-group A -> p \in pi -> pi.-group A. Proof. exact: pi_pnat. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pi_pgroup
pi_p'groupp pi A : pi.-group A -> p \in pi^' -> p^'.-group A. Proof. exact: pi_p'nat. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pi_p'group
pi'_p'groupp pi A : pi^'.-group A -> p \in pi -> p^'.-group A. Proof. exact: pi'_p'nat. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset prime fingroup morphism", "From mathcomp Require Import gfunctor automorphism quotient action gproduct", "From mathcomp Require Import cyclic" ]
solvable/pgroup.v
pi'_p'group