fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
norm_conj_centA G x : x \in 'C(A) -> (A \subset 'N(G :^ x)) = (A \subset 'N(G)). Proof. by move=> cAx; rewrite norm_conj_norm ?(subsetP (cent_sub A)). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div choice", "From mathcomp Require Import fintype finset prime fingroup morphism", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import commutator center pgroup finmodule nilpotent", "From mathcomp Require Import sylow abelian maximal" ]
solvable/hall.v
norm_conj_cent
strongest_coprime_quotient_centA G H : let R := H :&: [~: G, A] in A \subset 'N(H) -> R \subset G -> coprime #|R| #|A| -> solvable R || solvable A -> 'C_G(A) / H = 'C_(G / H)(A / H). Proof. move=> R nHA sRG coRA solRA. have nRA: A \subset 'N(R) by rewrite normsI ?commg_normr. apply/eqP; rewrite eqEsubset subsetI morphimS ?subsetIl //=. rewrite (subset_trans _ (morphim_cent _ _)) ?morphimS ?subsetIr //=. apply/subsetP=> _ /setIP[/morphimP[x Nx Gx ->] cAHx]. have{cAHx} cAxR y: y \in A -> [~ x, y] \in R. move=> Ay; have Ny: y \in 'N(H) by apply: subsetP Ay. rewrite inE mem_commg // andbT coset_idr ?groupR // morphR //=. by apply/eqP; apply/commgP; apply: (centP cAHx); rewrite mem_quotient. have AxRA: A :^ x \subset R * A. apply/subsetP=> _ /imsetP[y Ay ->]. rewrite -normC // -(mulKVg y (y ^ x)) -commgEl mem_mulg //. by rewrite -groupV invg_comm cAxR. have [y Ry def_Ax]: exists2 y, y \in R & A :^ x = A :^ y. have oAx: #|A :^ x| = #|A| by rewrite cardJg. have [solR | solA] := orP solRA; first exact: SchurZassenhaus_trans_sol. by apply: SchurZassenhaus_trans_actsol; rewrite // joingC norm_joinEr. rewrite -imset_coset; apply/imsetP; exists (x * y^-1); last first. by rewrite conjgCV mkerl // ker_coset memJ_norm groupV; case/setIP: Ry. rewrite /= inE groupMl // ?(groupV, subsetP sRG) //=. apply/centP=> z Az; apply/commgP/eqP/set1P. rewrite -[[set 1]](coprime_TIg coRA) inE {1}commgEl commgEr /= -/R. rewrite invMg -mulgA invgK (@groupMl _ R) // conjMg mulgA -commgEl. rewrite gr ...
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div choice", "From mathcomp Require Import fintype finset prime fingroup morphism", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import commutator center pgroup finmodule nilpotent", "From mathcomp Require Import sylow abelian maximal" ]
solvable/hall.v
strongest_coprime_quotient_cent
coprime_norm_quotient_centA G H : A \subset 'N(G) -> A \subset 'N(H) -> coprime #|H| #|A| -> solvable H -> 'C_G(A) / H = 'C_(G / H)(A / H). Proof. move=> nGA nHA coHA solH; have sRH := subsetIl H [~: G, A]. rewrite strongest_coprime_quotient_cent ?(coprimeSg sRH) 1?(solvableS sRH) //. by rewrite subIset // commg_subl nGA orbT. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div choice", "From mathcomp Require Import fintype finset prime fingroup morphism", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import commutator center pgroup finmodule nilpotent", "From mathcomp Require Import sylow abelian maximal" ]
solvable/hall.v
coprime_norm_quotient_cent
coprime_cent_mulGA G H : A \subset 'N(G) -> A \subset 'N(H) -> G \subset 'N(H) -> coprime #|H| #|A| -> solvable H -> 'C_(H * G)(A) = 'C_H(A) * 'C_G(A). Proof. move=> nHA nGA nHG coHA solH; rewrite -norm_joinEr //. have nsHG: H <| H <*> G by rewrite /normal joing_subl join_subG normG. rewrite -{2}(setIidPr (normal_sub nsHG)) setIAC. rewrite group_modr ?setSI ?joing_subr //=; symmetry; apply/setIidPl. rewrite -quotientSK ?subIset 1?normal_norm //. by rewrite !coprime_norm_quotient_cent ?normsY //= norm_joinEr ?quotientMidl. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div choice", "From mathcomp Require Import fintype finset prime fingroup morphism", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import commutator center pgroup finmodule nilpotent", "From mathcomp Require Import sylow abelian maximal" ]
solvable/hall.v
coprime_cent_mulG
quotient_TI_subcentK G H : G \subset 'N(K) -> G \subset 'N(H) -> K :&: H = 1 -> 'C_K(G) / H = 'C_(K / H)(G / H). Proof. move=> nGK nGH tiKH. have tiHR: H :&: [~: K, G] = 1. by apply/trivgP; rewrite /= setIC -tiKH setSI ?commg_subl. apply: strongest_coprime_quotient_cent; rewrite ?tiHR ?sub1G ?solvable1 //. by rewrite cards1 coprime1n. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div choice", "From mathcomp Require Import fintype finset prime fingroup morphism", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import commutator center pgroup finmodule nilpotent", "From mathcomp Require Import sylow abelian maximal" ]
solvable/hall.v
quotient_TI_subcent
external_action_im_coprime: coprime #|G'| #|A'|. Proof. by rewrite !card_injm. Qed. Let coGA' := external_action_im_coprime. Let solG' : solvable G' := morphim_sol _ solG. Let nGA' := im_sdpair_norm to.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div choice", "From mathcomp Require Import fintype finset prime fingroup morphism", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import commutator center pgroup finmodule nilpotent", "From mathcomp Require Import sylow abelian maximal" ]
solvable/hall.v
external_action_im_coprime
ext_coprime_Hall_exists: exists2 H : {group gT}, pi.-Hall(G) H & [acts A, on H | to]. Proof. have [H' hallH' nHA'] := coprime_Hall_exists pi nGA' coGA' solG'. have sHG' := pHall_sub hallH'. exists (inG @*^-1 H')%G => /=. by rewrite -(morphim_invmE injG) -{1}(im_invm injG) morphim_pHall. by rewrite actsEsd ?morphpreK // subsetIl. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div choice", "From mathcomp Require Import fintype finset prime fingroup morphism", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import commutator center pgroup finmodule nilpotent", "From mathcomp Require Import sylow abelian maximal" ]
solvable/hall.v
ext_coprime_Hall_exists
ext_coprime_Hall_trans(H1 H2 : {group gT}) : pi.-Hall(G) H1 -> [acts A, on H1 | to] -> pi.-Hall(G) H2 -> [acts A, on H2 | to] -> exists2 x, x \in 'C_(G | to)(A) & H1 :=: H2 :^ x. Proof. move=> hallH1 nH1A hallH2 nH2A. have sH1G := pHall_sub hallH1; have sH2G := pHall_sub hallH2. rewrite !actsEsd // in nH1A nH2A. have hallH1': pi.-Hall(G') (inG @* H1) by rewrite morphim_pHall. have hallH2': pi.-Hall(G') (inG @* H2) by rewrite morphim_pHall. have [x'] := coprime_Hall_trans nGA' coGA' solG' hallH1' nH1A hallH2' nH2A. case/setIP=> /= Gx' cAx' /eqP defH1; pose x := invm injG x'. have Gx: x \in G by rewrite -(im_invm injG) mem_morphim. have def_x': x' = inG x by rewrite invmK. exists x; first by rewrite inE Gx gacentEsd mem_morphpre /= -?def_x'. apply/eqP; move: defH1; rewrite def_x' /= -morphimJ //=. by rewrite !eqEsubset !injmSK // conj_subG. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div choice", "From mathcomp Require Import fintype finset prime fingroup morphism", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import commutator center pgroup finmodule nilpotent", "From mathcomp Require Import sylow abelian maximal" ]
solvable/hall.v
ext_coprime_Hall_trans
ext_norm_conj_cent(H : {group gT}) x : H \subset G -> x \in 'C_(G | to)(A) -> [acts A, on H :^ x | to] = [acts A, on H | to]. Proof. move=> sHG /setIP[Gx]. rewrite gacentEsd !actsEsd ?conj_subG ?morphimJ // 2!inE Gx /=. exact: norm_conj_cent. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div choice", "From mathcomp Require Import fintype finset prime fingroup morphism", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import commutator center pgroup finmodule nilpotent", "From mathcomp Require Import sylow abelian maximal" ]
solvable/hall.v
ext_norm_conj_cent
ext_coprime_Hall_subset(X : {group gT}) : X \subset G -> pi.-group X -> [acts A, on X | to] -> exists H : {group gT}, [/\ pi.-Hall(G) H, [acts A, on H | to] & X \subset H]. Proof. move=> sXG piX; rewrite actsEsd // => nXA'. case: (coprime_Hall_subset nGA' coGA' solG' _ (morphim_pgroup _ piX) nXA'). exact: morphimS. move=> H' /= [piH' nHA' sXH']; have sHG' := pHall_sub piH'. exists (inG @*^-1 H')%G; rewrite actsEsd ?subsetIl ?morphpreK // nHA'. rewrite -sub_morphim_pre //= sXH'; split=> //. by rewrite -(morphim_invmE injG) -{1}(im_invm injG) morphim_pHall. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div choice", "From mathcomp Require Import fintype finset prime fingroup morphism", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import commutator center pgroup finmodule nilpotent", "From mathcomp Require Import sylow abelian maximal" ]
solvable/hall.v
ext_coprime_Hall_subset
ext_coprime_quotient_cent(H : {group gT}) : H \subset G -> [acts A, on H | to] -> coprime #|H| #|A| -> solvable H -> 'C_(|to)(A) / H = 'C_(|to / H)(A). Proof. move=> sHG nHA coHA solH; pose N := 'N_G(H). have nsHN: H <| N by rewrite normal_subnorm. have [sHN nHn] := andP nsHN. have sNG: N \subset G by apply: subsetIl. have nNA: {acts A, on group N | to}. split; rewrite // actsEsd // injm_subnorm ?injm_sdpair1 //=. by rewrite normsI ?norms_norm ?im_sdpair_norm -?actsEsd. rewrite -!(gacentIdom _ A) -quotientInorm -gacentIim setIAC. rewrite -(gacent_actby nNA) gacentEsd -morphpreIim /= -/N. have:= (injm_sdpair1 <[nNA]>, injm_sdpair2 <[nNA]>). set inG := sdpair1 _; set inA := sdpair2 _ => [[injG injA]]. set G' := inG @* N; set A' := inA @* A; pose H' := inG @* H. have defN: 'N(H | to) = A by apply/eqP; rewrite eqEsubset subsetIl. have def_Dq: qact_dom to H = A by rewrite qact_domE. have sAq: A \subset qact_dom to H by rewrite def_Dq. rewrite {2}def_Dq -(gacent_ract _ sAq); set to_q := (_ \ _)%gact. have:= And3 (sdprod_sdpair to_q) (injm_sdpair1 to_q) (injm_sdpair2 to_q). rewrite gacentEsd; set inAq := sdpair2 _; set inGq := sdpair1 _ => /=. set Gq := inGq @* _; set Aq := inAq @* _ => [[q_d iGq iAq]]. have nH': 'N(H') = setT. apply/eqP; rewrite -subTset -im_sdpair mulG_subG morphim_norms //=. by rewrite -actsEsd // acts_actby subxx /= (setIidPr sHN). have: 'dom (coset H' \o inA \o invm iAq) = Aq. by rewrite ['dom _]morphpre_invm /= nH' morphpreT. case/domP=> /= qA [def_qA ker_qA _ im_qA]. h ...
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div choice", "From mathcomp Require Import fintype finset prime fingroup morphism", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import commutator center pgroup finmodule nilpotent", "From mathcomp Require Import sylow abelian maximal" ]
solvable/hall.v
ext_coprime_quotient_cent
sol_coprime_Sylow_existsA G : solvable A -> A \subset 'N(G) -> coprime #|G| #|A| -> exists2 P : {group gT}, p.-Sylow(G) P & A \subset 'N(P). Proof. move=> solA nGA coGA; pose AG := A <*> G. have nsG_AG: G <| AG by rewrite /normal joing_subr join_subG nGA normG. have [sG_AG nG_AG]:= andP nsG_AG. have [P sylP] := Sylow_exists p G; pose N := 'N_AG(P); pose NG := G :&: N. have nGN: N \subset 'N(G) by rewrite subIset ?nG_AG. have sNG_G: NG \subset G := subsetIl G N. have nsNG_N: NG <| N by rewrite /normal subsetIr normsI ?normG. have defAG: G * N = AG := Frattini_arg nsG_AG sylP. have oA : #|A| = #|N| %/ #|NG|. rewrite /NG setIC divgI -card_quotient // -quotientMidl defAG. rewrite card_quotient -?divgS //= norm_joinEl //. by rewrite coprime_cardMg 1?coprime_sym // mulnK. have: [splits N, over NG]. rewrite SchurZassenhaus_split // /Hall -divgS subsetIr //. by rewrite -oA (coprimeSg sNG_G). case/splitsP=> B; case/complP=> tNG_B defN. have [nPB]: B \subset 'N(P) /\ B \subset AG. by apply/andP; rewrite andbC -subsetI -/N -defN mulG_subr. case/SchurZassenhaus_trans_actsol => // [|x Gx defB]. by rewrite oA -defN TI_cardMg // mulKn. exists (P :^ x^-1)%G; first by rewrite pHallJ ?groupV. by rewrite normJ -sub_conjg -defB. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div choice", "From mathcomp Require Import fintype finset prime fingroup morphism", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import commutator center pgroup finmodule nilpotent", "From mathcomp Require Import sylow abelian maximal" ]
solvable/hall.v
sol_coprime_Sylow_exists
sol_coprime_Sylow_transA G : solvable A -> A \subset 'N(G) -> coprime #|G| #|A| -> [transitive 'C_G(A), on [set P in 'Syl_p(G) | A \subset 'N(P)] | 'JG]. Proof. move=> solA nGA coGA; pose AG := A <*> G; set FpA := finset _. have nG_AG: AG \subset 'N(G) by rewrite join_subG nGA normG. have [P sylP nPA] := sol_coprime_Sylow_exists solA nGA coGA. pose N := 'N_AG(P); have sAN: A \subset N by rewrite subsetI joing_subl. have trNPA: A :^: AG ::&: N = A :^: N. pose NG := 'N_G(P); have sNG_G : NG \subset G := subsetIl _ _. have nNGA: A \subset 'N(NG) by rewrite normsI ?norms_norm. apply/setP=> Ax; apply/setIdP/imsetP=> [[]|[x Nx ->{Ax}]]; last first. by rewrite conj_subG //; case/setIP: Nx => AGx; rewrite imset_f. have ->: N = A <*> NG by rewrite /N /AG !norm_joinEl // -group_modl. have coNG_A := coprimeSg sNG_G coGA; case/imsetP=> x AGx ->{Ax}. case/SchurZassenhaus_trans_actsol; rewrite ?cardJg // => y Ny /= ->. by exists y; rewrite // mem_gen 1?inE ?Ny ?orbT. have{trNPA}: [transitive 'N_AG(A), on FpA | 'JG]. have ->: FpA = 'Fix_('Syl_p(G) | 'JG)(A). by apply/setP=> Q; rewrite 4!inE afixJG. have SylP : P \in 'Syl_p(G) by rewrite inE. apply/(trans_subnorm_fixP _ SylP); rewrite ?astab1JG //. rewrite (atrans_supgroup _ (Syl_trans _ _)) ?joing_subr //= -/AG. by apply/actsP=> x /= AGx Q /=; rewrite !inE -{1}(normsP nG_AG x) ?pHallJ2. rewrite {1}/AG norm_joinEl // -group_modl ?normG ?coprime_norm_cent //=. rewrite -cent_joinEr ?subsetIr // => trC_FpA. have FpA_P: P \in FpA ...
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div choice", "From mathcomp Require Import fintype finset prime fingroup morphism", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import commutator center pgroup finmodule nilpotent", "From mathcomp Require Import sylow abelian maximal" ]
solvable/hall.v
sol_coprime_Sylow_trans
sol_coprime_Sylow_subsetA G X : A \subset 'N(G) -> coprime #|G| #|A| -> solvable A -> X \subset G -> p.-group X -> A \subset 'N(X) -> exists P : {group gT}, [/\ p.-Sylow(G) P, A \subset 'N(P) & X \subset P]. Proof. move=> nGA coGA solA sXG pX nXA. pose nAp (Q : {group gT}) := [&& p.-group Q, Q \subset G & A \subset 'N(Q)]. have: nAp X by apply/and3P. case/maxgroup_exists=> R; case/maxgroupP; case/and3P=> pR sRG nRA maxR sXR. have [P sylP sRP]:= Sylow_superset sRG pR. suffices defP: P :=: R by exists P; rewrite sylP defP. case/and3P: sylP => sPG pP _; apply: (nilpotent_sub_norm (pgroup_nil pP)) => //. pose N := 'N_G(R); have{sPG} sPN_N: 'N_P(R) \subset N by apply: setSI. apply: norm_sub_max_pgroup (pgroupS (subsetIl _ _) pP) sPN_N (subsetIr _ _). have nNA: A \subset 'N(N) by rewrite normsI ?norms_norm. have coNA: coprime #|N| #|A| by apply: coprimeSg coGA; rewrite subsetIl. have{solA coNA} [Q sylQ nQA] := sol_coprime_Sylow_exists solA nNA coNA. suffices defQ: Q :=: R by rewrite max_pgroup_Sylow -{2}defQ. apply: maxR; first by apply/and3P; case/and3P: sylQ; rewrite subsetI; case/andP. by apply: normal_sub_max_pgroup (Hall_max sylQ) pR _; rewrite normal_subnorm. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div choice", "From mathcomp Require Import fintype finset prime fingroup morphism", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import commutator center pgroup finmodule nilpotent", "From mathcomp Require Import sylow abelian maximal" ]
solvable/hall.v
sol_coprime_Sylow_subset
section(gT : finGroupType) := GSection of {group gT} * {group gT}. Delimit Scope section_scope with sec. Bind Scope section_scope with section.
Inductive
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
section
mkSec(gT : finGroupType) (G1 G2 : {group gT}) := GSection (G1, G2). Infix "/" := mkSec : section_scope.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
mkSec
pair_of_sectiongT (s : section gT) := let: GSection u := s in u.
Coercion
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
pair_of_section
quotient_of_sectiongT (s : section gT) : GroupSet.sort _ := s.1 / s.2.
Coercion
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
quotient_of_section
section_groupgT (s : section gT) : {group (coset_of s.2)} := Eval hnf in [group of s].
Coercion
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
section_group
Definition_ := [isNew for (@pair_of_section gT)]. HB.instance Definition _ := [Finite of section gT by <:].
HB.instance
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
Definition
section_group.
Canonical
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
section_group
section_isog:= [rel x y : section gT | x \isog y].
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
section_isog
section_reprs := odflt (1 / 1)%sec (pick (section_isog ^~ s)).
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
section_repr
mksreprG1 G2 := section_repr (mkSec G1 G2).
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
mksrepr
section_reprPs : section_repr s \isog s. Proof. by rewrite /section_repr; case: pickP => //= /(_ s); rewrite isog_refl. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
section_reprP
section_repr_isogs1 s2 : s1 \isog s2 -> section_repr s1 = section_repr s2. Proof. by move=> iso12; congr (odflt _ _); apply: eq_pick => s; apply: isog_transr. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
section_repr_isog
mkfactors(G : {group gT}) (s : seq {group gT}) := map section_repr (pairmap (@mkSec _) G s).
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
mkfactors
compsG s := ((last G s) == 1%G) && compo.-series G s.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
comps
compsPG s : reflect (last G s = 1%G /\ path [rel x y : gTg | maxnormal y x x] G s) (comps G s). Proof. by apply: (iffP andP) => [] [/eqP]. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
compsP
trivg_compsG s : comps G s -> (G :==: 1) = (s == [::]). Proof. case/andP=> ls cs; apply/eqP/eqP=> [G1 | s1]; last first. by rewrite s1 /= in ls; apply/eqP. by case: s {ls} cs => //= H s /andP[/maxgroupp]; rewrite G1 /proper sub1G andbF. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
trivg_comps
comps_consG H s : comps G (H :: s) -> comps H s. Proof. by case/andP => /= ls /andP[_]; rewrite /comps ls. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
comps_cons
simple_compsPG s : comps G s -> reflect (s = [:: 1%G]) (simple G). Proof. move=> cs; apply: (iffP idP) => [|s1]; last first. by rewrite s1 /comps eqxx /= andbT -simple_maxnormal in cs. case: s cs => [/trivg_comps/eqP-> | H s]; first by case/simpleP; rewrite eqxx. rewrite [comps _ _]andbCA /= => /andP[/maxgroupp maxH /trivg_comps/esym nil_s]. rewrite simple_maxnormal => /maxgroupP[_ simG]. have H1: H = 1%G by apply/val_inj/simG; rewrite // sub1G. by move: nil_s; rewrite H1 eqxx => /eqP->. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
simple_compsP
exists_comps(G : gTg) : exists s, comps G s. Proof. elim: {G} #|G| {1 3}G (leqnn #|G|) => [G | n IHn G cG]. by rewrite leqNgt cardG_gt0. have [sG | nsG] := boolP (simple G). by exists [:: 1%G]; rewrite /comps eqxx /= -simple_maxnormal andbT. have [-> | ntG] := eqVneq G 1%G; first by exists [::]; rewrite /comps eqxx. have [N maxN] := ex_maxnormal_ntrivg ntG. have [|s /andP[ls cs]] := IHn N. by rewrite -ltnS (leq_trans _ cG) // proper_card // (maxnormal_proper maxN). by exists (N :: s); apply/and3P. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
exists_comps
JordanHolderUniqueness(G : gTg) (s1 s2 : seq gTg) : comps G s1 -> comps G s2 -> perm_eq (mkfactors G s1) (mkfactors G s2). Proof. have [n] := ubnP #|G|; elim: n G => // n Hi G in s1 s2 * => /ltnSE-cG cs1 cs2. have [G1 | ntG] := boolP (G :==: 1). have -> : s1 = [::] by apply/eqP; rewrite -(trivg_comps cs1). have -> : s2 = [::] by apply/eqP; rewrite -(trivg_comps cs2). by rewrite /= perm_refl. have [sG | nsG] := boolP (simple G). by rewrite (simple_compsP cs1 sG) (simple_compsP cs2 sG) perm_refl. case es1: s1 cs1 => [|N1 st1] cs1. by move: (trivg_comps cs1); rewrite eqxx; move/negP:ntG. case es2: s2 cs2 => [|N2 st2] cs2 {s1 es1}. by move: (trivg_comps cs2); rewrite eqxx; move/negP:ntG. case/andP: cs1 => /= lst1; case/andP=> maxN_1 pst1. case/andP: cs2 => /= lst2; case/andP=> maxN_2 pst2. have cN1 : #|N1| < n. by rewrite (leq_trans _ cG) ?proper_card ?(maxnormal_proper maxN_1). have cN2 : #|N2| < n. by rewrite (leq_trans _ cG) ?proper_card ?(maxnormal_proper maxN_2). case: (N1 =P N2) {s2 es2} => [eN12 |]. by rewrite eN12 /= perm_cons Hi // /comps ?lst2 //= -eN12 lst1. move/eqP; rewrite -val_eqE /=; move/eqP=> neN12. have nN1G : N1 <| G by apply: maxnormal_normal. have nN2G : N2 <| G by apply: maxnormal_normal. pose N := (N1 :&: N2)%G. have nNG : N <| G. by rewrite /normal subIset ?(normal_sub nN1G) //= normsI ?normal_norm. have iso1 : (G / N1)%G \isog (N2 / N)%G. rewrite isog_sym /= -(maxnormalM maxN_1 maxN_2) //. rewrite (@normC _ N1 N2) ?(subset_trans (normal_sub nN1G)) ?n ...
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
JordanHolderUniqueness
gactsP(G : {set rT}) : reflect {acts A, on G | to} [acts A, on G | to]. Proof. apply: (iffP idP) => [nGA x|nGA]; first exact: acts_act. apply/subsetP=> a Aa /[!inE]; rewrite Aa. by apply/subsetP=> x; rewrite inE nGA. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
gactsP
gactsM(N1 N2 : {set rT}) : N1 \subset D -> N2 \subset D -> [acts A, on N1 | to] -> [acts A, on N2 | to] -> [acts A, on N1 * N2 | to]. Proof. move=> sN1D sN2D aAN1 aAN2; apply/gactsP=> x Ax y. apply/idP/idP; case/mulsgP=> y1 y2 N1y1 N2y2 e. move: (actKin to Ax y); rewrite e; move<-. rewrite gactM ?groupV ?(subsetP sN1D y1) ?(subsetP sN2D) //. by apply: mem_mulg; rewrite ?(gactsP _ aAN1) ?(gactsP _ aAN2) // groupV. rewrite e gactM // ?(subsetP sN1D y1) ?(subsetP sN2D) //. by apply: mem_mulg; rewrite ?(gactsP _ aAN1) // ?(gactsP _ aAN2). Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
gactsM
gactsI(N1 N2 : {set rT}) : [acts A, on N1 | to] -> [acts A, on N2 | to] -> [acts A, on N1 :&: N2 | to]. Proof. move=> aAN1 aAN2. apply/subsetP=> x Ax; rewrite !inE Ax /=; apply/subsetP=> y Ny /[1!inE]. case/setIP: Ny=> N1y N2y; rewrite inE ?astabs_act ?N1y ?N2y //. - by move/subsetP: aAN2; move/(_ x Ax). - by move/subsetP: aAN1; move/(_ x Ax). Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
gactsI
gastabsP(S : {set rT}) (a : aT) : a \in A -> reflect (forall x, (to x a \in S) = (x \in S)) (a \in 'N(S | to)). Proof. move=> Aa; apply: (iffP idP) => [nSa x|nSa]; first exact: astabs_act. by rewrite !inE Aa; apply/subsetP=> x; rewrite inE nSa. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
gastabsP
qact_dom_doms(H : {group rT}) : H \subset D -> qact_dom to H \subset A. Proof. by move=> sHD; apply/subsetP=> x; rewrite qact_domE // inE; case/andP. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
qact_dom_doms
acts_qact_doms(H : {group rT}) : H \subset D -> [acts A, on H | to] -> qact_dom to H :=: A. Proof. move=> sHD aH; apply/eqP; rewrite eqEsubset; apply/andP. split; first exact: qact_dom_doms. apply/subsetP=> x Ax; rewrite qact_domE //; apply/gastabsP=> //. by move/gactsP: aH; move/(_ x Ax). Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
acts_qact_doms
qacts_cosetpre(H : {group rT}) (K' : {group coset_of H}) : H \subset D -> [acts A, on H | to] -> [acts qact_dom to H, on K' | to / H] -> [acts A, on coset H @*^-1 K' | to]. Proof. move=> sHD aH aK'; apply/subsetP=> x Ax; move: (Ax) (subsetP aK'). rewrite -{1}(acts_qact_doms sHD aH) => qdx; move/(_ x qdx) => nx. rewrite !inE Ax; apply/subsetP=> y; case/morphpreP=> Ny /= K'Hy /[1!inE]. apply/morphpreP; split; first by rewrite acts_qact_dom_norm. by move/gastabsP: nx; move/(_ qdx (coset H y)); rewrite K'Hy qactE. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
qacts_cosetpre
qacts_coset(H K : {group rT}) : H \subset D -> [acts A, on K | to] -> [acts qact_dom to H, on (coset H) @* K | to / H]. Proof. move=> sHD aK. apply/subsetP=> x qdx; rewrite inE qdx inE; apply/subsetP=> y. case/morphimP=> z Nz Kz /= e; rewrite e inE qactE // imset_f // inE. move/gactsP: aK; move/(_ x (subsetP (qact_dom_doms sHD) _ qdx) z); rewrite Kz. move->; move/acts_act: (acts_qact_dom to H); move/(_ x qdx z). by rewrite Nz andbT. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
qacts_coset
maxainv(B C : {set rT}) := [max C of H | [&& (H <| B), ~~ (B \subset H) & [acts A, on H | to]]].
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
maxainv
maxainv_norm: maxainv K N -> N <| K. Proof. by move/maxgroupp; case/andP. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
maxainv_norm
maxainv_proper: maxainv K N -> N \proper K. Proof. by move/maxgroupp; case/andP; rewrite properE; move/normal_sub->; case/andP. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
maxainv_proper
maxainv_sub: maxainv K N -> N \subset K. Proof. by move=> h; apply: proper_sub; apply: maxainv_proper. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
maxainv_sub
maxainv_ainvar: maxainv K N -> A \subset 'N(N | to). Proof. by move/maxgroupp; case/and3P. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
maxainv_ainvar
maxainvS: maxainv K N -> N \subset K. Proof. by move=> pNN; rewrite proper_sub // maxainv_proper. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
maxainvS
maxainv_exists: K :!=: 1 -> {N : {group rT} | maxainv K N}. Proof. move=> nt; apply: ex_maxgroup. exists [1 rT]%G. rewrite /= normal1 subG1 nt /=. apply/subsetP=> a Da; rewrite !inE Da /= sub1set !inE. by rewrite /= -actmE // morph1 eqxx. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
maxainv_exists
maxainvM(G H K : {group rT}) : H \subset D -> K \subset D -> maxainv G H -> maxainv G K -> H :<>: K -> H * K = G. Proof. move: H K => N1 N2 sN1D sN2D pmN1 pmN2 neN12. have cN12 : commute N1 N2. apply: normC; apply: (subset_trans (maxainv_sub pmN1)). by rewrite normal_norm ?maxainv_norm. wlog nsN21 : G N1 N2 sN1D sN2D pmN1 pmN2 neN12 cN12/ ~~(N1 \subset N2). move/eqP: (neN12); rewrite eqEsubset negb_and; case/orP=> ns; first by apply. by rewrite cN12; apply=> //; apply: sym_not_eq. have nP : N1 * N2 <| G by rewrite normalM ?maxainv_norm. have sN2P : N2 \subset N1 * N2 by rewrite mulg_subr ?group1. case/maxgroupP: (pmN1); case/andP=> nN1G pN1G mN1. case/maxgroupP: (pmN2); case/andP=> nN2G pN2G mN2. case/andP: pN1G=> nsGN1 ha1; case/andP: pN2G=> nsGN2 ha2. case e : (G \subset N1 * N2). by apply/eqP; rewrite eqEsubset e mulG_subG !normal_sub. have: N1 <*> N2 = N2 by apply: mN2; rewrite /= ?comm_joingE // nP e /= gactsM. by rewrite comm_joingE // => h; move: nsN21; rewrite -h mulg_subl. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
maxainvM
asimple(K : {set rT}) := maxainv K 1. Implicit Types (H K : {group rT}) (s : seq {group rT}).
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
asimple
asimplePK : reflect [/\ K :!=: 1 & forall H, H <| K -> [acts A, on H | to] -> H :=: 1 \/ H :=: K] (asimple K). Proof. apply: (iffP idP). case/maxgroupP; rewrite normal1 /=; case/andP=> nsK1 aK H1. rewrite eqEsubset negb_and nsK1 /=; split => // H nHK ha. case eHK : (H :==: K); first by right; apply/eqP. left; apply: H1; rewrite ?sub1G // nHK; move/negbT: eHK. by rewrite eqEsubset negb_and normal_sub //=; move->. case=> ntK h; apply/maxgroupP; split. move: ntK; rewrite eqEsubset sub1G andbT normal1; move->. apply/subsetP=> a Da; rewrite !inE Da /= sub1set !inE. by rewrite /= -actmE // morph1 eqxx. move=> H /andP[nHK /andP[nsKH ha]] _. case: (h _ nHK ha)=> // /eqP; rewrite eqEsubset. by rewrite (negbTE nsKH) andbF. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
asimpleP
acompsK s := ((last K s) == 1%G) && path [rel x y : {group rT} | maxainv x y] K s.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
acomps
acompsPK s : reflect (last K s = 1%G /\ path [rel x y : {group rT} | maxainv x y] K s) (acomps K s). Proof. by apply: (iffP andP); case; move/eqP. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
acompsP
trivg_acompsK s : acomps K s -> (K :==: 1) = (s == [::]). Proof. case/andP=> ls cs; apply/eqP/eqP; last first. by move=> se; rewrite se /= in ls; apply/eqP. move=> G1; case: s ls cs => // H s _ /=; case/andP; case/maxgroupP. by rewrite G1 sub1G andbF. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
trivg_acomps
acomps_consK H s : acomps K (H :: s) -> acomps H s. Proof. by case/andP => /= ls; case/andP=> _ p; rewrite /acomps ls. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
acomps_cons
asimple_acompsPK s : acomps K s -> reflect (s = [:: 1%G]) (asimple K). Proof. move=> cs; apply: (iffP idP); last first. by move=> se; move: cs; rewrite se /=; case/andP=> /=; rewrite andbT. case: s cs. by rewrite /acomps /= andbT; move/eqP->; case/asimpleP; rewrite eqxx. move=> H s cs sG; apply/eqP. rewrite eqseq_cons -(trivg_acomps (acomps_cons cs)) andbC andbb. case/acompsP: cs => /= ls; case/andP=> mH ps. case/maxgroupP: sG; case/and3P => _ ntG _ ->; rewrite ?sub1G //. rewrite (maxainv_norm mH); case/andP: (maxainv_proper mH)=> _ ->. exact: (maxainv_ainvar mH). Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
asimple_acompsP
exists_acompsK : exists s, acomps K s. Proof. elim: {K} #|K| {1 3}K (leqnn #|K|) => [K | n Hi K cK]. by rewrite leqNgt cardG_gt0. case/orP: (orbN (asimple K)) => [sK | nsK]. by exists [:: (1%G : {group rT})]; rewrite /acomps eqxx /= andbT. case/orP: (orbN (K :==: 1))=> [tK | ntK]. by exists (Nil _); rewrite /acomps /= andbT. case: (maxainv_exists ntK)=> N pmN. have cN: #|N| <= n. by rewrite -ltnS (leq_trans _ cK) // proper_card // (maxainv_proper pmN). case: (Hi _ cN)=> s; case/andP=> lasts ps; exists [:: N & s]; rewrite /acomps. by rewrite last_cons lasts /= pmN. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
exists_acomps
maxainv_asimple_quo(G H : {group rT}) : H \subset D -> maxainv to G H -> asimple (to / H) (G / H). Proof. move=> sHD /maxgroupP[/and3P[nHG pHG aH] Hmax]. apply/asimpleP; split; first by rewrite -subG1 quotient_sub1 ?normal_norm. move=> K' nK'Q aK'. have: (K' \proper (G / H)) || (G / H == K'). by rewrite properE eqEsubset andbC (normal_sub nK'Q) !andbT orbC orbN. case/orP=> [ pHQ | eQH]; last by right; apply sym_eq; apply/eqP. left; pose K := ((coset H) @*^-1 K')%G. have eK'I : K' \subset (coset H) @* 'N(H). by rewrite (subset_trans (normal_sub nK'Q)) ?morphimS ?normal_norm. have eKK' : K' :=: K / H by rewrite /(K / H) morphpreK //=. suff eKH : K :=: H by rewrite -trivg_quotient eKK' eKH. have sHK : H \subset K by rewrite -ker_coset kerE morphpreS // sub1set group1. apply: Hmax => //; apply/and3P; split; last exact: qacts_cosetpre. by rewrite -(quotientGK nHG) cosetpre_normal. by move: (proper_subn pHQ); rewrite sub_morphim_pre ?normal_norm. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
maxainv_asimple_quo
asimple_quo_maxainv(G H : {group rT}) : H \subset D -> G \subset D -> [acts A, on G | to] -> [acts A, on H | to] -> H <| G -> asimple (to / H) (G / H) -> maxainv to G H. Proof. move=> sHD sGD aG aH nHG /asimpleP[ntQ maxQ]; apply/maxgroupP; split. by rewrite nHG -quotient_sub1 ?normal_norm // subG1 ntQ. move=> K /and3P[nKG nsGK aK] sHK. pose K' := (K / H)%G. have K'dQ : K' <| (G / H)%G by apply: morphim_normal. have nKH : H <| K by rewrite (normalS _ _ nHG) // normal_sub. have: K' :=: 1%G \/ K' :=: (G / H). apply: (maxQ K' K'dQ) => /=. apply/subsetP=> x Adx. rewrite inE Adx /= inE. apply/subsetP=> y. rewrite quotientE; case/morphimP=> z Nz Kz ->; rewrite /= !inE qactE //. have ntoyx : to z x \in 'N(H) by rewrite (acts_qact_dom_norm Adx). apply/morphimP; exists (to z x) => //. suff h: qact_dom to H \subset A. by rewrite astabs_act // (subsetP aK) //; apply: (subsetP h). by apply/subsetP=> t; rewrite qact_domE // inE; case/andP. case=> [|/quotient_injG /[!inE]/(_ nKH nHG) c]; last by rewrite c subxx in nsGK. rewrite /= -trivg_quotient => tK'; apply: (congr1 (@gval _)); move: tK'. by apply: (@quotient_injG _ H); rewrite ?inE /= ?normal_refl. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
asimple_quo_maxainv
asimpleI(N1 N2 : {group rT}) : N2 \subset 'N(N1) -> N1 \subset D -> [acts A, on N1 | to] -> [acts A, on N2 | to] -> asimple (to / N1) (N2 / N1) -> asimple (to / (N2 :&: N1)) (N2 / (N2 :&: N1)). Proof. move=> nN21 sN1D aN1 aN2 /asimpleP[ntQ1 max1]. have [f1 [f1e f1ker f1pre f1im]] := restrmP (coset_morphism N1) nN21. have hf2' : N2 \subset 'N(N2 :&: N1) by apply: normsI => //; rewrite normG. have hf2'' : 'ker (coset (N2 :&: N1)) \subset 'ker f1. by rewrite f1ker !ker_coset. pose f2 := factm_morphism hf2'' hf2'. apply/asimpleP; split. rewrite /= setIC; apply/negP; move: (second_isog nN21); move/isog_eq1->. by apply/negP. move=> H nHQ2 aH; pose K := f2 @* H. have nKQ1 : K <| N2 / N1. rewrite (_ : N2 / N1 = f2 @* (N2 / (N2 :&: N1))) ?morphim_normal //. by rewrite morphim_factm f1im. have sqA : qact_dom to N1 \subset A. by apply/subsetP=> t; rewrite qact_domE // inE; case/andP. have nNN2 : (N2 :&: N1) <| N2. by rewrite /normal subsetIl; apply: normsI => //; apply: normG. have aKQ1 : [acts qact_dom to N1, on K | to / N1]. pose H':= coset (N2 :&: N1)@*^-1 H. have eHH' : H :=: H' / (N2 :&: N1) by rewrite cosetpreK. have -> : K :=: f1 @* H' by rewrite /K eHH' morphim_factm. have sH'N2 : H' \subset N2. rewrite /H' eHH' quotientGK ?normal_cosetpre //=. by rewrite sub_cosetpre_quo ?normal_sub. have -> : f1 @* H' = coset N1 @* H' by rewrite f1im //=. apply: qacts_coset => //; apply: qacts_cosetpre => //; last exact: gactsI. by apply: (subset_tr ...
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
asimpleI
StrongJordanHolderUniqueness(G : {group rT}) (s1 s2 : seq {group rT}) : G \subset D -> acomps to G s1 -> acomps to G s2 -> perm_eq (mkfactors G s1) (mkfactors G s2). Proof. have [n] := ubnP #|G|; elim: n G => // n Hi G in s1 s2 * => cG hsD cs1 cs2. case/orP: (orbN (G :==: 1)) => [tG | ntG]. have -> : s1 = [::] by apply/eqP; rewrite -(trivg_acomps cs1). have -> : s2 = [::] by apply/eqP; rewrite -(trivg_acomps cs2). by rewrite /= perm_refl. case/orP: (orbN (asimple to G))=> [sG | nsG]. have -> : s1 = [:: 1%G ] by apply/(asimple_acompsP cs1). have -> : s2 = [:: 1%G ] by apply/(asimple_acompsP cs2). by rewrite /= perm_refl. case es1: s1 cs1 => [|N1 st1] cs1. by move: (trivg_comps cs1); rewrite eqxx; move/negP:ntG. case es2: s2 cs2 => [|N2 st2] cs2 {s1 es1}. by move: (trivg_comps cs2); rewrite eqxx; move/negP:ntG. case/andP: cs1 => /= lst1; case/andP=> maxN_1 pst1. case/andP: cs2 => /= lst2; case/andP=> maxN_2 pst2. have sN1D : N1 \subset D. by apply: subset_trans hsD; apply: maxainv_sub maxN_1. have sN2D : N2 \subset D. by apply: subset_trans hsD; apply: maxainv_sub maxN_2. have cN1 : #|N1| < n. by rewrite -ltnS (leq_trans _ cG) ?ltnS ?proper_card ?(maxainv_proper maxN_1). have cN2 : #|N2| < n. by rewrite -ltnS (leq_trans _ cG) ?ltnS ?proper_card ?(maxainv_proper maxN_2). case: (N1 =P N2) {s2 es2} => [eN12 |]. by rewrite eN12 /= perm_cons Hi // /acomps ?lst2 //= -eN12 lst1. move/eqP; rewrite -val_eqE /=; move/eqP=> neN12. have nN1G : N1 <| G by apply: (maxainv_norm maxN_1). h ...
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action gseries" ]
solvable/jordanholder.v
StrongJordanHolderUniqueness
charsimpleA := [min A of G | G :!=: 1 & G \char A].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
charsimple
FrattiniA := \bigcap_(G : {group gT} | maximal_eq G A) G.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
Frattini
Frattini_groupA : {group gT} := Eval hnf in [group of Frattini A].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
Frattini_group
FittingA := \big[dprod/1]_(p <- primes #|A|) 'O_p(A).
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
Fitting
Fitting_group_setG : group_set (Fitting G). Proof. suffices [F ->]: exists F : {group gT}, Fitting G = F by apply: groupP. rewrite /Fitting; elim: primes (primes_uniq #|G|) => [_|p r IHr] /=. by exists [1 gT]%G; rewrite big_nil. case/andP=> rp /IHr[F defF]; rewrite big_cons defF. suffices{IHr} /and3P[p'F sFG nFG]: p^'.-group F && (F <| G). have nFGp: 'O_p(G) \subset 'N(F) := gFsub_trans _ nFG. have pGp: p.-group('O_p(G)) := pcore_pgroup p G. have{pGp} tiGpF: 'O_p(G) :&: F = 1 by rewrite coprime_TIg ?(pnat_coprime pGp). exists ('O_p(G) <*> F)%G; rewrite dprodEY // (sameP commG1P trivgP) -tiGpF. by rewrite subsetI commg_subl commg_subr (subset_trans sFG) // gFnorm. move/bigdprodWY: defF => <- {F}; elim: r rp => [_|q r IHr] /=. by rewrite big_nil gen0 pgroup1 normal1. rewrite inE eq_sym big_cons -joingE -joing_idr => /norP[qp /IHr {IHr}]. set F := <<_>> => /andP[p'F nsFG]. rewrite norm_joinEl /= -/F; last exact/gFsub_trans/normal_norm. by rewrite pgroupM p'F normalM ?pcore_normal //= (pi_pgroup (pcore_pgroup q G)). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
Fitting_group_set
Fitting_groupG := group (Fitting_group_set G).
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
Fitting_group
criticalA B := [/\ A \char B, Frattini A \subset 'Z(A), [~: B, A] \subset 'Z(A) & 'C_B(A) = 'Z(A)].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
critical
specialA := Frattini A = 'Z(A) /\ A^`(1) = 'Z(A).
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
special
extraspecialA := special A /\ prime #|'Z(A)|.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
extraspecial
SCNB := [set A : {group gT} | A <| B & 'C_B(A) == A].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
SCN
SCN_atn B := [set A in SCN B | n <= 'r(A)].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
SCN_at
p_maximal_normal: maximal M P -> M <| P. Proof. case/maxgroupP=> /andP[sMP sPM] maxM; rewrite /normal sMP. have:= subsetIl P 'N(M); rewrite subEproper. case/predU1P=> [/setIidPl-> // | /maxM/= SNM]; case/negP: sPM. rewrite (nilpotent_sub_norm (pgroup_nil pP) sMP) //. by rewrite SNM // subsetI sMP normG. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
p_maximal_normal
p_maximal_index: maximal M P -> #|P : M| = p. Proof. move=> maxM; have nM := p_maximal_normal maxM. rewrite -card_quotient ?normal_norm //. rewrite -(quotient_maximal _ nM) ?normal_refl // trivg_quotient in maxM. case/maxgroupP: maxM; rewrite properEneq eq_sym sub1G andbT /=. case/(pgroup_pdiv (quotient_pgroup M pP)) => p_pr /Cauchy[] // xq. rewrite /order -cycle_subG subEproper => /predU1P[-> // | sxPq oxq_p _]. by move/(_ _ sxPq (sub1G _)) => xq1; rewrite -oxq_p xq1 cards1 in p_pr. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
p_maximal_index
p_index_maximal: M \subset P -> prime #|P : M| -> maximal M P. Proof. move=> sMP /primeP[lt1PM pr_PM]. apply/maxgroupP; rewrite properEcard sMP -(Lagrange sMP). rewrite -{1}(muln1 #|M|) ltn_pmul2l //; split=> // H sHP sMH. apply/eqP; rewrite eq_sym eqEcard sMH. case/orP: (pr_PM _ (indexSg sMH (proper_sub sHP))) => /eqP iM. by rewrite -(Lagrange sMH) iM muln1 /=. by have:= proper_card sHP; rewrite -(Lagrange sMH) iM Lagrange ?ltnn. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
p_index_maximal
Phi_subG : 'Phi(G) \subset G. Proof. by rewrite bigcap_inf // /maximal_eq eqxx. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
Phi_sub
Phi_sub_maxG M : maximal M G -> 'Phi(G) \subset M. Proof. by move=> maxM; rewrite bigcap_inf // /maximal_eq predU1r. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
Phi_sub_max
Phi_properG : G :!=: 1 -> 'Phi(G) \proper G. Proof. move/eqP; case/maximal_exists: (sub1G G) => [<- //| [M maxM _] _]. exact: sub_proper_trans (Phi_sub_max maxM) (maxgroupp maxM). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
Phi_proper
Phi_nongenG X : 'Phi(G) <*> X = G -> <<X>> = G. Proof. move=> defG; have: <<X>> \subset G by rewrite -{1}defG genS ?subsetUr. case/maximal_exists=> //= [[M maxM]]; rewrite gen_subG => sXM. case/andP: (maxgroupp maxM) => _ /negP[]. by rewrite -defG gen_subG subUset Phi_sub_max. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
Phi_nongen
Frattini_continuous(rT : finGroupType) G (f : {morphism G >-> rT}) : f @* 'Phi(G) \subset 'Phi(f @* G). Proof. apply/bigcapsP=> M maxM; rewrite sub_morphim_pre ?Phi_sub // bigcap_inf //. have {2}<-: f @*^-1 (f @* G) = G by rewrite morphimGK ?subsetIl. by rewrite morphpre_maximal_eq ?maxM //; case/maximal_eqP: maxM. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
Frattini_continuous
Frattini_igFun:= [igFun by Phi_sub & Frattini_continuous].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
Frattini_igFun
Frattini_gFun:= [gFun by Frattini_continuous].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
Frattini_gFun
Phi_charG : 'Phi(G) \char G. Proof. exact: gFchar. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
Phi_char
Phi_normalG : 'Phi(G) <| G. Proof. exact: gFnormal. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
Phi_normal
injm_PhirT D G (f : {morphism D >-> rT}) : 'injm f -> G \subset D -> f @* 'Phi(G) = 'Phi(f @* G). Proof. exact: injmF. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
injm_Phi
isog_PhirT G (H : {group rT}) : G \isog H -> 'Phi(G) \isog 'Phi(H). Proof. exact: gFisog. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
isog_Phi
PhiJG x : 'Phi(G :^ x) = 'Phi(G) :^ x. Proof. rewrite -{1}(setIid G) -(setIidPr (Phi_sub G)) -!morphim_conj. by rewrite injm_Phi ?injm_conj. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
PhiJ
Phi_quotient_idG : 'Phi (G / 'Phi(G)) = 1. Proof. apply/trivgP; rewrite -cosetpreSK cosetpre1 /=; apply/bigcapsP=> M maxM. have nPhi := Phi_normal G; have nPhiM: 'Phi(G) <| M. by apply: normalS nPhi; [apply: bigcap_inf | case/maximal_eqP: maxM]. by rewrite sub_cosetpre_quo ?bigcap_inf // quotient_maximal_eq. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
Phi_quotient_id
Phi_quotient_cyclicG : cyclic (G / 'Phi(G)) -> cyclic G. Proof. case/cyclicP=> /= Px; case: (cosetP Px) => x nPx ->{Px} defG. apply/cyclicP; exists x; symmetry; apply: Phi_nongen. rewrite -joing_idr norm_joinEr -?quotientK ?cycle_subG //. by rewrite /quotient morphim_cycle //= -defG quotientGK ?Phi_normal. Qed. Variables (p : nat) (P : {group gT}).
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
Phi_quotient_cyclic
trivg_Phi: p.-group P -> ('Phi(P) == 1) = p.-abelem P. Proof. move=> pP; case: (eqsVneq P 1) => [P1 | ntP]. by rewrite P1 abelem1 -subG1 -P1 Phi_sub. have [p_pr _ _] := pgroup_pdiv pP ntP. apply/eqP/idP=> [trPhi | abP]. apply/abelemP=> //; split=> [|x Px]. apply/commG1P/trivgP; rewrite -trPhi. apply/bigcapsP=> M /predU1P[-> | maxM]; first exact: der1_subG. have /andP[_ nMP]: M <| P := p_maximal_normal pP maxM. rewrite der1_min // cyclic_abelian // prime_cyclic // card_quotient //. by rewrite (p_maximal_index pP). apply/set1gP; rewrite -trPhi; apply/bigcapP=> M. case/predU1P=> [-> | maxM]; first exact: groupX. have /andP[_ nMP] := p_maximal_normal pP maxM. have nMx : x \in 'N(M) by apply: subsetP Px. apply: coset_idr; rewrite ?groupX ?morphX //=; apply/eqP. rewrite -(p_maximal_index pP maxM) -card_quotient // -order_dvdn cardSg //=. by rewrite cycle_subG mem_quotient. apply/trivgP/subsetP=> x Phi_x; rewrite -cycle_subG. have Px: x \in P by apply: (subsetP (Phi_sub P)). have sxP: <[x]> \subset P by rewrite cycle_subG. case/splitsP: (abelem_splits abP sxP) => K /complP[tiKx defP]. have [-> | nt_x] := eqVneq x 1; first by rewrite cycle1. have oxp := abelem_order_p abP Px nt_x. rewrite /= -tiKx subsetI subxx cycle_subG. apply: (bigcapP Phi_x); apply/orP; right. apply: p_index_maximal; rewrite -?divgS -defP ?mulG_subr //. by rewrite (TI_cardMg tiKx) mulnK // [#|_|]oxp. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
trivg_Phi
Phi_quotient_abelem: p.-abelem (P / 'Phi(P)). Proof. by rewrite -trivg_Phi ?morphim_pgroup //= Phi_quotient_id. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
Phi_quotient_abelem
Phi_joing: 'Phi(P) = P^`(1) <*> 'Mho^1(P). Proof. have [sPhiP nPhiP] := andP (Phi_normal P). apply/eqP; rewrite eqEsubset join_subG. case: (eqsVneq P 1) => [-> | ntP] in sPhiP *. by rewrite /= (trivgP sPhiP) sub1G der_subS Mho_sub. have [p_pr _ _] := pgroup_pdiv pP ntP. have [abP x1P] := abelemP p_pr Phi_quotient_abelem. apply/andP; split. have nMP: P \subset 'N(P^`(1) <*> 'Mho^1(P)) by rewrite normsY // !gFnorm. rewrite -quotient_sub1 ?gFsub_trans //=. suffices <-: 'Phi(P / (P^`(1) <*> 'Mho^1(P))) = 1 by apply: morphimF. apply/eqP; rewrite (trivg_Phi (morphim_pgroup _ pP)) /= -quotientE. apply/abelemP=> //; rewrite [abelian _]quotient_cents2 ?joing_subl //. split=> // _ /morphimP[x Nx Px ->] /=. rewrite -morphX //= coset_id // (MhoE 1 pP) joing_idr expn1. by rewrite mem_gen //; apply/setUP; right; apply: imset_f. rewrite -quotient_cents2 // [_ \subset 'C(_)]abP (MhoE 1 pP) gen_subG /=. apply/subsetP=> _ /imsetP[x Px ->]; rewrite expn1. have nPhi_x: x \in 'N('Phi(P)) by apply: (subsetP nPhiP). by rewrite coset_idr ?groupX ?morphX ?x1P ?mem_morphim. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
Phi_joing
Phi_Mho: abelian P -> 'Phi(P) = 'Mho^1(P). Proof. by move=> cPP; rewrite Phi_joing (derG1P cPP) joing1G. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
Phi_Mho
PhiSG H : p.-group H -> G \subset H -> 'Phi(G) \subset 'Phi(H). Proof. move=> pH sGH; rewrite (Phi_joing pH) (Phi_joing (pgroupS sGH pH)). by rewrite genS // setUSS ?dergS ?MhoS. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
PhiS
morphim_PhirT P D (f : {morphism D >-> rT}) : p.-group P -> P \subset D -> f @* 'Phi(P) = 'Phi(f @* P). Proof. move=> pP sPD; rewrite !(@Phi_joing _ p) ?morphim_pgroup //. rewrite morphim_gen ?subUset ?gFsub_trans // morphimU -joingE. by rewrite morphimR ?morphim_Mho. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
morphim_Phi
quotient_PhiP H : p.-group P -> P \subset 'N(H) -> 'Phi(P) / H = 'Phi(P / H). Proof. exact: morphim_Phi. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
quotient_Phi
Phi_minG H : p.-group G -> G \subset 'N(H) -> p.-abelem (G / H) -> 'Phi(G) \subset H. Proof. move=> pG nHG; rewrite -trivg_Phi ?quotient_pgroup // -subG1 /=. by rewrite -(quotient_Phi pG) ?quotient_sub1 // gFsub_trans. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
Phi_min
Phi_cprodG H K : p.-group G -> H \* K = G -> 'Phi(H) \* 'Phi(K) = 'Phi(G). Proof. move=> pG defG; have [_ /mulG_sub[sHG sKG] cHK] := cprodP defG. rewrite cprodEY /=; last by rewrite (centSS (Phi_sub _) (Phi_sub _)). rewrite !(Phi_joing (pgroupS _ pG)) //=. have /cprodP[_ <- /cent_joinEr <-] := der_cprod 1 defG. have /cprodP[_ <- /cent_joinEr <-] := Mho_cprod 1 defG. by rewrite !joingA /= -!(joingA H^`(1)) (joingC K^`(1)). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
Phi_cprod
Phi_mulgH K : p.-group H -> p.-group K -> K \subset 'C(H) -> 'Phi(H * K) = 'Phi(H) * 'Phi(K). Proof. move=> pH pK cHK; have defHK := cprodEY cHK. have [|_ ->] /= := cprodP (Phi_cprod _ defHK); rewrite cent_joinEr //. by rewrite pgroupM pH. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype finfun bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism quotient", "From mathcomp Require Import action commutator gproduct gfunctor ssralg ", "From mathcomp Require Import countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule" ]
solvable/maximal.v
Phi_mulg