fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
Frobenius_action:= [/\ [faithful G, on S | to], [transitive G, on S | to], {in G^#, forall x, #|'Fix_(S | to)[x]| <= 1}, H != 1 & exists2 u, u \in S & H = 'C_G[u | to]].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
Frobenius_action
has_Frobenius_actionG H : Prop := hasFrobeniusAction sT S to of @Frobenius_action G H sT S to.
Variant
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
has_Frobenius_action
semiregular1lH : semiregular 1 H. Proof. by move=> x _ /=; rewrite setI1g. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
semiregular1l
semiregular1rK : semiregular K 1. Proof. by move=> x; rewrite setDv inE. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
semiregular1r
semiregular_symH K : semiregular K H -> semiregular H K. Proof. move=> regH x /setD1P[ntx Kx]; apply: contraNeq ntx. rewrite -subG1 -setD_eq0 -setIDAC => /set0Pn[y /setIP[Hy cxy]]. by rewrite (sameP eqP set1gP) -(regH y Hy) inE Kx cent1C. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
semiregular_sym
semiregularSK1 K2 A1 A2 : K1 \subset K2 -> A1 \subset A2 -> semiregular K2 A2 -> semiregular K1 A1. Proof. move=> sK12 sA12 regKA2 x /setD1P[ntx /(subsetP sA12)A2x]. by apply/trivgP; rewrite -(regKA2 x) ?inE ?ntx ?setSI. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
semiregularS
semiregular_primeH K : semiregular K H -> semiprime K H. Proof. move=> regH x Hx; apply/eqP; rewrite eqEsubset {1}regH // sub1G. by rewrite -cent_set1 setIS ?centS // sub1set; case/setD1P: Hx. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
semiregular_prime
semiprime_regularH K : semiprime K H -> 'C_K(H) = 1 -> semiregular K H. Proof. by move=> prKH tiKcH x Hx; rewrite prKH. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
semiprime_regular
semiprimeSK1 K2 A1 A2 : K1 \subset K2 -> A1 \subset A2 -> semiprime K2 A2 -> semiprime K1 A1. Proof. move=> sK12 sA12 prKA2 x /setD1P[ntx A1x]. apply/eqP; rewrite eqEsubset andbC -{1}cent_set1 setIS ?centS ?sub1set //=. rewrite -(setIidPl sK12) -!setIA prKA2 ?setIS ?centS //. by rewrite !inE ntx (subsetP sA12). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
semiprimeS
cent_semiprimeH K X : semiprime K H -> X \subset H -> X :!=: 1 -> 'C_K(X) = 'C_K(H). Proof. move=> prKH sXH /trivgPn[x Xx ntx]; apply/eqP. rewrite eqEsubset -{1}(prKH x) ?inE ?(subsetP sXH) ?ntx //=. by rewrite -cent_cycle !setIS ?centS ?cycle_subG. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
cent_semiprime
stab_semiprimeH K X : semiprime K H -> X \subset K -> 'C_H(X) != 1 -> 'C_H(X) = H. Proof. move=> prKH sXK ntCHX; apply/setIidPl; rewrite centsC -subsetIidl. rewrite -{2}(setIidPl sXK) -setIA -(cent_semiprime prKH _ ntCHX) ?subsetIl //. by rewrite !subsetI subxx sXK centsC subsetIr. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
stab_semiprime
cent_semiregularH K X : semiregular K H -> X \subset H -> X :!=: 1 -> 'C_K(X) = 1. Proof. move=> regKH sXH /trivgPn[x Xx ntx]; apply/trivgP. rewrite -(regKH x) ?inE ?(subsetP sXH) ?ntx ?setIS //=. by rewrite -cent_cycle centS ?cycle_subG. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
cent_semiregular
regular_norm_dvd_predK H : H \subset 'N(K) -> semiregular K H -> #|H| %| #|K|.-1. Proof. move=> nKH regH; have actsH: [acts H, on K^# | 'J] by rewrite astabsJ normD1. rewrite (cardsD1 1 K) group1 -(acts_sum_card_orbit actsH) /=. rewrite (eq_bigr (fun _ => #|H|)) ?sum_nat_const ?dvdn_mull //. move=> _ /imsetP[x /setIdP[ntx Kx] ->]; rewrite card_orbit astab1J. rewrite ['C_H[x]](trivgP _) ?indexg1 //=. apply/subsetP=> y /setIP[Hy cxy]; apply: contraR ntx => nty. by rewrite -[[set 1]](regH y) inE ?nty // Kx cent1C. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
regular_norm_dvd_pred
regular_norm_coprimeK H : H \subset 'N(K) -> semiregular K H -> coprime #|K| #|H|. Proof. move=> nKH regH. by rewrite (coprime_dvdr (regular_norm_dvd_pred nKH regH)) ?coprimenP. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
regular_norm_coprime
semiregularJK H x : semiregular K H -> semiregular (K :^ x) (H :^ x). Proof. move=> regH yx; rewrite -conjD1g => /imsetP[y Hy ->]. by rewrite cent1J -conjIg regH ?conjs1g. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
semiregularJ
semiprimeJK H x : semiprime K H -> semiprime (K :^ x) (H :^ x). Proof. move=> prH yx; rewrite -conjD1g => /imsetP[y Hy ->]. by rewrite cent1J centJ -!conjIg prH. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
semiprimeJ
normedTI_PA G L : reflect [/\ A != set0, L \subset 'N_G(A) & {in G, forall g, ~~ [disjoint A & A :^ g] -> g \in L}] (normedTI A G L). Proof. apply: (iffP and3P) => [[nzA /trivIsetP tiAG /eqP <-] | [nzA sLN tiAG]]. split=> // g Gg; rewrite inE Gg (sameP normP eqP) /= eq_sym; apply: contraR. by apply: tiAG; rewrite ?mem_orbit ?orbit_refl. have [/set0Pn[a Aa] /subsetIP[_ nAL]] := (nzA, sLN); split=> //; last first. rewrite eqEsubset sLN andbT; apply/subsetP=> x /setIP[Gx nAx]. by apply/tiAG/pred0Pn=> //; exists a; rewrite /= (normP nAx) Aa. apply/trivIsetP=> _ _ /imsetP[x Gx ->] /imsetP[y Gy ->]; apply: contraR. rewrite -setI_eq0 -(mulgKV x y) conjsgM; set g := (y * x^-1)%g. have Gg: g \in G by rewrite groupMl ?groupV. rewrite -conjIg (inj_eq (act_inj 'Js x)) (eq_sym A) (sameP eqP normP). by rewrite -cards_eq0 cardJg cards_eq0 setI_eq0 => /tiAG/(subsetP nAL)->. Qed. Arguments normedTI_P {A G L}.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
normedTI_P
normedTI_memJ_PA G L : reflect [/\ A != set0, L \subset G & {in A & G, forall a g, (a ^ g \in A) = (g \in L)}] (normedTI A G L). Proof. apply: (iffP normedTI_P) => [[-> /subsetIP[sLG nAL] tiAG] | [-> sLG tiAG]]. split=> // a g Aa Gg; apply/idP/idP=> [Aag | Lg]; last first. by rewrite memJ_norm ?(subsetP nAL). by apply/tiAG/pred0Pn=> //; exists (a ^ g)%g; rewrite /= Aag memJ_conjg. split=> // [ | g Gg /pred0Pn[ag /=]]; last first. by rewrite andbC => /andP[/imsetP[a Aa ->]]; rewrite tiAG. apply/subsetP=> g Lg; have Gg := subsetP sLG g Lg. by rewrite !inE Gg; apply/subsetP=> _ /imsetP[a Aa ->]; rewrite tiAG. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
normedTI_memJ_P
partition_class_supportA G : A != set0 -> trivIset (A :^: G) -> partition (A :^: G) (class_support A G). Proof. rewrite /partition cover_imset -class_supportEr eqxx => nzA ->. by apply: contra nzA => /imsetP[x _ /eqP]; rewrite eq_sym -!cards_eq0 cardJg. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
partition_class_support
partition_normedTIA G L : normedTI A G L -> partition (A :^: G) (class_support A G). Proof. by case/and3P=> ntA tiAG _; apply: partition_class_support. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
partition_normedTI
card_support_normedTIA G L : normedTI A G L -> #|class_support A G| = (#|A| * #|G : L|)%N. Proof. case/and3P=> ntA tiAG /eqP <-; rewrite -card_conjugates mulnC. apply: card_uniform_partition (partition_class_support ntA tiAG). by move=> _ /imsetP[y _ ->]; rewrite cardJg. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
card_support_normedTI
normedTI_SA B G L : A != set0 -> L \subset 'N(A) -> A \subset B -> normedTI B G L -> normedTI A G L. Proof. move=> nzA /subsetP nAL /subsetP sAB /normedTI_memJ_P[nzB sLG tiB]. apply/normedTI_memJ_P; split=> // a x Aa Gx. by apply/idP/idP => [Aax | /nAL/memJ_norm-> //]; rewrite -(tiB a) ?sAB. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
normedTI_S
cent1_normedTIA G L : normedTI A G L -> {in A, forall x, 'C_G[x] \subset L}. Proof. case/normedTI_memJ_P=> [_ _ tiAG] x Ax; apply/subsetP=> y /setIP[Gy cxy]. by rewrite -(tiAG x) // /(x ^ y) -(cent1P cxy) mulKg. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
cent1_normedTI
Frobenius_actionPG H : reflect (has_Frobenius_action G H) [Frobenius G with complement H]. Proof. apply: (iffP andP) => [[neqHG] | [sT S to [ffulG transG regG ntH [u Su defH]]]]. case/normedTI_P=> nzH /subsetIP[sHG _] tiHG. suffices: Frobenius_action G H (rcosets H G) 'Rs by apply: hasFrobeniusAction. pose Hfix x := 'Fix_(rcosets H G | 'Rs)[x]. have regG: {in G^#, forall x, #|Hfix x| <= 1}. move=> x /setD1P[ntx Gx]. apply: wlog_neg; rewrite -ltnNge => /ltnW/card_gt0P/=[Hy]. rewrite -(cards1 Hy) => /setIP[/imsetP[y Gy ->{Hy}] cHyx]. apply/subset_leq_card/subsetP=> _ /setIP[/imsetP[z Gz ->] cHzx]. rewrite -!sub_astab1 !astab1_act !sub1set astab1Rs in cHyx cHzx *. rewrite !rcosetE; apply/set1P/rcoset_eqP; rewrite mem_rcoset. apply: tiHG; [by rewrite !in_group | apply/pred0Pn; exists (x ^ y^-1)]. by rewrite conjD1g !inE conjg_eq1 ntx -mem_conjg cHyx conjsgM memJ_conjg. have ntH: H :!=: 1 by rewrite -subG1 -setD_eq0. split=> //; first 1 last; first exact: transRs_rcosets. by exists (val H); rewrite ?orbit_refl // astab1Rs (setIidPr sHG). apply/subsetP=> y /setIP[Gy cHy]; apply: contraR neqHG => nt_y. rewrite (index1g sHG) //; apply/eqP; rewrite eqn_leq indexg_gt0 andbT. apply: leq_trans (regG y _); last by rewrite setDE 2!inE Gy nt_y /=. by rewrite /Hfix (setIidPl _) -1?astabC ?sub1set. have sHG: H \subset G by rewrite defH subsetIl. split. apply: contraNneq ntH => /= defG. suffices defS: S = [set u] by rewrite -(trivgP ffulG) /= defS d ...
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
Frobenius_actionP
FrobeniusWker: [Frobenius G with kernel K]. Proof. by apply/existsP; exists H. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
FrobeniusWker
FrobeniusWcompl: [Frobenius G with complement H]. Proof. by case/andP: frobG. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
FrobeniusWcompl
FrobeniusW: [Frobenius G]. Proof. by apply/existsP; exists H; apply: FrobeniusWcompl. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
FrobeniusW
Frobenius_context: [/\ K ><| H = G, K :!=: 1, H :!=: 1, K \proper G & H \proper G]. Proof. have [/eqP defG neqHG ntH _] := and4P frobG; rewrite setD_eq0 subG1 in ntH. have ntK: K :!=: 1 by apply: contraNneq neqHG => K1; rewrite -defG K1 sdprod1g. rewrite properEcard properEneq neqHG; have /mulG_sub[-> ->] := sdprodW defG. by rewrite -(sdprod_card defG) ltn_Pmulr ?cardG_gt1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
Frobenius_context
Frobenius_partition: partition (gval K |: (H^# :^: K)) G. Proof. have [/eqP defG _ tiHG] := and3P frobG; have [_ tiH1G /eqP defN] := and3P tiHG. have [[_ /mulG_sub[sKG sHG] nKH tiKH] mulHK] := (sdprodP defG, sdprodWC defG). set HG := H^# :^: K; set KHG := _ |: _. have defHG: HG = H^# :^: G. have: 'C_G[H^# | 'Js] * K = G by rewrite astab1Js defN mulHK. move/subgroup_transitiveP/atransP. by apply; rewrite ?atrans_orbit ?orbit_refl. have /and3P[defHK _ nzHG] := partition_normedTI tiHG. rewrite -defHG in defHK nzHG tiH1G. have [tiKHG HG'K]: trivIset KHG /\ gval K \notin HG. apply: trivIsetU1 => // _ /imsetP[x Kx ->]; rewrite -setI_eq0. by rewrite -(conjGid Kx) -conjIg setIDA tiKH setDv conj0g. rewrite /partition andbC tiKHG !inE negb_or nzHG eq_sym -card_gt0 cardG_gt0 /=. rewrite eqEcard; apply/andP; split. rewrite /cover big_setU1 //= subUset sKG -/(cover HG) (eqP defHK). by rewrite class_support_subG // (subset_trans _ sHG) ?subD1set. rewrite -(eqnP tiKHG) big_setU1 //= (eqnP tiH1G) (eqP defHK). rewrite (card_support_normedTI tiHG) -(Lagrange sHG) (cardsD1 1) group1 mulSn. by rewrite leq_add2r -mulHK indexMg -indexgI tiKH indexg1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
Frobenius_partition
Frobenius_cent1_ker: {in K^#, forall x, 'C_G[x] \subset K}. Proof. have [/eqP defG _ /normedTI_memJ_P[_ _ tiHG]] := and3P frobG. move=> x /setD1P[ntx Kx]; have [_ /mulG_sub[sKG _] _ tiKH] := sdprodP defG. have [/eqP <- _ _] := and3P Frobenius_partition; rewrite big_distrl /=. apply/bigcupsP=> _ /setU1P[|/imsetP[y Ky]] ->; first exact: subsetIl. apply: contraR ntx => /subsetPn[z]; rewrite inE mem_conjg => /andP[Hzy cxz] _. rewrite -(conjg_eq1 x y^-1) -in_set1 -set1gE -tiKH inE andbC. rewrite -(tiHG _ _ Hzy) ?(subsetP sKG) ?in_group // Ky andbT -conjJg. by rewrite /(z ^ x) (cent1P cxz) mulKg. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
Frobenius_cent1_ker
Frobenius_reg_ker: semiregular K H. Proof. move=> x /setD1P[ntx Hx]. apply/trivgP/subsetP=> y /setIP[Ky cxy]; apply: contraR ntx => nty. have K1y: y \in K^# by rewrite inE nty. have [/eqP/sdprod_context[_ sHG _ _ tiKH] _] := andP frobG. suffices: x \in K :&: H by rewrite tiKH inE. by rewrite inE (subsetP (Frobenius_cent1_ker K1y)) // inE cent1C (subsetP sHG). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
Frobenius_reg_ker
Frobenius_reg_compl: semiregular H K. Proof. by apply: semiregular_sym; apply: Frobenius_reg_ker. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
Frobenius_reg_compl
Frobenius_dvd_ker1: #|H| %| #|K|.-1. Proof. apply: regular_norm_dvd_pred Frobenius_reg_ker. by have[/sdprodP[]] := Frobenius_context. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
Frobenius_dvd_ker1
ltn_odd_Frobenius_ker: odd #|G| -> #|H|.*2 < #|K|. Proof. move/oddSg=> oddG. have [/sdprodW/mulG_sub[sKG sHG] ntK _ _ _] := Frobenius_context. by rewrite dvdn_double_ltn ?oddG ?cardG_gt1 ?Frobenius_dvd_ker1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
ltn_odd_Frobenius_ker
Frobenius_index_dvd_ker1: #|G : K| %| #|K|.-1. Proof. have[defG _ _ /andP[sKG _] _] := Frobenius_context. by rewrite -divgS // -(sdprod_card defG) mulKn ?Frobenius_dvd_ker1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
Frobenius_index_dvd_ker1
Frobenius_coprime: coprime #|K| #|H|. Proof. by rewrite (coprime_dvdr Frobenius_dvd_ker1) ?coprimenP. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
Frobenius_coprime
Frobenius_trivg_cent: 'C_K(H) = 1. Proof. by apply: (cent_semiregular Frobenius_reg_ker); case: Frobenius_context. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
Frobenius_trivg_cent
Frobenius_index_coprime: coprime #|K| #|G : K|. Proof. by rewrite (coprime_dvdr Frobenius_index_dvd_ker1) ?coprimenP. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
Frobenius_index_coprime
Frobenius_ker_Hall: Hall G K. Proof. have [_ _ _ /andP[sKG _] _] := Frobenius_context. by rewrite /Hall sKG Frobenius_index_coprime. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
Frobenius_ker_Hall
Frobenius_compl_Hall: Hall G H. Proof. have [defG _ _ _ _] := Frobenius_context. by rewrite -(sdprod_Hall defG) Frobenius_ker_Hall. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
Frobenius_compl_Hall
normedTI_Jx A G L : normedTI (A :^ x) (G :^ x) (L :^ x) = normedTI A G L. Proof. rewrite {1}/normedTI normJ -conjIg -(conj0g x) !(can_eq (conjsgK x)). congr [&& _, _ == _ & _]; rewrite /cover (reindex_inj (@conjsg_inj _ x)). by apply: eq_big => Hy; rewrite ?orbit_conjsg ?cardJg. by rewrite bigcupJ cardJg (eq_bigl _ _ (orbit_conjsg _ _ _ _)). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
normedTI_J
FrobeniusJcomplx G H : [Frobenius G :^ x with complement H :^ x] = [Frobenius G with complement H]. Proof. by congr (_ && _); rewrite ?(can_eq (conjsgK x)) // -conjD1g normedTI_J. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
FrobeniusJcompl
FrobeniusJx G K H : [Frobenius G :^ x = K :^ x ><| H :^ x] = [Frobenius G = K ><| H]. Proof. by congr (_ && _); rewrite ?FrobeniusJcompl // -sdprodJ (can_eq (conjsgK x)). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
FrobeniusJ
FrobeniusJkerx G K : [Frobenius G :^ x with kernel K :^ x] = [Frobenius G with kernel K]. Proof. apply/existsP/existsP=> [] [H]; last by exists (H :^ x)%G; rewrite FrobeniusJ. by rewrite -(conjsgKV x H) FrobeniusJ; exists (H :^ x^-1)%G. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
FrobeniusJker
FrobeniusJgroupx G : [Frobenius G :^ x] = [Frobenius G]. Proof. apply/existsP/existsP=> [] [H]. by rewrite -(conjsgKV x H) FrobeniusJcompl; exists (H :^ x^-1)%G. by exists (H :^ x)%G; rewrite FrobeniusJcompl. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
FrobeniusJgroup
Frobenius_ker_dvd_ker1G K : [Frobenius G with kernel K] -> #|G : K| %| #|K|.-1. Proof. by case/existsP=> H; apply: Frobenius_index_dvd_ker1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
Frobenius_ker_dvd_ker1
Frobenius_ker_coprimeG K : [Frobenius G with kernel K] -> coprime #|K| #|G : K|. Proof. by case/existsP=> H; apply: Frobenius_index_coprime. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
Frobenius_ker_coprime
Frobenius_semiregularPG K H : K ><| H = G -> K :!=: 1 -> H :!=: 1 -> reflect (semiregular K H) [Frobenius G = K ><| H]. Proof. move=> defG ntK ntH. apply: (iffP idP) => [|regG]; first exact: Frobenius_reg_ker. have [nsKG sHG defKH nKH tiKH]:= sdprod_context defG; have [sKG _]:= andP nsKG. apply/and3P; split; first by rewrite defG. by rewrite eqEcard sHG -(sdprod_card defG) -ltnNge ltn_Pmull ?cardG_gt1. apply/normedTI_memJ_P; rewrite setD_eq0 subG1 sHG -defKH -(normC nKH). split=> // z _ /setD1P[ntz Hz] /mulsgP[y x Hy Kx ->]; rewrite groupMl // !inE. rewrite conjg_eq1 ntz; apply/idP/idP=> [Hzxy | Hx]; last by rewrite !in_group. apply: (subsetP (sub1G H)); have Hzy: z ^ y \in H by apply: groupJ. rewrite -(regG (z ^ y)); last by apply/setD1P; rewrite conjg_eq1. rewrite inE Kx cent1C (sameP cent1P commgP) -in_set1 -[[set 1]]tiKH inE /=. rewrite andbC groupM ?groupV -?conjgM //= commgEr groupMr //. by rewrite memJ_norm ?(subsetP nKH) ?groupV. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
Frobenius_semiregularP
prime_FrobeniusPG K H : K :!=: 1 -> prime #|H| -> reflect (K ><| H = G /\ 'C_K(H) = 1) [Frobenius G = K ><| H]. Proof. move=> ntK H_pr; have ntH: H :!=: 1 by rewrite -cardG_gt1 prime_gt1. have [defG | not_sdG] := eqVneq (K ><| H) G; last first. by apply: (iffP andP) => [] [defG]; rewrite defG ?eqxx in not_sdG. apply: (iffP (Frobenius_semiregularP defG ntK ntH)) => [regH | [_ regH x]]. split=> //; have [x defH] := cyclicP (prime_cyclic H_pr). by rewrite defH cent_cycle regH // !inE defH cycle_id andbT -cycle_eq1 -defH. case/setD1P=> nt_x Hx; apply/trivgP; rewrite -regH setIS //= -cent_cycle. by rewrite centS // prime_meetG // (setIidPr _) ?cycle_eq1 ?cycle_subG. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
prime_FrobeniusP
Frobenius_sublG K K1 H : K1 :!=: 1 -> K1 \subset K -> H \subset 'N(K1) -> [Frobenius G = K ><| H] -> [Frobenius K1 <*> H = K1 ><| H]. Proof. move=> ntK1 sK1K nK1H frobG; have [_ _ ntH _ _] := Frobenius_context frobG. apply/Frobenius_semiregularP=> //. by rewrite sdprodEY ?coprime_TIg ?(coprimeSg sK1K) ?(Frobenius_coprime frobG). by move=> x /(Frobenius_reg_ker frobG) cKx1; apply/trivgP; rewrite -cKx1 setSI. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
Frobenius_subl
Frobenius_subrG K H H1 : H1 :!=: 1 -> H1 \subset H -> [Frobenius G = K ><| H] -> [Frobenius K <*> H1 = K ><| H1]. Proof. move=> ntH1 sH1H frobG; have [defG ntK _ _ _] := Frobenius_context frobG. apply/Frobenius_semiregularP=> //. have [_ _ /(subset_trans sH1H) nH1K tiHK] := sdprodP defG. by rewrite sdprodEY //; apply/trivgP; rewrite -tiHK setIS. by apply: sub_in1 (Frobenius_reg_ker frobG); apply/subsetP/setSD. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
Frobenius_subr
Frobenius_kerPG K : reflect [/\ K :!=: 1, K \proper G, K <| G & {in K^#, forall x, 'C_G[x] \subset K}] [Frobenius G with kernel K]. Proof. apply: (iffP existsP) => [[H frobG] | [ntK ltKG nsKG regK]]. have [/sdprod_context[nsKG _ _ _ _] ntK _ ltKG _] := Frobenius_context frobG. by split=> //; apply: Frobenius_cent1_ker frobG. have /andP[sKG nKG] := nsKG. have hallK: Hall G K. rewrite /Hall sKG //= coprime_sym coprime_pi' //. apply: sub_pgroup (pgroup_pi K) => p; have [P sylP] := Sylow_exists p G. have [[sPG pP p'GiP] sylPK] := (and3P sylP, Hall_setI_normal nsKG sylP). rewrite -p_rank_gt0 -(rank_Sylow sylPK) rank_gt0 => ntPK. rewrite inE /= -p'natEpi // (pnat_dvd _ p'GiP) ?indexgS //. have /trivgPn[z]: P :&: K :&: 'Z(P) != 1. by rewrite meet_center_nil ?(pgroup_nil pP) ?(normalGI sPG nsKG). rewrite !inE -andbA -sub_cent1=> /and4P[_ Kz _ cPz] ntz. by apply: subset_trans (regK z _); [apply/subsetIP | apply/setD1P]. have /splitsP[H /complP[tiKH defG]] := SchurZassenhaus_split hallK nsKG. have [_ sHG] := mulG_sub defG; have nKH := subset_trans sHG nKG. exists H; apply/Frobenius_semiregularP; rewrite ?sdprodE //. by apply: contraNneq (proper_subn ltKG) => H1; rewrite -defG H1 mulg1. apply: semiregular_sym => x Kx; apply/trivgP; rewrite -tiKH. by rewrite subsetI subsetIl (subset_trans _ (regK x _)) ?setSI. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
Frobenius_kerP
set_Frobenius_complG K H : K ><| H = G -> [Frobenius G with kernel K] -> [Frobenius G = K ><| H]. Proof. move=> defG /Frobenius_kerP[ntK ltKG _ regKG]. apply/Frobenius_semiregularP=> //. by apply: contraTneq ltKG => H_1; rewrite -defG H_1 sdprodg1 properxx. apply: semiregular_sym => y /regKG sCyK. have [_ sHG _ _ tiKH] := sdprod_context defG. by apply/trivgP; rewrite /= -(setIidPr sHG) setIAC -tiKH setSI. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
set_Frobenius_compl
Frobenius_kerSG K G1 : G1 \subset G -> K \proper G1 -> [Frobenius G with kernel K] -> [Frobenius G1 with kernel K]. Proof. move=> sG1G ltKG1 /Frobenius_kerP[ntK _ /andP[_ nKG] regKG]. apply/Frobenius_kerP; rewrite /normal proper_sub // (subset_trans sG1G) //. by split=> // x /regKG; apply: subset_trans; rewrite setSI. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
Frobenius_kerS
Frobenius_action_kernel_defG H K sT S to : K ><| H = G -> @Frobenius_action _ G H sT S to -> K :=: 1 :|: [set x in G | 'Fix_(S | to)[x] == set0]. Proof. move=> defG FrobG. have partG: partition (gval K |: (H^# :^: K)) G. apply: Frobenius_partition; apply/andP; rewrite defG; split=> //. by apply/Frobenius_actionP; apply: hasFrobeniusAction FrobG. have{FrobG} [ffulG transG regG ntH [u Su defH]]:= FrobG. apply/setP=> x /[!inE]; have [-> | ntx] := eqVneq; first exact: group1. rewrite /= -(cover_partition partG) /cover. have neKHy y: gval K <> H^# :^ y. by move/setP/(_ 1); rewrite group1 conjD1g setD11. rewrite big_setU1 /= ?inE; last by apply/imsetP=> [[y _ /neKHy]]. have [nsKG sHG _ _ tiKH] := sdprod_context defG; have [sKG nKG]:= andP nsKG. symmetry; case Kx: (x \in K) => /=. apply/set0Pn=> [[v /setIP[Sv]]]; have [y Gy ->] := atransP2 transG Su Sv. rewrite -sub1set -astabC sub1set astab1_act mem_conjg => Hxy. case/negP: ntx; rewrite -in_set1 -(conjgKV y x) -mem_conjgV conjs1g -tiKH. by rewrite defH setIA inE -mem_conjg (setIidPl sKG) (normsP nKG) ?Kx. apply/andP=> [[/bigcupP[_ /imsetP[y Ky ->] Hyx] /set0Pn[]]]; exists (to u y). rewrite inE (actsP (atrans_acts transG)) ?(subsetP sKG) // Su. rewrite -sub1set -astabC sub1set astab1_act. by rewrite conjD1g defH conjIg !inE in Hyx; case/and3P: Hyx. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
Frobenius_action_kernel_def
Frobenius_coprime_quotient(gT : finGroupType) (G K H N : {group gT}) : K ><| H = G -> N <| G -> coprime #|K| #|H| /\ H :!=: 1%g -> N \proper K /\ {in H^#, forall x, 'C_K[x] \subset N} -> [Frobenius G / N = (K / N) ><| (H / N)]%g. Proof. move=> defG nsNG [coKH ntH] [ltNK regH]. have [[sNK _] [_ /mulG_sub[sKG sHG] _ _]] := (andP ltNK, sdprodP defG). have [_ nNG] := andP nsNG; have nNH := subset_trans sHG nNG. apply/Frobenius_semiregularP; first exact: quotient_coprime_sdprod. - by rewrite quotient_neq1 ?(normalS _ sKG). - by rewrite -(isog_eq1 (quotient_isog _ _)) ?coprime_TIg ?(coprimeSg sNK). move=> _ /(subsetP (quotientD1 _ _))/morphimP[x nNx H1x ->]. rewrite -cent_cycle -quotient_cycle //=. rewrite -strongest_coprime_quotient_cent ?cycle_subG //. - by rewrite cent_cycle quotientS1 ?regH. - by rewrite subIset ?sNK. - rewrite (coprimeSg (subsetIl N _)) ?(coprimeSg sNK) ?(coprimegS _ coKH) //. by rewrite cycle_subG; case/setD1P: H1x. by rewrite orbC abelian_sol ?cycle_abelian. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
Frobenius_coprime_quotient
injm_Frobenius_complH sGD injf : [Frobenius G with complement H] -> [Frobenius f @* G with complement f @* H]. Proof. case/andP=> neqGH /normedTI_P[nzH /subsetIP[sHG _] tiHG]. have sHD := subset_trans sHG sGD; have sH1D := subset_trans (subD1set H 1) sHD. apply/andP; rewrite (can_in_eq (injmK injf)) //; split=> //. apply/normedTI_P; rewrite normD1 -injmD1 // -!cards_eq0 card_injm // in nzH *. rewrite subsetI normG morphimS //; split=> // _ /morphimP[x Dx Gx ->] ti'fHx. rewrite mem_morphim ?tiHG //; apply: contra ti'fHx; rewrite -!setI_eq0 => tiHx. by rewrite -morphimJ // -injmI ?conj_subG // (eqP tiHx) morphim0. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
injm_Frobenius_compl
injm_FrobeniusH K sGD injf : [Frobenius G = K ><| H] -> [Frobenius f @* G = f @* K ><| f @* H]. Proof. case/andP=> /eqP defG frobG. by apply/andP; rewrite (injm_sdprod _ injf defG) // eqxx injm_Frobenius_compl. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
injm_Frobenius
injm_Frobenius_kerK sGD injf : [Frobenius G with kernel K] -> [Frobenius f @* G with kernel f @* K]. Proof. case/existsP=> H frobG; apply/existsP. by exists (f @* H)%G; apply: injm_Frobenius. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
injm_Frobenius_ker
injm_Frobenius_groupsGD injf : [Frobenius G] -> [Frobenius f @* G]. Proof. case/existsP=> H frobG; apply/existsP; exists (f @* H)%G. exact: injm_Frobenius_compl. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
injm_Frobenius_group
Frobenius_Ldiv(gT : finGroupType) (G : {group gT}) n : n %| #|G| -> n %| #|'Ldiv_n(G)|. Proof. move=> nG; move: {2}_.+1 (ltnSn (#|G| %/ n)) => mq. elim: mq => // mq IHm in gT G n nG *; case/dvdnP: nG => q oG. have [q_gt0 n_gt0] : 0 < q /\ 0 < n by apply/andP; rewrite -muln_gt0 -oG. rewrite ltnS oG mulnK // => leqm. have:= q_gt0; rewrite leq_eqVlt => /predU1P[q1 | lt1q]. rewrite -(mul1n n) q1 -oG (setIidPl _) //. by apply/subsetP=> x Gx; rewrite inE -order_dvdn order_dvdG. pose p := pdiv q; have pr_p: prime p by apply: pdiv_prime. have lt1p: 1 < p := prime_gt1 pr_p; have p_gt0 := ltnW lt1p. have{leqm} lt_qp_mq: q %/ p < mq by apply: leq_trans leqm; rewrite ltn_Pdiv. have: n %| #|'Ldiv_(p * n)(G)|. have: p * n %| #|G| by rewrite oG dvdn_pmul2r ?pdiv_dvd. move/IHm=> IH; apply: dvdn_trans (IH _); first exact: dvdn_mull. by rewrite oG divnMr. rewrite -(cardsID 'Ldiv_n()) dvdn_addl. rewrite -setIA ['Ldiv_n(_)](setIidPr _) //. by apply/subsetP=> x; rewrite !inE -!order_dvdn; apply: dvdn_mull. rewrite -setIDA; set A := _ :\: _. have pA x: x \in A -> (#[x]`_p = n`_p * p)%N. rewrite !inE -!order_dvdn => /andP[xn xnp]. rewrite !p_part // -expnSr; congr (p ^ _)%N; apply/eqP. rewrite eqn_leq -{1}addn1 -(pfactorK 1 pr_p) -lognM ?expn1 // mulnC. rewrite dvdn_leq_log ?muln_gt0 ?p_gt0 //= ltnNge; apply: contra xn => xn. move: xnp; rewrite -[#[x]](partnC p) //. rewrite !Gauss_dvd ?coprime_partC //; case/andP=> _. rewrite p_part ?pfactor_dvdn // xn Gauss_dvdr // coprime_sym. e ...
Theorem
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat div", "From mathcomp Require Import fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm action quotient gproduct cyclic center", "From mathcomp Require Import pgroup nilpotent sylow hall abelian" ]
solvable/frobenius.v
Frobenius_Ldiv
object_map:= forall gT : finGroupType, {set gT} -> {set gT}. Bind Scope gFun_scope with object_map.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
object_map
group_valued:= forall gT (G : {group gT}), group_set (F G).
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
group_valued
closed:= forall gT (G : {group gT}), F G \subset G.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
closed
continuous:= forall gT hT (G : {group gT}) (phi : {morphism G >-> hT}), phi @* F G \subset F (phi @* G).
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
continuous
iso_continuous:= forall gT hT (G : {group gT}) (phi : {morphism G >-> hT}), 'injm phi -> phi @* F G \subset F (phi @* G).
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
iso_continuous
continuous_is_iso_continuous: continuous -> iso_continuous. Proof. by move=> Fcont gT hT G phi inj_phi; apply: Fcont. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
continuous_is_iso_continuous
pcontinuous:= forall gT hT (G D : {group gT}) (phi : {morphism D >-> hT}), phi @* F G \subset F (phi @* G).
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
pcontinuous
pcontinuous_is_continuous: pcontinuous -> continuous. Proof. by move=> Fcont gT hT G; apply: Fcont. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
pcontinuous_is_continuous
hereditary:= forall gT (H G : {group gT}), H \subset G -> F G :&: H \subset F H.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
hereditary
pcontinuous_is_hereditary: pcontinuous -> hereditary. Proof. move=> Fcont gT H G sHG; rewrite -{2}(setIidPl sHG) setIC. by do 2!rewrite -(morphim_idm (subsetIl H _)) morphimIdom ?Fcont. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
pcontinuous_is_hereditary
monotonic:= forall gT (H G : {group gT}), H \subset G -> F H \subset F G.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
monotonic
comp: object_map := fun gT A => F1 (F2 A).
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
comp
modulo: object_map := fun gT A => coset (F2 A) @*^-1 (F1 (A / (F2 A))).
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
modulo
iso_map:= IsoMap { apply : object_map; _ : group_valued apply; _ : closed apply; _ : iso_continuous apply }. Local Coercion apply : iso_map >-> object_map.
Structure
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
iso_map
map:= Map { iso_of_map : iso_map; _ : continuous iso_of_map }. Local Coercion iso_of_map : map >-> iso_map.
Structure
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
map
pmap:= Pmap { map_of_pmap : map; _ : hereditary map_of_pmap }. Local Coercion map_of_pmap : pmap >-> map.
Structure
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
pmap
mono_map:= MonoMap { map_of_mono : map; _ : monotonic map_of_mono }. Local Coercion map_of_mono : mono_map >-> map.
Structure
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
mono_map
pack_isoF Fcont Fgrp Fsub := @IsoMap F Fgrp Fsub Fcont.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
pack_iso
clone_iso(F : object_map) := fun Fgrp Fsub Fcont (isoF := @IsoMap F Fgrp Fsub Fcont) => fun isoF0 & phant_id (apply isoF0) F & phant_id isoF isoF0 => isoF.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
clone_iso
clone(F : object_map) := fun isoF & phant_id (apply isoF) F => fun (funF0 : map) & phant_id (apply funF0) F => fun Fcont (funF := @Map isoF Fcont) & phant_id funF0 funF => funF.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
clone
clone_pmap(F : object_map) := fun (funF : map) & phant_id (apply funF) F => fun (pfunF0 : pmap) & phant_id (apply pfunF0) F => fun Fher (pfunF := @Pmap funF Fher) & phant_id pfunF0 pfunF => pfunF.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
clone_pmap
clone_mono(F : object_map) := fun (funF : map) & phant_id (apply funF) F => fun (mfunF0 : mono_map) & phant_id (apply mfunF0) F => fun Fmon (mfunF := @MonoMap funF Fmon) & phant_id mfunF0 mfunF => mfunF.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
clone_mono
apply: iso_map >-> object_map.
Coercion
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
apply
iso_of_map: map >-> iso_map.
Coercion
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
iso_of_map
map_of_pmap: pmap >-> map.
Coercion
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
map_of_pmap
map_of_mono: mono_map >-> map.
Coercion
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
map_of_mono
continuous_is_iso_continuous: continuous >-> iso_continuous.
Coercion
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
continuous_is_iso_continuous
pcontinuous_is_continuous: pcontinuous >-> continuous.
Coercion
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
pcontinuous_is_continuous
pcontinuous_is_hereditary: pcontinuous >-> hereditary.
Coercion
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
pcontinuous_is_hereditary
gFgroupset: group_set (F gT G). Proof. by case: F. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFgroupset
gFgroup:= Group gFgroupset.
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFgroup
gFmod_group(F1 : GFunctor.iso_map) (F2 : GFunctor.object_map) (gT : finGroupType) (G : {group gT}) := [group of (F1 %% F2)%gF gT G].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFmod_group
gFsubgT (G : {group gT}) : F gT G \subset G. Proof. by case: F gT G. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFsub
gFsub_transgT (G : {group gT}) (A : {pred gT}) : G \subset A -> F gT G \subset A. Proof. exact/subset_trans/gFsub. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFsub_trans
gF1gT : F gT 1 = 1. Proof. exact/trivgP/gFsub. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gF1
gFiso_cont: GFunctor.iso_continuous F. Proof. by case F. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFiso_cont
gFchargT (G : {group gT}) : F gT G \char G. Proof. apply/andP; split => //; first by apply: gFsub. apply/forall_inP=> f Af; rewrite -{2}(im_autm Af) -(autmE Af). by rewrite -morphimEsub ?gFsub ?gFiso_cont ?injm_autm. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFchar
gFnormgT (G : {group gT}) : G \subset 'N(F gT G). Proof. exact/char_norm/gFchar. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFnorm
gFnormsgT (G : {group gT}) : 'N(G) \subset 'N(F gT G). Proof. exact/char_norms/gFchar. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFnorms