fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
cyclicJG x : cyclic (G :^ x) = cyclic G. Proof. apply/cyclicP/cyclicP=> [[y /(canRL (conjsgK x))] | [y ->]]. by rewrite -cycleJ; exists (y ^ x^-1). by exists (y ^ x); rewrite cycleJ. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
cyclicJ
eq_subG_cyclicG H K : cyclic G -> H \subset G -> K \subset G -> (H :==: K) = (#|H| == #|K|). Proof. case/cyclicP=> x -> sHx sKx; apply/eqP/eqP=> [-> //| eqHK]. have def_GHx := cycle_sub_group (cardSg sHx); set GHx := [set _] in def_GHx. have []: H \in GHx /\ K \in GHx by rewrite -def_GHx !inE sHx sKx eqHK /=. by do 2!move/set1P->. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
eq_subG_cyclic
cardSg_cyclicG H K : cyclic G -> H \subset G -> K \subset G -> (#|H| %| #|K|) = (H \subset K). Proof. move=> cycG sHG sKG; apply/idP/idP; last exact: cardSg. case/cyclicP: (cyclicS sKG cycG) => x defK; rewrite {K}defK in sKG *. case/dvdnP=> k ox; suffices ->: H :=: <[x ^+ k]> by apply: cycleX. apply/eqP; rewrite (eq_subG_cyclic cycG) ?(subset_trans (cycleX _ _)) //. rewrite -orderE orderXdiv orderE ox ?dvdn_mulr ?mulKn //. by have:= order_gt0 x; rewrite orderE ox; case k. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
cardSg_cyclic
sub_cyclic_charG H : cyclic G -> (H \char G) = (H \subset G). Proof. case/cyclicP=> x ->; apply/idP/idP => [/andP[] //|]. exact: cycle_subgroup_char. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
sub_cyclic_char
morphim_cyclicrT G H (f : {morphism G >-> rT}) : cyclic H -> cyclic (f @* H). Proof. move=> cycH; wlog sHG: H cycH / H \subset G. by rewrite -morphimIdom; apply; rewrite (cyclicS _ cycH, subsetIl) ?subsetIr. case/cyclicP: cycH sHG => x ->; rewrite gen_subG sub1set => Gx. by apply/cyclicP; exists (f x); rewrite morphim_cycle. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
morphim_cyclic
quotient_cyclex H : x \in 'N(H) -> <[x]> / H = <[coset H x]>. Proof. exact: morphim_cycle. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
quotient_cycle
quotient_cyclicG H : cyclic G -> cyclic (G / H). Proof. exact: morphim_cyclic. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
quotient_cyclic
quotient_generatorx G H : x \in 'N(H) -> generator G x -> generator (G / H) (coset H x). Proof. by move=> Nx; apply: morph_generator. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
quotient_generator
prime_cyclicG : prime #|G| -> cyclic G. Proof. case/primeP; rewrite ltnNge -trivg_card_le1. case/trivgPn=> x Gx ntx /(_ _ (order_dvdG Gx)). rewrite order_eq1 (negbTE ntx) => /eqnP oxG; apply/cyclicP. by exists x; apply/eqP; rewrite eq_sym eqEcard -oxG cycle_subG Gx leqnn. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
prime_cyclic
dvdn_prime_cyclicG p : prime p -> #|G| %| p -> cyclic G. Proof. move=> p_pr pG; case: (eqsVneq G 1) => [-> | ntG]; first exact: cyclic1. by rewrite prime_cyclic // (prime_nt_dvdP p_pr _ pG) -?trivg_card1. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
dvdn_prime_cyclic
cyclic_smallG : #|G| <= 3 -> cyclic G. Proof. rewrite 4!(ltnS, leq_eqVlt) -trivg_card_le1 orbA orbC. case/predU1P=> [-> | oG]; first exact: cyclic1. by apply: prime_cyclic; case/pred2P: oG => ->. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
cyclic_small
injm_cyclicG H (f : {morphism G >-> rT}) : 'injm f -> H \subset G -> cyclic (f @* H) = cyclic H. Proof. move=> injf sHG; apply/idP/idP; last exact: morphim_cyclic. by rewrite -{2}(morphim_invm injf sHG); apply: morphim_cyclic. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
injm_cyclic
isog_cyclicG M : G \isog M -> cyclic G = cyclic M. Proof. by case/isogP=> f injf <-; rewrite injm_cyclic. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
isog_cyclic
isog_cyclic_cardG M : cyclic G -> isog G M = cyclic M && (#|M| == #|G|). Proof. move=> cycG; apply/idP/idP=> [isoGM | ]. by rewrite (card_isog isoGM) -(isog_cyclic isoGM) cycG /=. case/cyclicP: cycG => x ->{G} /andP[/cyclicP[y ->] /eqP oy]. by apply: isog_trans (isog_symr _) (Zp_isog y); rewrite /order oy Zp_isog. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
isog_cyclic_card
injm_generatorG H (f : {morphism G >-> rT}) x : 'injm f -> x \in G -> H \subset G -> generator (f @* H) (f x) = generator H x. Proof. move=> injf Gx sHG; apply/idP/idP; last exact: morph_generator. rewrite -{2}(morphim_invm injf sHG) -{2}(invmE injf Gx). by apply: morph_generator; apply: mem_morphim. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
injm_generator
metacyclicA := [exists H : {group gT}, [&& cyclic H, H <| A & cyclic (A / H)]].
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
metacyclic
metacyclicPA : reflect (exists H : {group gT}, [/\ cyclic H, H <| A & cyclic (A / H)]) (metacyclic A). Proof. exact: 'exists_and3P. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
metacyclicP
metacyclic1: metacyclic 1. Proof. by apply/existsP; exists 1%G; rewrite normal1 trivg_quotient !cyclic1. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
metacyclic1
cyclic_metacyclicA : cyclic A -> metacyclic A. Proof. case/cyclicP=> x ->; apply/existsP; exists (<[x]>)%G. by rewrite normal_refl cycle_cyclic trivg_quotient cyclic1. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
cyclic_metacyclic
metacyclicSG H : H \subset G -> metacyclic G -> metacyclic H. Proof. move=> sHG /metacyclicP[K [cycK nsKG cycGq]]; apply/metacyclicP. exists (H :&: K)%G; rewrite (cyclicS (subsetIr H K)) ?(normalGI sHG) //=. rewrite setIC (isog_cyclic (second_isog _)) ?(cyclicS _ cycGq) ?quotientS //. by rewrite (subset_trans sHG) ?normal_norm. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
metacyclicS
cyclemof gT := fun x : gT => x ^+ n.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
cyclem
cyclemM: {in <[a]> & , {morph cyclem a : x y / x * y}}. Proof. by move=> x y ax ay; apply: expgMn; apply: (centsP (cycle_abelian a)). Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
cyclemM
cyclem_morphism:= Morphism cyclemM.
Canonical
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
cyclem_morphism
injm_cyclem: 'injm (cyclem (val u) a). Proof. apply/subsetP=> x /setIdP[ax]; rewrite !inE -order_dvdn. have [a1 | nta] := eqVneq a 1; first by rewrite a1 cycle1 inE in ax. rewrite -order_eq1 -dvdn1; move/eqnP: (valP u) => /= <-. by rewrite dvdn_gcd [in X in X && _]Zp_cast ?order_gt1 // order_dvdG. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
injm_cyclem
im_cyclem: cyclem (val u) a @* <[a]> = <[a]>. Proof. apply/morphim_fixP=> //; first exact: injm_cyclem. by rewrite morphim_cycle ?cycle_id ?cycleX. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
im_cyclem
Zp_unitm:= aut injm_cyclem im_cyclem.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
Zp_unitm
Zp_unitmM: {in units_Zp #[a] &, {morph Zp_unitm : u v / u * v}}. Proof. move=> u v _ _; apply: (eq_Aut (Aut_aut _ _)) => [|x a_x]. by rewrite groupM ?Aut_aut. rewrite permM !autE ?groupX //= /cyclem -expgM. rewrite -expg_mod_order modn_dvdm ?expg_mod_order //. case: (leqP #[a] 1) => [lea1 | lt1a]; last by rewrite Zp_cast ?order_dvdG. by rewrite card_le1_trivg // in a_x; rewrite (set1P a_x) order1 dvd1n. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
Zp_unitmM
Zp_unit_morphism:= Morphism Zp_unitmM.
Canonical
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
Zp_unit_morphism
injm_Zp_unitm: 'injm Zp_unitm. Proof. have [a1 | nta] := eqVneq a 1. by rewrite subIset //= card_le1_trivg ?subxx // card_units_Zp a1 order1. apply/subsetP=> /= u /morphpreP[_ /set1P/= um1]. have{um1}: Zp_unitm u a == Zp_unitm 1 a by rewrite um1 morph1. rewrite !autE ?cycle_id // eq_expg_mod_order. by rewrite -[n in _ == _ %[mod n]]Zp_cast ?order_gt1 // !modZp inE. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
injm_Zp_unitm
generator_coprimem : generator <[a]> (a ^+ m) = coprime #[a] m. Proof. rewrite /generator eq_sym eqEcard cycleX -/#[a] [#|_|]orderXgcd /=. apply/idP/idP=> [le_a_am|co_am]; last by rewrite (eqnP co_am) divn1. have am_gt0: 0 < gcdn #[a] m by rewrite gcdn_gt0 order_gt0. by rewrite /coprime eqn_leq am_gt0 andbT -(@leq_pmul2l #[a]) ?muln1 -?leq_divRL. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
generator_coprime
im_Zp_unitm: Zp_unitm @* units_Zp #[a] = Aut <[a]>. Proof. rewrite morphimEdom; apply/setP=> f; pose n := invm (injm_Zpm a) (f a). apply/imsetP/idP=> [[u _ ->] | Af]; first exact: Aut_aut. have [a1 | nta] := eqVneq a 1. by rewrite a1 cycle1 Aut1 in Af; exists 1; rewrite // morph1 (set1P Af). have a_fa: <[a]> = <[f a]>. by rewrite -(autmE Af) -morphim_cycle ?im_autm ?cycle_id. have def_n: a ^+ n = f a. by rewrite -/(Zpm n) invmK // im_Zpm a_fa cycle_id. have co_a_n: coprime #[a].-2.+2 n. by rewrite {1}Zp_cast ?order_gt1 // -generator_coprime def_n; apply/eqP. exists (FinRing.unit 'Z_#[a] co_a_n); rewrite ?inE //. apply: eq_Aut (Af) (Aut_aut _ _) _ => x ax. rewrite autE //= /cyclem; case/cycleP: ax => k ->{x}. by rewrite -(autmE Af) morphX ?cycle_id //= autmE -def_n -!expgM mulnC. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
im_Zp_unitm
Zp_unit_isom: isom (units_Zp #[a]) (Aut <[a]>) Zp_unitm. Proof. by apply/isomP; rewrite ?injm_Zp_unitm ?im_Zp_unitm. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
Zp_unit_isom
Zp_unit_isog: isog (units_Zp #[a]) (Aut <[a]>). Proof. exact: isom_isog Zp_unit_isom. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
Zp_unit_isog
card_Aut_cycle: #|Aut <[a]>| = totient #[a]. Proof. by rewrite -(card_isog Zp_unit_isog) card_units_Zp. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
card_Aut_cycle
totient_gen: totient #[a] = #|[set x | generator <[a]> x]|. Proof. have [lea1 | lt1a] := leqP #[a] 1. rewrite /order card_le1_trivg // cards1 (@eq_card1 _ 1) // => x. by rewrite !inE -cycle_eq1 eq_sym. rewrite -(card_injm (injm_invm (injm_Zpm a))) /= ?im_Zpm; last first. by apply/subsetP=> x /[1!inE]; apply: cycle_generator. rewrite -card_units_Zp // cardsE card_sub morphim_invmE; apply: eq_card => /= d. by rewrite !inE /= qualifE /= /Zp lt1a inE /= generator_coprime {1}Zp_cast. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
totient_gen
Aut_cycle_abelian: abelian (Aut <[a]>). Proof. by rewrite -im_Zp_unitm morphim_abelian ?units_Zp_abelian. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
Aut_cycle_abelian
Aut_cyclic_abelian: cyclic G -> abelian (Aut G). Proof. by case/cyclicP=> x ->; apply: Aut_cycle_abelian. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
Aut_cyclic_abelian
card_Aut_cyclic: cyclic G -> #|Aut G| = totient #|G|. Proof. by case/cyclicP=> x ->; apply: card_Aut_cycle. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
card_Aut_cyclic
sum_ncycle_totient: \sum_(d < #|G|.+1) #|[set <[x]> | x in G & #[x] == d]| * totient d = #|G|. Proof. pose h (x : gT) : 'I_#|G|.+1 := inord #[x]. symmetry; rewrite -{1}sum1_card (partition_big h xpredT) //=. apply: eq_bigr => d _; set Gd := finset _. rewrite -sum_nat_const sum1dep_card -sum1_card (_ : finset _ = Gd); last first. apply/setP=> x /[!inE]; apply: andb_id2l => Gx. by rewrite /eq_op /= inordK // ltnS subset_leq_card ?cycle_subG. rewrite (partition_big_imset cycle) {}/Gd; apply: eq_bigr => C /=. case/imsetP=> x /setIdP[Gx /eqP <-] -> {C d}. rewrite sum1dep_card totient_gen; apply: eq_card => y; rewrite !inE /generator. move: Gx; rewrite andbC eq_sym -!cycle_subG /order. by case: eqP => // -> ->; rewrite eqxx. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
sum_ncycle_totient
sum_totient_dvdn : \sum_(d < n.+1 | d %| n) totient d = n. Proof. case: n => [|[|n']]; try by rewrite big_mkcond !big_ord_recl big_ord0. set n := n'.+2; pose x1 : 'Z_n := 1%R. have ox1: #[x1] = n by rewrite /order -Zp_cycle card_Zp. rewrite -[rhs in _ = rhs]ox1 -[#[_]]sum_ncycle_totient [#|_|]ox1 big_mkcond /=. apply: eq_bigr => d _; rewrite -{2}ox1; case: ifP => [|ndv_dG]; last first. rewrite eq_card0 // => C; apply/imsetP=> [[x /setIdP[Gx oxd] _{C}]]. by rewrite -(eqP oxd) order_dvdG in ndv_dG. move/cycle_sub_group; set Gd := [set _] => def_Gd. rewrite (_ : _ @: _ = @gval _ @: Gd); first by rewrite imset_set1 cards1 mul1n. apply/setP=> C; apply/idP/imsetP=> [| [gC GdC ->{C}]]. case/imsetP=> x /setIdP[_ oxd] ->; exists <[x]>%G => //. by rewrite -def_Gd inE -Zp_cycle subsetT. have:= GdC; rewrite -def_Gd => /setIdP[_ /eqP <-]. by rewrite (set1P GdC) /= imset_f // inE eqxx (mem_cycle x1). Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
sum_totient_dvd
order_inj_cyclic: {in G &, forall x y, #[x] = #[y] -> <[x]> = <[y]>} -> cyclic G. Proof. move=> ucG; apply: negbNE (contra _ (negbT (ltnn #|G|))) => ncG. rewrite -{2}[#|G|]sum_totient_dvd big_mkcond (bigD1 ord_max) ?dvdnn //=. rewrite -{1}[#|G|]sum_ncycle_totient (bigD1 ord_max) //= -addSn leq_add //. rewrite eq_card0 ?totient_gt0 ?cardG_gt0 // => C. apply/imsetP=> [[x /setIdP[Gx /eqP oxG]]]; case/cyclicP: ncG. by exists x; apply/eqP; rewrite eq_sym eqEcard cycle_subG Gx -oxG /=. elim/big_ind2: _ => // [m1 n1 m2 n2 | d _]; first exact: leq_add. set Gd := _ @: _; case: (set_0Vmem Gd) => [-> | [C]]; first by rewrite cards0. rewrite {}/Gd => /imsetP[x /setIdP[Gx /eqP <-] _ {C d}]. rewrite order_dvdG // (@eq_card1 _ <[x]>) ?mul1n // => C. apply/idP/eqP=> [|-> {C}]; last by rewrite imset_f // inE Gx eqxx. by case/imsetP=> y /setIdP[Gy /eqP/ucG->]. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
order_inj_cyclic
div_ring_mul_group_cyclic(R : unitRingType) (f : gT -> R) : f 1 = 1%R -> {in G &, {morph f : u v / u * v >-> (u * v)%R}} -> {in G^#, forall x, f x - 1 \in GRing.unit}%R -> abelian G -> cyclic G. Proof. move=> f1 fM f1P abelG. have fX n: {in G, {morph f : u / u ^+ n >-> (u ^+ n)%R}}. by case: n => // n x Gx; elim: n => //= n IHn; rewrite expgS fM ?groupX ?IHn. have fU x: x \in G -> f x \in GRing.unit. by move=> Gx; apply/unitrP; exists (f x^-1); rewrite -!fM ?groupV ?gsimp. apply: order_inj_cyclic => x y Gx Gy; set n := #[x] => yn. apply/eqP; rewrite eq_sym eqEcard -[#|_|]/n yn leqnn andbT cycle_subG /=. suff{y Gy yn} ->: <[x]> = G :&: [set z | #[z] %| n] by rewrite !inE Gy yn /=. apply/eqP; rewrite eqEcard subsetI cycle_subG {}Gx /= cardE; set rs := enum _. apply/andP; split; first by apply/subsetP=> y xy; rewrite inE order_dvdG. pose P : {poly R} := ('X^n - 1)%R; have n_gt0: n > 0 by apply: order_gt0. have szP : size P = n.+1. by rewrite size_polyDl size_polyXn ?size_polyN ?size_poly1. rewrite -ltnS -szP -(size_map f) max_ring_poly_roots -?size_poly_eq0 ?{}szP //. apply/allP=> fy /mapP[y]; rewrite mem_enum !inE order_dvdn => /andP[Gy]. move/eqP=> yn1 ->{fy}; apply/eqP. by rewrite !(hornerE, hornerXn) -fX // yn1 f1 subrr. have: uniq rs by apply: enum_uniq. have: all [in G] rs by apply/allP=> y; rewrite mem_enum; case/setIP. elim: rs => //= y rs IHrs /andP[Gy Grs] /andP[y_rs]; rewrite andbC. move/IHrs=> -> {IHrs}//; apply/allP=> _ /mapP[z rs_z ->]. have{Grs} Gz := allP Grs z rs_z ...
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
div_ring_mul_group_cyclic
field_mul_group_cyclic(F : fieldType) (f : gT -> F) : {in G &, {morph f : u v / u * v >-> (u * v)%R}} -> {in G, forall x, f x = 1%R <-> x = 1} -> cyclic G. Proof. move=> fM f1P; have f1 : f 1 = 1%R by apply/f1P. apply: (div_ring_mul_group_cyclic f1 fM) => [x|]. case/setD1P=> x1 Gx; rewrite unitfE; apply: contra x1. by rewrite subr_eq0 => /eqP/f1P->. apply/centsP=> x Gx y Gy; apply/commgP/eqP. apply/f1P; rewrite ?fM ?groupM ?groupV //. by rewrite mulrCA -!fM ?groupM ?groupV // mulKg mulVg. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
field_mul_group_cyclic
field_unit_group_cyclic(F : finFieldType) (G : {group {unit F}}) : cyclic G. Proof. apply: field_mul_group_cyclic FinRing.uval _ _ => // u _. by split=> /eqP ?; apply/eqP. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
field_unit_group_cyclic
units_Zp_cyclicp : prime p -> cyclic (units_Zp p). Proof. by move/pdiv_id <-; exact: field_unit_group_cyclic. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
units_Zp_cyclic
has_prim_root_subproof(F : fieldType) (n : nat) (rs : seq F) (n_gt0 : n > 0) (rsn1 : all n.-unity_root rs) (Urs : uniq rs) (sz_rs : size rs = n) (r := fun s => val (s : seq_sub rs)) (rn1 : forall x : seq_sub rs, r x ^+ n = 1) (prim_r : forall z : F, z ^+ n = 1 -> z \in rs) (r' := (fun s (e : s ^+ n = 1) => {| ssval := s; ssvalP := prim_r s e |}) : forall s : F, s ^+ n = 1 -> seq_sub rs) (sG_1 := r' 1 (expr1n F n) : seq_sub rs) (sG_VP : forall s : seq_sub rs, r s ^+ n.-1 ^+ n = 1) (sG_MP : forall s s0 : seq_sub rs, (r s * r s0) ^+ n = 1) (sG_V := (fun s : seq_sub rs => r' (r s ^+ n.-1) (sG_VP s)) : seq_sub rs -> seq_sub rs) (sG_M := (fun s s0 : seq_sub rs => r' (r s * r s0) (sG_MP s s0)) : seq_sub rs -> seq_sub rs -> seq_sub rs) (sG_Ag : associative sG_M) (sG_1g : left_id sG_1 sG_M) (sG_Vg : left_inverse sG_1 sG_V sG_M) : has n.-primitive_root rs. Proof. pose ssMG : Finite_isGroup (seq_sub rs) := Finite_isGroup.Build (seq_sub rs) sG_Ag sG_1g sG_Vg. pose gT : finGroupType := HB.pack (seq_sub rs) ssMG. have /cyclicP[x gen_x]: @cyclic gT setT. apply: (@field_mul_group_cyclic gT [set: _] F r) => // x _. by split=> [ri1 | ->]; first apply: val_inj. apply/hasP; exists (r x); first exact: (valP x). have [m prim_x dvdmn] := prim_order_exists n_gt0 (rn1 x). rewrite -((m =P n) _) // eqn_dvd {}dvdmn -sz_rs -(card_seq_sub Urs) -cardsT. rewrite gen_x (@order_dvdn gT) /(_ == _) /= -{prim_x}(prim_expr_order prim_x). by appl ...
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
has_prim_root_subproof
has_prim_root(F : fieldType) (n : nat) (rs : seq F) : n > 0 -> all n.-unity_root rs -> uniq rs -> size rs >= n -> has n.-primitive_root rs. Proof. move=> n_gt0 rsn1 Urs; rewrite leq_eqVlt ltnNge max_unity_roots // orbF eq_sym. move/eqP=> sz_rs; pose r := val (_ : seq_sub rs). have rn1 x: r x ^+ n = 1. by apply/eqP; rewrite -unity_rootE (allP rsn1) ?(valP x). have prim_r z: z ^+ n = 1 -> z \in rs. by move/eqP; rewrite -unity_rootE -(mem_unity_roots n_gt0). pose r' := SeqSub (prim_r _ _); pose sG_1 := r' _ (expr1n _ _). have sG_VP: r _ ^+ n.-1 ^+ n = 1. by move=> x; rewrite -exprM mulnC exprM rn1 expr1n. have sG_MP: (r _ * r _) ^+ n = 1 by move=> x y; rewrite exprMn !rn1 mul1r. pose sG_V := r' _ (sG_VP _); pose sG_M := r' _ (sG_MP _ _). have sG_Ag: associative sG_M by move=> x y z; apply: val_inj; rewrite /= mulrA. have sG_1g: left_id sG_1 sG_M by move=> x; apply: val_inj; rewrite /= mul1r. have sG_Vg: left_inverse sG_1 sG_V sG_M. by move=> x; apply: val_inj; rewrite /= -exprSr prednK ?rn1. exact: has_prim_root_subproof. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
has_prim_root
Aut_prime_cycle_cyclic(a : gT) : prime #[a] -> cyclic (Aut <[a]>). Proof. move=> pr_a; have inj_um := injm_Zp_unitm a. have /eq_S/eq_S eq_a := Fp_Zcast pr_a. pose fm := cast_ord (esym eq_a) \o val \o invm inj_um. apply: (@field_mul_group_cyclic _ _ _ fm) => [f g Af Ag | f Af] /=. by apply: val_inj; rewrite /= morphM ?im_Zp_unitm //= eq_a. split=> [/= fm1 |->]; last by apply: val_inj; rewrite /= morph1. apply: (injm1 (injm_invm inj_um)); first by rewrite /= im_Zp_unitm. by do 2!apply: val_inj; move/(congr1 val): fm1. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
Aut_prime_cycle_cyclic
Aut_prime_cyclic(G : {group gT}) : prime #|G| -> cyclic (Aut G). Proof. move=> pr_G; case/cyclicP: (prime_cyclic pr_G) (pr_G) => x ->. exact: Aut_prime_cycle_cyclic. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
Aut_prime_cyclic
actij (k : 'Z_p) := let: (i, j) := ij in (i + k * j, j)%R.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
act
actP: is_action [set: 'Z_p] act. Proof. apply: is_total_action=> [] [i j] => [|k1 k2] /=; first by rewrite mul0r addr0. by rewrite mulrDl addrA. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
actP
action:= Action actP.
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
action
gactP: is_groupAction [set: 'Z_p * 'Z_p] action. Proof. move=> k _ /[1!inE]; apply/andP; split; first by apply/subsetP=> ij _ /[1!inE]. apply/morphicP=> /= [[i1 j1] [i2 j2] _ _]. by rewrite !permE /= mulrDr -addrA (addrCA i2) (addrA i1). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
gactP
groupAction:= GroupAction gactP. Fact gtype_key : unit. Proof. by []. Qed.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
groupAction
gtype:= locked_with gtype_key (sdprod_groupType groupAction).
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
gtype
ngtype:= ncprod [set: gtype].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
ngtype
ngtypeQn := xcprod [set: ngtype 2 n] 'Q_8.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
ngtypeQ
card_pX1p2: #|p^{1+2}| = (p ^ 3)%N. Proof. rewrite [@gtype _]unlock -(sdprod_card (sdprod_sdpair _)). rewrite !card_injm ?injm_sdpair1 ?injm_sdpair2 // !cardsT card_prod card_ord. by rewrite -mulnA Zp_cast. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
card_pX1p2
Grp_pX1p2: p^{1+2} \isog Grp (x : y : x ^+ p, y ^+ p, [~ x, y, x], [~ x, y, y]). Proof. rewrite [@gtype _]unlock; apply: intro_isoGrp => [|rT H]. apply/existsP; pose x := sdpair1 actp (0, 1)%R; pose y := sdpair2 actp 1%R. exists (x, y); rewrite /= !xpair_eqE; set z := [~ x, y]; set G := _ <*> _. have def_z: z = sdpair1 actp (1, 0)%R. rewrite [z]commgEl -sdpair_act ?inE //=. rewrite -morphV -?morphM ?inE //=; congr (sdpair1 _ (_, _)) => /=. by rewrite mulr1 mulKg. by rewrite mulVg. have def_xi i: x ^+ i = sdpair1 actp (0, i%:R)%R. rewrite -morphX ?inE //; congr (sdpair1 _ _). by apply/eqP; rewrite /eq_op /= !morphX ?inE ?expg1n //=. have def_yi i: y ^+ i = sdpair2 actp i%:R. by rewrite -morphX ?inE //. have def_zi i: z ^+ i = sdpair1 actp (i%:R, 0)%R. rewrite def_z -morphX ?inE //; congr (sdpair1 _ _). by apply/eqP; rewrite /eq_op /= !morphX ?inE ?expg1n ?andbT //=. rewrite def_xi def_yi pchar_Zp ?morph1 //. rewrite def_z -morphR ?inE // !commgEl -sdpair_act ?inE //= mulr0 addr0. rewrite mulVg -[_ * _]/(_ , _) /= !invg1 mulg1 !mul1g mulVg morph1 !andbT. have Gx: x \in G by rewrite -cycle_subG joing_subl. have Gy: y \in G by rewrite -cycle_subG joing_subr. rewrite eqEsubset subsetT -im_sdpair mulG_subG /= -/G; apply/andP; split. apply/subsetP=> u /morphimP[[i j] _ _ def_u]. suffices ->: u = z ^+ i * x ^+ j. rewrite groupMl; apply/groupX; first exact: Gx. by apply/groupR; first exact: Gx. rewrite def_ ...
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
Grp_pX1p2
pX1p2_pgroup: p.-group p^{1+2}. Proof. by rewrite /pgroup card_pX1p2 pnatX pnat_id. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
pX1p2_pgroup
pX1p2_extraspecial: extraspecial p^{1+2}. Proof. apply: (p3group_extraspecial pX1p2_pgroup); last first. by rewrite card_pX1p2 pfactorK. case/existsP: (isoGrp_hom Grp_pX1p2) card_pX1p2 => [[x y]] /=. case/eqP=> <- xp yp _ _ oXY. apply: contraL (dvdn_cardMg <[x]> <[y]>) => cXY_XY. rewrite -cent_joinEl ?(sub_abelian_cent2 cXY_XY) ?joing_subl ?joing_subr //. rewrite oXY -!orderE pfactor_dvdn ?muln_gt0 ?order_gt0 // -leqNgt. rewrite -(pfactorK 2 p_pr) dvdn_leq_log ?expn_gt0 ?p_gt0 //. by rewrite dvdn_mul ?order_dvdn ?xp ?yp. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
pX1p2_extraspecial
exponent_pX1p2: odd p -> exponent p^{1+2} %| p. Proof. move=> p_odd; have pG := pX1p2_pgroup. have ->: p^{1+2} = 'Ohm_1(p^{1+2}). apply/eqP; rewrite eqEsubset Ohm_sub andbT (OhmE 1 pG). case/existsP: (isoGrp_hom Grp_pX1p2) => [[x y]] /=. case/eqP=> <- xp yp _ _; rewrite joing_idl joing_idr genS //. by rewrite subsetI subset_gen subUset !sub1set !inE xp yp!eqxx. rewrite exponent_Ohm1_class2 ?card_pX1p2 ?oddX // nil_class2. by have [[_ ->] _ ] := pX1p2_extraspecial. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
exponent_pX1p2
isog_pX1p2(gT : finGroupType) (G : {group gT}) : extraspecial G -> exponent G %| p -> #|G| = (p ^ 3)%N -> G \isog p^{1+2}. Proof. move=> esG expGp oG; apply/(isoGrpP _ Grp_pX1p2). rewrite card_pX1p2; split=> //. have pG: p.-group G by rewrite /pgroup oG pnatX pnat_id. have oZ := card_center_extraspecial pG esG. have [x Gx notZx]: exists2 x, x \in G & x \notin 'Z(G). apply/subsetPn; rewrite proper_subn // properEcard center_sub oZ oG. by rewrite (ltn_exp2l 1 3). have ox: #[x] = p. by apply: nt_prime_order; rewrite ?(exponentP expGp) ?(group1_contra notZx). have [y Gy not_cxy]: exists2 y, y \in G & y \notin 'C[x]. by apply/subsetPn; rewrite sub_cent1; rewrite inE Gx in notZx. apply/existsP; exists (x, y) => /=; set z := [~ x, y]. have [[defPhiG defG'] _] := esG. have Zz: z \in 'Z(G) by rewrite -defG' mem_commg. have [Gz cGz] := setIP Zz; rewrite !xpair_eqE !(exponentP expGp) //. have [_ nZG] := andP (center_normal G). rewrite /commg /conjg !(centP cGz) // !mulKg mulVg !eqxx !andbT. have sXY_G: <[x]> <*> <[y]> \subset G by rewrite join_subG !cycle_subG Gx. have defZ: <[z]> = 'Z(G). apply/eqP; rewrite eqEcard cycle_subG Zz oZ /= -orderE. rewrite (nt_prime_order p_pr) ?(exponentP expGp) //. by rewrite (sameP commgP cent1P) cent1C. have sZ_XY: 'Z(G) \subset <[x]> <*> <[y]>. by rewrite -defZ cycle_subG groupR // mem_gen // inE cycle_id ?orbT. rewrite eqEcard sXY_G /= oG -(Lagrange sZ_XY) oZ leq_pmul2l //. rewrite -card_quotient ?(subset_trans sXY_G) //. rewrite quotientY ?qu ...
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
isog_pX1p2
pX1p2id: p^{1+2*1} \isog p^{1+2}. Proof. exact: ncprod1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
pX1p2id
pX1p2Sn : xcprod_spec p^{1+2} p^{1+2*n} p^{1+2*n.+1}%type. Proof. exact: ncprodS. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
pX1p2S
card_pX1p2nn : prime p -> #|p^{1+2*n}| = (p ^ n.*2.+1)%N. Proof. move=> p_pr; have pG := pX1p2_pgroup p_pr. have oG := card_pX1p2 p_pr; have esG := pX1p2_extraspecial p_pr. have oZ := card_center_extraspecial pG esG. elim: n => [|n IHn]; first by rewrite (card_isog (ncprod0 _)) oZ. case: pX1p2S => gz isoZ; rewrite -im_cpair cardMg_divn setI_im_cpair. rewrite -injm_center ?{1}card_injm ?injm_cpairg1 ?injm_cpair1g ?center_sub //. by rewrite oG oZ IHn -expnD mulKn ?prime_gt0. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
card_pX1p2n
pX1p2n_pgroupn : prime p -> p.-group p^{1+2*n}. Proof. by move=> p_pr; rewrite /pgroup card_pX1p2n // pnatX pnat_id. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
pX1p2n_pgroup
exponent_pX1p2nn : prime p -> odd p -> exponent p^{1+2*n} = p. Proof. move=> p_pr odd_p; apply: prime_nt_dvdP => //. rewrite -dvdn1 -trivg_exponent -cardG_gt1 card_pX1p2n //. by rewrite (ltn_exp2l 0) // prime_gt1. elim: n => [|n IHn]. by rewrite (dvdn_trans (exponent_dvdn _)) ?card_pX1p2n. case: pX1p2S => gz isoZ; rewrite -im_cpair /=. apply/exponentP=> xy; case/imset2P=> x y C1x C2y ->{xy}. rewrite expgMn; last by red; rewrite -(centsP (im_cpair_cent isoZ)). rewrite (exponentP _ y C2y) ?exponent_injm ?injm_cpair1g // mulg1. by rewrite (exponentP _ x C1x) ?exponent_injm ?injm_cpairg1 // exponent_pX1p2. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
exponent_pX1p2n
pX1p2n_extraspecialn : prime p -> n > 0 -> extraspecial p^{1+2*n}. Proof. move=> p_pr; elim: n => [//|n IHn _]. have esG := pX1p2_extraspecial p_pr. have [n0 | n_gt0] := posnP n. by apply: isog_extraspecial esG; rewrite isog_sym n0 pX1p2id. case: pX1p2S (pX1p2n_pgroup n.+1 p_pr) => gz isoZ pGn. apply: (cprod_extraspecial pGn (im_cpair_cprod isoZ) (setI_im_cpair isoZ)). by apply: injm_extraspecial esG; rewrite ?injm_cpairg1. by apply: injm_extraspecial (IHn n_gt0); rewrite ?injm_cpair1g. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
pX1p2n_extraspecial
Ohm1_extraspecial_odd(gT : finGroupType) (G : {group gT}) : p.-group G -> extraspecial G -> odd #|G| -> let Y := 'Ohm_1(G) in [/\ exponent Y = p, #|G : Y| %| p & Y != G -> exists E : {group gT}, [/\ #|G : Y| = p, #|E| = p \/ extraspecial E, exists2 X : {group gT}, #|X| = p & X \x E = Y & exists M : {group gT}, [/\ M \isog 'Mod_(p ^ 3), M \* E = G & M :&: E = 'Z(M)]]]. Proof. move=> pG esG oddG Y; have [spG _] := esG. have [defPhiG defG'] := spG; set Z := 'Z(G) in defPhiG defG'. have{spG} expG: exponent G %| p ^ 2 by apply: exponent_special. have p_pr := extraspecial_prime pG esG. have p_gt1 := prime_gt1 p_pr; have p_gt0 := ltnW p_gt1. have oZ: #|Z| = p := card_center_extraspecial pG esG. have nsZG: Z <| G := center_normal G; have [sZG nZG] := andP nsZG. have nsYG: Y <| G := Ohm_normal 1 G; have [sYG nYG] := andP nsYG. have ntZ: Z != 1 by rewrite -cardG_gt1 oZ. have sZY: Z \subset Y. by apply: contraR ntZ => ?; rewrite -(setIidPl sZG) TI_Ohm1 ?prime_TIg ?oZ. have ntY: Y != 1 by apply: subG1_contra ntZ. have p_odd: odd p by rewrite -oZ (oddSg sZG). have expY: exponent Y %| p by rewrite exponent_Ohm1_class2 // nil_class2 defG'. rewrite (prime_nt_dvdP p_pr _ expY) -?dvdn1 -?trivg_exponent //. have [-> | neYG] := eqVneq Y G; first by rewrite indexgg dvd1n; split. have sG1Z: 'Mho^1(G) \subset Z by rewrite -defPhiG (Phi_joing pG) joing_subr. have Z_Gp: {in G, forall x, x ^+ p \in Z}. by move=> x Gx; rewrite /= (subsetP sG1Z) ?(Mho_p_elt 1) ...
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
Ohm1_extraspecial_odd
isog_pX1p2nn (gT : finGroupType) (G : {group gT}) : prime p -> extraspecial G -> #|G| = (p ^ n.*2.+1)%N -> exponent G %| p -> G \isog p^{1+2*n}. Proof. move=> p_pr esG oG expG; have p_gt1 := prime_gt1 p_pr. have not_le_p3_p: ~~ (p ^ 3 <= p) by rewrite (leq_exp2l 3 1). have pG: p.-group G by rewrite /pgroup oG pnatX pnat_id. have oZ := card_center_extraspecial pG esG. have{pG esG} [Es p3Es defG] := extraspecial_structure pG esG. set Z := 'Z(G) in oZ defG p3Es. elim: Es {+}G => [|E Es IHs] S in n oG expG p3Es defG *. rewrite big_nil cprod1g in defG; rewrite -defG. have ->: n = 0. apply: double_inj; apply/eqP. by rewrite -eqSS -(eqn_exp2l _ _ p_gt1) -oG -defG oZ. by rewrite isog_cyclic_card prime_cyclic ?oZ ?card_pX1p2n //=. rewrite big_cons -cprodA in defG; rewrite /= -andbA in p3Es. have [[_ T _ defT] defET cTE] := cprodP defG; rewrite defT in defET cTE defG. move: p3Es => /and3P[/eqP oE /eqP defZE /IHs{}IHs]. have not_cEE: ~~ abelian E. by apply: contra not_le_p3_p => cEE; rewrite -oE -oZ -defZE (center_idP _). have sES: E \subset S by rewrite -defET mulG_subl. have sTS: T \subset S by rewrite -defET mulG_subr. have expE: exponent E %| p by apply: dvdn_trans (exponentS sES) expG. have expT: exponent T %| p by apply: dvdn_trans (exponentS sTS) expG. have{expE not_cEE} isoE: E \isog p^{1+2}. apply: isog_pX1p2 => //. by apply: card_p3group_extraspecial p_pr oE _; rewrite defZE. have sZT: 'Z(E) \subset T. by case/cprodP: defT => [[U _ -> _] <- _]; rewrite defZE m ...
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
isog_pX1p2n
isog_2X1p2: 2^{1+2} \isog 'D_8. Proof. have pr2: prime 2 by []; have oG := card_pX1p2 pr2; rewrite -[8]oG. case/existsP: (isoGrp_hom (Grp_pX1p2 pr2)) => [[x y]] /=. rewrite -/2^{1+2}; case/eqP=> defG x2 y2 _ _. have not_oG_2: ~~ (#|2^{1+2}| %| 2) by rewrite oG. have ox: #[x] = 2. apply: nt_prime_order => //; apply: contra not_oG_2 => x1. by rewrite -defG (eqP x1) cycle1 joing1G order_dvdn y2. have oy: #[y] = 2. apply: nt_prime_order => //; apply: contra not_oG_2 => y1. by rewrite -defG (eqP y1) cycle1 joingG1 order_dvdn x2. rewrite -defG joing_idl joing_idr involutions_gen_dihedral //. apply: contra not_oG_2 => eq_xy; rewrite -defG (eqP eq_xy) (joing_idPl _) //. by rewrite -orderE oy. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
isog_2X1p2
Q8_extraspecial: extraspecial 'Q_8. Proof. have gt32: 3 > 2 by []; have isoQ: 'Q_8 \isog 'Q_(2 ^ 3) by apply: isog_refl. have [[x y] genQ _] := generators_quaternion gt32 isoQ. have [_ [defQ' defPhiQ _ _]] := quaternion_structure gt32 genQ isoQ. case=> defZ oZ _ _ _ _ _; split; last by rewrite oZ. by split; rewrite ?defPhiQ defZ. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
Q8_extraspecial
DnQ_Pn : xcprod_spec 'D^n 'Q_8 ('D^n*Q)%type. Proof. have pQ: 2.-group 'Q_(2 ^ 3) by rewrite /pgroup card_quaternion. have{pQ} oZQ := card_center_extraspecial pQ Q8_extraspecial. suffices oZDn: #|'Z('D^n)| = 2. by apply: xcprodP; rewrite isog_cyclic_card ?prime_cyclic ?oZQ ?oZDn. have [-> | n_gt0] := posnP n; first by rewrite center_ncprod0 card_pX1p2n. have pr2: prime 2 by []; have pDn := pX1p2n_pgroup n pr2. exact: card_center_extraspecial (pX1p2n_extraspecial pr2 n_gt0). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
DnQ_P
card_DnQn : #|'D^n*Q| = (2 ^ n.+1.*2.+1)%N. Proof. have oQ: #|'Q_(2 ^ 3)| = 8 by rewrite card_quaternion. have pQ: 2.-group 'Q_8 by rewrite /pgroup oQ. case: DnQ_P => gz isoZ. rewrite -im_cpair cardMg_divn setI_im_cpair cpair_center_id. rewrite -injm_center//; last exact: injm_cpair1g. rewrite (card_injm (injm_cpairg1 _))//= (card_injm (injm_cpair1g _))//. rewrite (card_injm (injm_cpair1g _))//; last exact: center_sub. rewrite oQ card_pX1p2n // (card_center_extraspecial pQ Q8_extraspecial). by rewrite -muln_divA // mulnC -(expnD 2 2). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
card_DnQ
DnQ_pgroupn : 2.-group 'D^n*Q. Proof. by rewrite /pgroup card_DnQ pnatX. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
DnQ_pgroup
DnQ_extraspecialn : extraspecial 'D^n*Q. Proof. case: DnQ_P (DnQ_pgroup n) => gz isoZ pDnQ. have [injDn injQ] := (injm_cpairg1 isoZ, injm_cpair1g isoZ). have [n0 | n_gt0] := posnP n. rewrite -im_cpair mulSGid; first exact: injm_extraspecial Q8_extraspecial. apply/setIidPl; rewrite setI_im_cpair -injm_center //=. by congr (_ @* _); rewrite n0 center_ncprod0. apply: (cprod_extraspecial pDnQ (im_cpair_cprod isoZ) (setI_im_cpair _)). exact: injm_extraspecial (pX1p2n_extraspecial _ _). exact: injm_extraspecial Q8_extraspecial. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
DnQ_extraspecial
card_isog8_extraspecial(gT : finGroupType) (G : {group gT}) : #|G| = 8 -> extraspecial G -> (G \isog 'D_8) || (G \isog 'Q_8). Proof. move=> oG esG; have pG: 2.-group G by rewrite /pgroup oG. apply/norP=> [[notG_D8 notG_Q8]]. have not_extG: extremal_class G = NotExtremal. by rewrite /extremal_class oG andFb (negPf notG_D8) (negPf notG_Q8). have [x Gx ox] := exponent_witness (pgroup_nil pG). pose X := <[x]>; have cycX: cyclic X := cycle_cyclic x. have sXG: X \subset G by rewrite cycle_subG. have iXG: #|G : X| = 2. by rewrite -divgS // oG -orderE -ox exponent_2extraspecial. have not_cGG := extraspecial_nonabelian esG. have:= maximal_cycle_extremal pG not_cGG cycX sXG iXG. by rewrite /extremal2 not_extG. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
card_isog8_extraspecial
isog_2extraspecial(gT : finGroupType) (G : {group gT}) n : #|G| = (2 ^ n.*2.+1)%N -> extraspecial G -> G \isog 'D^n \/ G \isog 'D^n.-1*Q. Proof. elim: n G => [|n IHn] G oG esG. case/negP: (extraspecial_nonabelian esG). by rewrite cyclic_abelian ?prime_cyclic ?oG. have pG: 2.-group G by rewrite /pgroup oG pnatX. have oZ:= card_center_extraspecial pG esG. have: 'Z(G) \subset 'Ohm_1(G). apply/subsetP=> z Zz; rewrite (OhmE _ pG) mem_gen //. by rewrite !inE -order_dvdn -oZ order_dvdG ?(subsetP (center_sub G)). rewrite subEproper; case/predU1P=> [defG1 | ltZG1]. have [n' n'_gt2 isoG]: exists2 n', n' > 2 & G \isog 'Q_(2 ^ n'). apply/quaternion_classP; apply/eqP. have not_cycG: ~~ cyclic G. by apply: contra (extraspecial_nonabelian esG); apply: cyclic_abelian. move: oZ; rewrite defG1; move/prime_Ohm1P; rewrite (negPf not_cycG) /=. by apply=> //; apply: contra not_cycG; move/eqP->; apply: cyclic1. have [n0 n'3]: n = 0 /\ n' = 3. have [[x y] genG _] := generators_quaternion n'_gt2 isoG. have n'3: n' = 3. have [_ [_ _ oG' _] _ _ _] := quaternion_structure n'_gt2 genG isoG. apply/eqP; rewrite -(subnKC (ltnW n'_gt2)) subn2 !eqSS -(@eqn_exp2l 2) //. by rewrite -oG' -oZ; case: esG => [[_ ->]]. by move/eqP: oG; have [-> _ _ _] := genG; rewrite n'3 eqn_exp2l //; case n. right; rewrite (isog_trans isoG) // n'3 n0 /=. case: DnQ_P => z isoZ; rewrite -im_cpair mulSGid ?sub_isog ?injm_cpair1g //. apply/setIidPl; rewrite setI_im_cpair -injm_cent ...
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
isog_2extraspecial
rank_Dnn : 'r_2('D^n) = n.+1. Proof. elim: n => [|n IHn]; first by rewrite p_rank_abelem ?prime_abelem ?card_pX1p2n. have oDDn: #|'D^n.+1| = (2 ^ n.+1.*2.+1)%N by apply: card_pX1p2n. have esDDn: extraspecial 'D^n.+1 by apply: pX1p2n_extraspecial. do [case: pX1p2S => gz isoZ; set DDn := [set: _]] in oDDn esDDn *. have pDDn: 2.-group DDn by rewrite /pgroup oDDn pnatX. apply/eqP; rewrite eqn_leq; apply/andP; split. have [E EprE]:= p_rank_witness 2 [group of DDn]. have [sEDDn abelE <-] := pnElemP EprE; have [pE cEE _]:= and3P abelE. rewrite -(@leq_exp2l 2) // -p_part part_pnat_id // -leq_sqr -expnM -mulnn. rewrite muln2 doubleS expnS -oDDn -(@leq_pmul2r #|'C_DDn(E)|) ?cardG_gt0 //. rewrite {1}(card_subcent_extraspecial pDDn) // mulnCA -mulnA Lagrange //=. rewrite mulnAC mulnA leq_pmul2r ?cardG_gt0 // setTI. have ->: (2 * #|'C(E)| = #|'Z(DDn)| * #|'C(E)|)%N. by rewrite (card_center_extraspecial pDDn). by rewrite leq_mul ?subset_leq_card ?subsetIl. have [inj1 injn] := (injm_cpairg1 isoZ, injm_cpair1g isoZ). pose D := cpairg1 isoZ @* 2^{1+2}; pose Dn := cpair1g isoZ @* 'D^n. have [E EprE] := p_rank_witness 2 [group of Dn]. rewrite injm_p_rank //= IHn in EprE; have [sEDn abelE dimE]:= pnElemP EprE. have [x [Dx ox] notDnx]: exists x, [/\ x \in D, #[x] = 2 & x \notin Dn]. have isoD: D \isog 'D_(2 ^ 3). by rewrite isog_sym -(isog_transl _ isog_2X1p2) sub_isog. have [//| [x y] genD [oy _]] := generators_2dihedral _ isoD. have [_ _ _ X'y] := genD; case/setDP: X'y; r ...
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
rank_Dn
rank_DnQn : 'r_2('D^n*Q) = n.+1. Proof. have pDnQ: 2.-group 'D^n*Q := DnQ_pgroup n. have esDnQ: extraspecial 'D^n*Q := DnQ_extraspecial n. do [case: DnQ_P => gz isoZ; set DnQ := setT] in pDnQ esDnQ *. suffices [E]: exists2 E, E \in 'E*_2(DnQ) & logn 2 #|E| = n.+1. by rewrite (pmaxElem_extraspecial pDnQ esDnQ); case/pnElemP=> _ _ <-. have oZ: #|'Z(DnQ)| = 2 by apply: card_center_extraspecial. pose Dn := cpairg1 isoZ @* 'D^n; pose Q := cpair1g isoZ @* 'Q_8. have [injDn injQ] := (injm_cpairg1 isoZ, injm_cpair1g isoZ). have [E EprE]:= p_rank_witness 2 [group of Dn]. have [sEDn abelE dimE] := pnElemP EprE; have [pE cEE eE]:= and3P abelE. rewrite injm_p_rank // rank_Dn in dimE; exists E => //. have sZE: 'Z(DnQ) \subset E. have maxE := subsetP (p_rankElem_max _ _) E EprE. have abelZ: 2.-abelem 'Z(DnQ) by rewrite prime_abelem ?oZ. rewrite -(Ohm1_id abelZ) (OhmE _ (abelem_pgroup abelZ)) gen_subG. rewrite -(pmaxElem_LdivP _ maxE) // setSI //=. by rewrite -cpairg1_center injm_center // setIS ?centS. have scE: 'C_Dn(E) = E. apply/eqP; rewrite eq_sym eqEcard subsetI sEDn -abelianE cEE /=. have [n0 | n_gt0] := posnP n. rewrite subset_leq_card // subIset // (subset_trans _ sZE) //. by rewrite -cpairg1_center morphimS // n0 center_ncprod0. have pDn: 2.-group Dn by rewrite morphim_pgroup ?pX1p2n_pgroup. have esDn: extraspecial Dn. exact: injm_extraspecial (pX1p2n_extraspecial _ _). rewrite dvdn_leq ?cardG_gt0 // (card_subcent_extraspecial pDn) //=. rewrite -injm_ce ...
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
rank_DnQ
not_isog_Dn_DnQn : ~~ ('D^n \isog 'D^n.-1*Q). Proof. case: n => [|n] /=; first by rewrite isogEcard card_pX1p2n // card_DnQ andbF. apply: contraL (leqnn n.+1) => isoDn1DnQ. by rewrite -ltnNge -rank_Dn (isog_p_rank isoDn1DnQ) rank_DnQ. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal", "From mathcomp Require Import extremal" ]
solvable/extraspecial.v
not_isog_Dn_DnQ
aut_of:= odflt 1 [pick s in Aut B | p > 1 & (#[s] %| p) && (s b == b ^+ e)].
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal" ]
solvable/extremal.v
aut_of
aut_dvdn: #[aut_of] %| #[a]. Proof. rewrite order_Zp1 /aut_of; case: pickP => [s | _]; last by rewrite order1. by case/and4P=> _ p_gt1 p_s _; rewrite Zp_cast. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal" ]
solvable/extremal.v
aut_dvdn
act_morphism:= eltm_morphism aut_dvdn.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal" ]
solvable/extremal.v
act_morphism
base_act:= ([Aut B] \o act_morphism)%gact.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal" ]
solvable/extremal.v
base_act
act_dom: <[a]> \subset act_dom base_act. Proof. rewrite cycle_subG 2!inE cycle_id /= eltm_id /aut_of. by case: pickP => [op /andP[] | _] //=; rewrite group1. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal" ]
solvable/extremal.v
act_dom
gact:= (base_act \ act_dom)%gact.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal" ]
solvable/extremal.v
gact
gtype_unlockable:= Unlockable gtype.unlock.
Canonical
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal" ]
solvable/extremal.v
gtype_unlockable
card: #|[set: gtype]| = (p * q)%N. Proof. rewrite [gtype.body]unlock -(sdprod_card (sdprod_sdpair _)). rewrite !card_injm ?injm_sdpair1 ?injm_sdpair2 //. by rewrite mulnC -!orderE !order_Zp1 !Zp_cast. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal" ]
solvable/extremal.v
card
Grp: (exists s, [/\ s \in Aut B, #[s] %| p & s b = b ^+ e]) -> [set: gtype] \isog Grp (x : y : x ^+ q, y ^+ p, x ^ y = x ^+ e). Proof. rewrite [gtype.body]unlock => [[s [AutBs dvd_s_p sb]]]. have memB: _ \in B by move=> c; rewrite -Zp_cycle inE. have Aa: a \in <[a]> by rewrite !cycle_id. have [oa ob]: #[a] = p /\ #[b] = q by rewrite !order_Zp1 !Zp_cast. have def_s: aut_of = s. rewrite /aut_of; case: pickP => /= [t | ]; last first. by move/(_ s); case/and4P; rewrite sb. case/and4P=> AutBt _ _ tb; apply: (eq_Aut AutBt) => // b_i. case/cycleP=> i ->; rewrite -(autmE AutBt) -(autmE AutBs) !morphX //=. by rewrite !autmE // sb (eqP tb). apply: intro_isoGrp => [|gT G]. apply/existsP; exists (sdpair1 _ b, sdpair2 _ a); rewrite /= !xpair_eqE. apply/andP; split. by rewrite -!morphim_cycle ?norm_joinEr ?im_sdpair ?im_sdpair_norm ?eqxx //=. rewrite -!order_dvdn !order_injm ?injm_sdpair1 ?injm_sdpair2 // oa ob !dvdnn. by rewrite -sdpair_act // [act _ _ _]apermE /= eltm_id -morphX // -sb -def_s. case/existsP=> -[x y] /= /eqP[defG xq1 yp1 xy]. have fxP: #[x] %| #[b] by rewrite order_dvdn ob xq1. have fyP: #[y] %| #[a] by rewrite order_dvdn oa yp1. have fP: {in <[b]> & <[a]>, morph_act gact 'J (eltm fxP) (eltm fyP)}. move=> bj ai; case/cycleP=> j ->{bj}; case/cycleP=> i ->{ai}. rewrite /= !eltmE def_s gactX ?groupX // conjXg morphX //=; congr (_ ^+ j). rewrite /autact /= apermE; elim: i {j} => /= [|i IHi]. by rewrite perm1 eltm_id conjg1. rewrite !expgS per ...
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal" ]
solvable/extremal.v
Grp
modular_gtype:= gtype q p (q %/ p).+1.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal" ]
solvable/extremal.v
modular_gtype
dihedral_gtype:= gtype q 2 q.-1.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal" ]
solvable/extremal.v
dihedral_gtype
semidihedral_gtype:= gtype q 2 (q %/ p).-1.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal" ]
solvable/extremal.v
semidihedral_gtype
quaternion_kernel:= <<[set u | u ^+ 2 == 1] :\: [set u ^+ 2 | u in [set: gtype q 4 q.-1]]>>.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal" ]
solvable/extremal.v
quaternion_kernel
quaternion_unlock:= Unlockable quaternion_gtype.unlock.
Canonical
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal" ]
solvable/extremal.v
quaternion_unlock
cyclic_pgroup_Aut_structuregT p (G : {group gT}) : p.-group G -> cyclic G -> G :!=: 1 -> let q := #|G| in let n := (logn p q).-1 in let A := Aut G in let P := 'O_p(A) in let F := 'O_p^'(A) in exists m : {perm gT} -> 'Z_q, [/\ [/\ {in A & G, forall a x, x ^+ m a = a x}, m 1 = 1%R /\ {in A &, {morph m : a b / a * b >-> (a * b)%R}}, {in A &, injective m} /\ image m A =i GRing.unit, forall k, {in A, {morph m : a / a ^+ k >-> (a ^+ k)%R}} & {in A, {morph m : a / a^-1 >-> (a^-1)%R}}], [/\ abelian A, cyclic F, #|F| = p.-1 & [faithful F, on 'Ohm_1(G) | [Aut G]]] & if n == 0 then A = F else exists t, [/\ t \in A, #[t] = 2, m t = (- 1)%R & if odd p then [/\ cyclic A /\ cyclic P, exists s, [/\ s \in A, #[s] = (p ^ n)%N, m s = p.+1%:R & P = <[s]>] & exists s0, [/\ s0 \in A, #[s0] = p, m s0 = (p ^ n).+1%:R & 'Ohm_1(P) = <[s0]>]] else if n == 1%N then A = <[t]> else exists s, [/\ s \in A, #[s] = (2 ^ n.-1)%N, m s = 5%:R, <[s]> \x <[t]> = A & exists s0, [/\ s0 \in A, #[s0] = 2, m s0 = (2 ^ n).+1%:R, m (s0 * t) = (2 ^ n).-1%:R & 'Ohm_1(<[s]>) = <[s0]>]]]]. Proof. move=> pG cycG ntG q n0 A P F; have [p_pr p_dvd_G [n oG]] := pgroup_pdiv pG ntG. have [x0 defG] := cyclicP cycG; have Gx0: x0 \in G by rewrite defG cycle_id. rewrite {1}/q oG pfactorK //= in n0 *; rewrite {}/n0. have [p_gt1 min_p] := primeP p_pr; have p_gt0 := ltnW p_gt1. have q_gt1: q > ...
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal" ]
solvable/extremal.v
cyclic_pgroup_Aut_structure
extremal_generatorsgT (A : {set gT}) p n xy := let: (x, y) := xy in [/\ #|A| = (p ^ n)%N, x \in A, #[x] = (p ^ n.-1)%N & y \in A :\: <[x]>].
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal" ]
solvable/extremal.v
extremal_generators
extremal_generators_factsgT (G : {group gT}) p n x y : prime p -> extremal_generators G p n (x, y) -> [/\ p.-group G, maximal <[x]> G, <[x]> <| G, <[x]> * <[y]> = G & <[y]> \subset 'N(<[x]>)]. Proof. move=> p_pr [oG Gx ox] /setDP[Gy notXy]. have pG: p.-group G by rewrite /pgroup oG pnatX pnat_id. have maxX: maximal <[x]> G. rewrite p_index_maximal -?divgS ?cycle_subG // -orderE oG ox. case: (n) oG => [|n' _]; last by rewrite -expnB ?subSnn ?leqnSn ?prime_gt0. move/eqP; rewrite -trivg_card1; case/trivgPn. by exists y; rewrite // (group1_contra notXy). have nsXG := p_maximal_normal pG maxX; split=> //. by apply: mulg_normal_maximal; rewrite ?cycle_subG. by rewrite cycle_subG (subsetP (normal_norm nsXG)). Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal" ]
solvable/extremal.v
extremal_generators_facts
card_modular_group: #|'Mod_(p ^ n)| = (p ^ n)%N. Proof. by rewrite Extremal.card def_p ?def_q // -expnS def_n. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset prime binomial", "From mathcomp Require Import fingroup morphism perm automorphism presentation", "From mathcomp Require Import quotient action commutator gproduct gfunctor", "From mathcomp Require Import ssralg countalg finalg zmodp cyclic pgroup center gseries", "From mathcomp Require Import nilpotent sylow abelian finmodule matrix maximal" ]
solvable/extremal.v
card_modular_group