fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
subcent_charG H K : H \char G -> K \char G -> 'C_H(K) \char G. Proof. case/charP=> sHG chHG /charP[sKG chKG]; apply/charP. split=> [|f injf Gf]; first by rewrite subIset ?sHG. by rewrite injm_subcent ?chHG ?chKG. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
subcent_char
centerPA x : reflect (x \in A /\ centralises x A) (x \in 'Z(A)). Proof. exact: subcentP. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
centerP
center_subA : 'Z(A) \subset A. Proof. exact: subsetIl. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
center_sub
center1: 'Z(1) = 1 :> {set gT}. Proof. exact: gF1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
center1
centerCA : {in A, centralised 'Z(A)}. Proof. by apply/centsP; rewrite centsC subsetIr. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
centerC
center_normalG : 'Z(G) <| G. Proof. exact: gFnormal. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
center_normal
sub_center_normalH G : H \subset 'Z(G) -> H <| G. Proof. by rewrite subsetI centsC /normal => /andP[-> /cents_norm]. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
sub_center_normal
center_abelianG : abelian 'Z(G). Proof. by rewrite /abelian subIset // centsC subIset // subxx orbT. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
center_abelian
center_charG : 'Z(G) \char G. Proof. exact: gFchar. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
center_char
center_idPA : reflect ('Z(A) = A) (abelian A). Proof. exact: setIidPl. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
center_idP
center_class_formulaG : #|G| = #|'Z(G)| + \sum_(xG in [set x ^: G | x in G :\: 'C(G)]) #|xG|. Proof. by rewrite acts_sum_card_orbit ?cardsID // astabsJ normsD ?norms_cent ?normG. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
center_class_formula
subcent1PA x y : reflect (y \in A /\ commute x y) (y \in 'C_A[x]). Proof. rewrite inE; case: (y \in A); last by right; case. by apply: (iffP cent1P) => [|[]]. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
subcent1P
subcent1_idx G : x \in G -> x \in 'C_G[x]. Proof. by move=> Gx; rewrite inE Gx; apply/cent1P. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
subcent1_id
subcent1_subx G : 'C_G[x] \subset G. Proof. exact: subsetIl. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
subcent1_sub
subcent1Cx y G : x \in G -> y \in 'C_G[x] -> x \in 'C_G[y]. Proof. by move=> Gx /subcent1P[_ cxy]; apply/subcent1P. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
subcent1C
subcent1_cycle_subx G : x \in G -> <[x]> \subset 'C_G[x]. Proof. by move=> Gx; rewrite cycle_subG ?subcent1_id. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
subcent1_cycle_sub
subcent1_cycle_normx G : 'C_G[x] \subset 'N(<[x]>). Proof. by rewrite cents_norm // cent_gen cent_set1 subsetIr. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
subcent1_cycle_norm
subcent1_cycle_normalx G : x \in G -> <[x]> <| 'C_G[x]. Proof. by move=> Gx; rewrite /normal subcent1_cycle_norm subcent1_cycle_sub. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
subcent1_cycle_normal
cyclic_center_factor_abelianG : cyclic (G / 'Z(G)) -> abelian G. Proof. case/cyclicP=> a Ga; case: (cosetP a) => /= z Nz def_a. have G_Zz: G :=: 'Z(G) * <[z]>. rewrite -quotientK ?cycle_subG ?quotient_cycle //=. by rewrite -def_a -Ga quotientGK // center_normal. rewrite G_Zz abelianM cycle_abelian center_abelian centsC /= G_Zz. by rewrite subIset ?centS ?orbT ?mulG_subr. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
cyclic_center_factor_abelian
cyclic_factor_abelianH G : H \subset 'Z(G) -> cyclic (G / H) -> abelian G. Proof. move=> sHZ cycGH; apply: cyclic_center_factor_abelian. have /andP[_ nHG]: H <| G := sub_center_normal sHZ. have [f <-]:= homgP (homg_quotientS nHG (gFnorm _ G) sHZ). exact: morphim_cyclic cycGH. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
cyclic_factor_abelian
injm_centerG : G \subset D -> f @* 'Z(G) = 'Z(f @* G). Proof. exact: injm_subcent. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
injm_center
isog_center(aT rT : finGroupType) (G : {group aT}) (H : {group rT}) : G \isog H -> 'Z(G) \isog 'Z(H). Proof. exact: gFisog. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
isog_center
center_prodH K : K \subset 'C(H) -> 'Z(H) * 'Z(K) = 'Z(H * K). Proof. move=> cHK; apply/setP=> z; rewrite {3}/center centM !inE. have cKH: H \subset 'C(K) by rewrite centsC. apply/imset2P/and3P=> [[x y /setIP[Hx cHx] /setIP[Ky cKy] ->{z}]| []]. by rewrite imset2_f ?groupM // ?(subsetP cHK) ?(subsetP cKH). case/imset2P=> x y Hx Ky ->{z}. rewrite groupMr => [cHx|]; last exact: subsetP Ky. rewrite groupMl => [cKy|]; last exact: subsetP Hx. by exists x y; rewrite ?inE ?Hx ?Ky. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
center_prod
center_cprodA B G : A \* B = G -> 'Z(A) \* 'Z(B) = 'Z(G). Proof. case/cprodP => [[H K -> ->] <- cHK]. rewrite cprodE ?center_prod //= subIset ?(subset_trans cHK) //. by rewrite centS ?center_sub. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
center_cprod
center_bigcprodI r P (F : I -> {set gT}) G : \big[cprod/1]_(i <- r | P i) F i = G -> \big[cprod/1]_(i <- r | P i) 'Z(F i) = 'Z(G). Proof. elim/big_ind2: _ G => [_ <-|A B C D IHA IHB G dG|_ _ G ->]; rewrite ?center1 //. case/cprodP: dG IHA IHB (dG) => [[H K -> ->] _ _] IHH IHK dG. by rewrite (IHH H) // (IHK K) // (center_cprod dG). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
center_bigcprod
cprod_center_idG : G \* 'Z(G) = G. Proof. by rewrite cprodE ?subsetIr // mulGSid ?center_sub. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
cprod_center_id
center_dprodA B G : A \x B = G -> 'Z(A) \x 'Z(B) = 'Z(G). Proof. case/dprodP=> [[H1 H2 -> ->] defG cH12 trH12]. move: defG; rewrite -cprodE // => /center_cprod/cprodP[_ /= <- cZ12]. by apply: dprodE; rewrite //= setIAC setIA -setIA trH12 (setIidPl _) ?sub1G. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
center_dprod
center_bigdprodI r P (F: I -> {set gT}) G : \big[dprod/1]_(i <- r | P i) F i = G -> \big[dprod/1]_(i <- r | P i) 'Z(F i) = 'Z(G). Proof. elim/big_ind2: _ G => [_ <-|A B C D IHA IHB G dG|_ _ G ->]; rewrite ?center1 //. case/dprodP: dG IHA IHB (dG) => [[H K -> ->] _ _ _] IHH IHK dG. by rewrite (IHH H) // (IHK K) // (center_dprod dG). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
center_bigdprod
Aut_cprod_fullG H K : H \* K = G -> 'Z(H) = 'Z(K) -> Aut_in (Aut H) 'Z(H) \isog Aut 'Z(H) -> Aut_in (Aut K) 'Z(K) \isog Aut 'Z(K) -> Aut_in (Aut G) 'Z(G) \isog Aut 'Z(G). Proof. move=> defG eqZHK; have [_ defHK cHK] := cprodP defG. have defZ: 'Z(G) = 'Z(H) by rewrite -defHK -center_prod // eqZHK mulGid. have ziHK: H :&: K = 'Z(K). by apply/eqP; rewrite eqEsubset subsetI -{1 2}eqZHK !center_sub setIS. have AutZP := Aut_sub_fullP (@center_sub gT _). move/AutZP=> AutZHfull /AutZP AutZKfull; apply/AutZP=> g injg gZ. have [gH [def_gH ker_gH _ im_gH]] := domP g defZ. have [gK [def_gK ker_gK _ im_gK]] := domP g (etrans defZ eqZHK). have [injgH injgK]: 'injm gH /\ 'injm gK by rewrite ker_gH ker_gK. have [gHH gKK]: gH @* 'Z(H) = 'Z(H) /\ gK @* 'Z(K) = 'Z(K). by rewrite im_gH im_gK -eqZHK -defZ. have [|fH [injfH im_fH fHZ]] := AutZHfull gH injgH. by rewrite im_gH /= -defZ. have [|fK [injfK im_fK fKZ]] := AutZKfull gK injgK. by rewrite im_gK /= -eqZHK -defZ. have cfHK: fK @* K \subset 'C(fH @* H) by rewrite im_fH im_fK. have eq_fHK: {in H :&: K, fH =1 fK}. by move=> z; rewrite ziHK => Zz; rewrite fHZ ?fKZ /= ?eqZHK // def_gH def_gK. exists (cprodm_morphism defG cfHK eq_fHK). rewrite injm_cprodm injfH injfK im_cprodm im_fH im_fK defHK. rewrite -morphimIdom ziHK -eqZHK injm_center // im_fH eqxx. split=> //= z; rewrite {1}defZ => Zz; have [Hz _] := setIP Zz. by rewrite cprodmEl // fHZ // def_gH. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
Aut_cprod_full
ker_cprod_byof isom 'Z(H) 'Z(K) gz := [set xy | let: (x, y) := xy in (x \in 'Z(H)) && (y == (gz x)^-1)]. Hypothesis isoZ : isom 'Z(H) 'Z(K) gz. Let kerHK := ker_cprod_by isoZ. Let injgz : 'injm gz. Proof. by case/isomP: isoZ. Qed. Let gzZ : gz @* 'Z(H) = 'Z(K). Proof. by case/isomP: isoZ. Qed. Let gzZchar : gz @* 'Z(H) \char 'Z(K). Proof. by rewrite gzZ. Qed. Let sgzZZ : gz @* 'Z(H) \subset 'Z(K) := char_sub gzZchar. Let sZH := center_sub H. Let sZK := center_sub K. Let sgzZG : gz @* 'Z(H) \subset K := subset_trans sgzZZ sZK.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
ker_cprod_by
ker_cprod_by_is_group: group_set kerHK. Proof. apply/group_setP; rewrite inE /= group1 morph1 invg1 /=. split=> // [[x1 y1] [x2 y2]]. rewrite inE /= => /andP[Zx1 /eqP->]; have [_ cGx1] := setIP Zx1. rewrite inE /= => /andP[Zx2 /eqP->]; have [Gx2 _] := setIP Zx2. by rewrite inE /= groupM //= -invMg (centP cGx1) // morphM. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
ker_cprod_by_is_group
ker_cprod_by_group:= Group ker_cprod_by_is_group.
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
ker_cprod_by_group
ker_cprod_by_central: kerHK \subset 'Z(setX H K). Proof. rewrite -(center_dprod (setX_dprod H K)) -morphim_pairg1 -morphim_pair1g. rewrite -!injm_center ?subsetT ?injm_pair1g ?injm_pairg1 //=. rewrite morphim_pairg1 morphim_pair1g setX_dprod. apply/subsetP=> [[x y]] /[1!inE] /andP[Zx /eqP->]. by rewrite inE /= Zx groupV (subsetP sgzZZ) ?mem_morphim. Qed. Fact cprod_by_key : unit. Proof. by []. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
ker_cprod_by_central
cprod_by_def: finGroupType := subg_of (setX H K / kerHK).
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
cprod_by_def
cprod_by:= locked_with cprod_by_key cprod_by_def. Local Notation C := [set: FinGroup.sort cprod_by].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
cprod_by
in_cprod: gTH * gTK -> cprod_by := let: tt as k := cprod_by_key return _ -> locked_with k cprod_by_def in subg _ \o coset kerHK.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
in_cprod
in_cprodM: {in setX H K &, {morph in_cprod : u v / u * v}}. Proof. rewrite /in_cprod /cprod_by; case: cprod_by_key => /= u v Gu Gv. have nkerHKG := normal_norm (sub_center_normal ker_cprod_by_central). by rewrite -!morphM ?mem_quotient // (subsetP nkerHKG). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
in_cprodM
in_cprod_morphism:= Morphism in_cprodM.
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
in_cprod_morphism
ker_in_cprod: 'ker in_cprod = kerHK. Proof. transitivity ('ker (subg [group of setX H K / kerHK] \o coset kerHK)). rewrite /ker /morphpre /= /in_cprod /cprod_by; case: cprod_by_key => /=. by rewrite ['N(_) :&: _]quotientGK ?sub_center_normal ?ker_cprod_by_central. by rewrite ker_comp ker_subg -kerE ker_coset. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
ker_in_cprod
cpairg1_dom: H \subset 'dom (in_cprod \o @pairg1 gTH gTK). Proof. by rewrite -sub_morphim_pre ?subsetT // morphim_pairg1 setXS ?sub1G. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
cpairg1_dom
cpair1g_dom: K \subset 'dom (in_cprod \o @pair1g gTH gTK). Proof. by rewrite -sub_morphim_pre ?subsetT // morphim_pair1g setXS ?sub1G. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
cpair1g_dom
cpairg1:= tag (restrmP _ cpairg1_dom).
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
cpairg1
cpair1g:= tag (restrmP _ cpair1g_dom). Local Notation CH := (mfun cpairg1 @* gval H). Local Notation CK := (mfun cpair1g @* gval K).
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
cpair1g
injm_cpairg1: 'injm cpairg1. Proof. rewrite /cpairg1; case: restrmP => _ [_ -> _ _]. rewrite ker_comp ker_in_cprod; apply/subsetP=> x; rewrite !inE /=. by case/and3P=> _ Zx; rewrite eq_sym (inv_eq invgK) invg1 morph_injm_eq1. Qed. Let injH := injm_cpairg1.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
injm_cpairg1
injm_cpair1g: 'injm cpair1g. Proof. rewrite /cpair1g; case: restrmP => _ [_ -> _ _]. rewrite ker_comp ker_in_cprod; apply/subsetP=> y; rewrite !inE /= morph1 invg1. by case/and3P. Qed. Let injK := injm_cpair1g.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
injm_cpair1g
im_cpair_cent: CK \subset 'C(CH). Proof. rewrite /cpairg1 /cpair1g; do 2!case: restrmP => _ [_ _ _ -> //]. rewrite !morphim_comp morphim_cents // morphim_pair1g morphim_pairg1. by case/dprodP: (setX_dprod H K). Qed. Hint Resolve im_cpair_cent : core.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
im_cpair_cent
im_cpair: CH * CK = C. Proof. rewrite /cpairg1 /cpair1g; do 2!case: restrmP => _ [_ _ _ -> //]. rewrite !morphim_comp -morphimMl morphim_pairg1 ?setXS ?sub1G //. rewrite morphim_pair1g setX_prod morphimEdom /= /in_cprod /cprod_by. by case: cprod_by_key; rewrite /= imset_comp imset_coset -morphimEdom im_subg. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
im_cpair
im_cpair_cprod: CH \* CK = C. Proof. by rewrite cprodE ?im_cpair. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
im_cpair_cprod
eq_cpairZ: {in 'Z(H), cpairg1 =1 cpair1g \o gz}. Proof. rewrite /cpairg1 /cpair1g => z1 Zz1; set z2 := gz z1. have Zz2: z2 \in 'Z(K) by rewrite (subsetP sgzZZ) ?mem_morphim. have [[Gz1 _] [/= Gz2 _]]:= (setIP Zz1, setIP Zz2). do 2![case: restrmP => f /= [df _ _ _]; rewrite {f}df]. apply/rcoset_kerP; rewrite ?inE ?group1 ?andbT //. by rewrite ker_in_cprod mem_rcoset inE /= invg1 mulg1 mul1g Zz1 /=. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
eq_cpairZ
setI_im_cpair: CH :&: CK = 'Z(CH). Proof. apply/eqP; rewrite eqEsubset setIS //=. rewrite subsetI center_sub -injm_center //. rewrite (eq_in_morphim _ eq_cpairZ); first by rewrite morphim_comp morphimS. by rewrite !(setIidPr _) // -sub_morphim_pre. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
setI_im_cpair
cpair1g_center: cpair1g @* 'Z(K) = 'Z(C). Proof. case/cprodP: (center_cprod im_cpair_cprod) => _ <- _. by rewrite injm_center // -setI_im_cpair mulSGid //= setIC setIS 1?centsC. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
cpair1g_center
cpair_center_id: 'Z(CH) = 'Z(CK). Proof. rewrite -!injm_center // -gzZ -morphim_comp; apply: eq_in_morphim eq_cpairZ. by rewrite !(setIidPr _) // -sub_morphim_pre. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
cpair_center_id
cpairg1_center: cpairg1 @* 'Z(H) = 'Z(C). Proof. by rewrite -cpair1g_center !injm_center // cpair_center_id. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
cpairg1_center
xcprodm_cent: gK @* CK \subset 'C(gH @* CH). Proof. by rewrite !im_ifactm. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
xcprodm_cent
xcprodmI: {in CH :&: CK, gH =1 gK}. Proof. rewrite setI_im_cpair -injm_center // => fHx; case/morphimP=> x Gx Zx ->{fHx}. by rewrite {2}eq_cpairZ //= ?ifactmE ?eq_fHK //= (subsetP sgzZG) ?mem_morphim. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
xcprodmI
xcprodm:= cprodm im_cpair_cprod xcprodm_cent xcprodmI.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
xcprodm
xcprod_morphism:= [morphism of xcprodm].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
xcprod_morphism
xcprodmEl: {in H, forall x, xcprodm (cpairg1 x) = fH x}. Proof. by move=> x Hx; rewrite /xcprodm cprodmEl ?mem_morphim ?ifactmE. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
xcprodmEl
xcprodmEr: {in K, forall y, xcprodm (cpair1g y) = fK y}. Proof. by move=> y Ky; rewrite /xcprodm cprodmEr ?mem_morphim ?ifactmE. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
xcprodmEr
xcprodmE: {in H & K, forall x y, xcprodm (cpairg1 x * cpair1g y) = fH x * fK y}. Proof. by move=> x y Hx Ky; rewrite /xcprodm cprodmE ?mem_morphim ?ifactmE. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
xcprodmE
im_xcprodm: xcprodm @* C = fH @* H * fK @* K. Proof. by rewrite -im_cpair morphim_cprodm // !im_ifactm. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
im_xcprodm
im_xcprodmlA : xcprodm @* (cpairg1 @* A) = fH @* A. Proof. rewrite -!(morphimIdom _ A) morphim_cprodml ?morphimS ?subsetIl //. by rewrite morphim_ifactm ?subsetIl. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
im_xcprodml
im_xcprodmrA : xcprodm @* (cpair1g @* A) = fK @* A. Proof. rewrite -!(morphimIdom _ A) morphim_cprodmr ?morphimS ?subsetIl //. by rewrite morphim_ifactm ?subsetIl. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
im_xcprodmr
injm_xcprodm: 'injm xcprodm = 'injm fH && 'injm fK. Proof. rewrite injm_cprodm !ker_ifactm !subG1 !morphim_injm_eq1 ?subsetIl // -!subG1. apply: andb_id2l => /= injfH; apply: andb_idr => _. rewrite !im_ifactm // -(morphimIdom gH) setI_im_cpair -injm_center //. rewrite morphim_ifactm // eqEsubset subsetI morphimS //=. rewrite {1}injm_center // setIS //=. rewrite (eq_in_morphim _ eq_fHK); first by rewrite morphim_comp morphimS. by rewrite !(setIidPr _) // -sub_morphim_pre. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
injm_xcprodm
Aut_cprod_by_full: Aut_in (Aut H) 'Z(H) \isog Aut 'Z(H) -> Aut_in (Aut K) 'Z(K) \isog Aut 'Z(K) -> Aut_in (Aut C) 'Z(C) \isog Aut 'Z(C). Proof. move=> AutZinH AutZinK. have Cfull:= Aut_cprod_full im_cpair_cprod cpair_center_id. by rewrite Cfull // -injm_center // injm_Aut_full ?center_sub. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
Aut_cprod_by_full
cprod_by_uniq: exists f : {morphism G >-> cprod_by}, [/\ isom G C f, f @* GH = CH & f @* GK = CK]. Proof. have [_ defGHK cGKH] := cprodP defG. have AutZinH := Aut_sub_fullP sZH AutZHfull. have [fH injfH defGH]:= isogP (isog_symr isoGH). have [fK injfK defGK]:= isogP (isog_symr isoGK). have sfHZfK: fH @* 'Z(H) \subset fK @* K. by rewrite injm_center //= defGH defGK -ziGHK subsetIr. have gzZ_id: gz @* 'Z(H) = invm injfK @* (fH @* 'Z(H)). apply: gzZ_lone => /=. rewrite injm_center // defGH -ziGHK sub_morphim_pre /= ?defGK ?subsetIr //. by rewrite setIC morphpre_invm injm_center // defGK setIS 1?centsC. rewrite -morphim_comp. apply: isog_trans (sub_isog _ _); first by rewrite isog_sym sub_isog. by rewrite -sub_morphim_pre. by rewrite !injm_comp ?injm_invm. have: 'dom (invm injfH \o fK \o gz) = 'Z(H). rewrite /dom /= -(morphpreIdom gz); apply/setIidPl. by rewrite -2?sub_morphim_pre // gzZ_id morphim_invmE morphpreK ?morphimS. case/domP=> gzH [def_gzH ker_gzH _ im_gzH]. have{ker_gzH} injgzH: 'injm gzH by rewrite ker_gzH !injm_comp ?injm_invm. have{AutZinH} [|gH [injgH gH_H def_gH]] := AutZinH _ injgzH. by rewrite im_gzH !morphim_comp /= gzZ_id !morphim_invmE morphpreK ?injmK. have: 'dom (fH \o gH) = H by rewrite /dom /= -{3}gH_H injmK. case/domP=> gfH [def_gfH ker_gfH _ im_gfH]. have{im_gfH} gfH_H: gfH @* H = GH by rewrite im_gfH morphim_comp gH_H. have cgfHfK: fK @* K \subset 'C(gfH @* H) by rewrite gfH_H defGK. have eq_gfHK: {in 'Z(H), gfH =1 fK \o gz}. mov ...
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
cprod_by_uniq
isog_cprod_by: G \isog C. Proof. by have [f [isoG _ _]] := cprod_by_uniq; apply: isom_isog isoG. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
isog_cprod_by
xcprod_subproof: {gz : {morphism 'Z(H) >-> gt_ isob} | isom 'Z(H) 'Z(G_ isob) gz}. Proof. case: (pickP [pred f : {ffun _} | misom 'Z(H) 'Z(K) f]) => [f isoZ | no_f]. rewrite (misom_isog isoZ); case/andP: isoZ => fM isoZ. by exists [morphism of morphm fM]. move/pred0P: no_f => not_isoZ; rewrite [isob](congr1 negb not_isoZ). by exists (idm_morphism _); apply/isomP; rewrite injm_idm im_idm. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
xcprod_subproof
xcprod:= cprod_by (svalP xcprod_subproof).
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
xcprod
xcprod_spec: finGroupType -> Prop := XcprodSpec gz isoZ : xcprod_spec (@cprod_by gTH gTK H K gz isoZ).
Inductive
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
xcprod_spec
xcprodP: 'Z(H) \isog 'Z(K) -> xcprod_spec xcprod. Proof. by rewrite /xcprod => isoZ; move: xcprod_subproof; rewrite isoZ. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
xcprodP
isog_xcprod(rT : finGroupType) (GH GK G : {group rT}) : Aut_in (Aut H) 'Z(H) \isog Aut 'Z(H) -> GH \isog H -> GK \isog K -> GH \* GK = G -> 'Z(GH) = 'Z(GK) -> G \isog [set: xcprod]. Proof. move=> AutZinH isoGH isoGK defG eqZGHK; have [_ _ cGHK] := cprodP defG. have [|gz isoZ] := xcprodP. have [[fH injfH <-] [fK injfK <-]] := (isogP isoGH, isogP isoGK). rewrite -!injm_center -?(isog_transl _ (sub_isog _ _)) ?center_sub //=. by rewrite eqZGHK sub_isog ?center_sub. rewrite (isog_cprod_by _ defG) //. by apply/eqP; rewrite eqEsubset setIS // subsetI {2}eqZGHK !center_sub. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
isog_xcprod
ncprod_defn : finGroupType := if n is n'.+1 then xcprod G [set: ncprod_def n'] else subg_of 'Z(G). Fact ncprod_key : unit. Proof. by []. Qed.
Fixpoint
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
ncprod_def
ncprod:= locked_with ncprod_key ncprod_def. Local Notation G_ n := [set: gsort (ncprod n)].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
ncprod
ncprod0: G_ 0 \isog 'Z(G). Proof. by rewrite [ncprod]unlock isog_sym isog_subg. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
ncprod0
center_ncprod0: 'Z(G_ 0) = G_ 0. Proof. by apply: center_idP; rewrite (isog_abelian ncprod0) center_abelian. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
center_ncprod0
center_ncprodn : 'Z(G_ n) \isog 'Z(G). Proof. elim: n => [|n]; first by rewrite center_ncprod0 ncprod0. rewrite [ncprod]unlock=> /isog_symr/xcprodP[gz isoZ] /=. by rewrite -cpairg1_center isog_sym sub_isog ?center_sub ?injm_cpairg1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
center_ncprod
ncprodSn : xcprod_spec G [set: ncprod n] (ncprod n.+1). Proof. by have:= xcprodP (isog_symr (center_ncprod n)); rewrite [ncprod]unlock. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
ncprodS
ncprod1: G_ 1 \isog G. Proof. case: ncprodS => gz isoZ; rewrite isog_sym /= -im_cpair. rewrite mulGSid /=; first by rewrite sub_isog ?injm_cpairg1. rewrite -{3}center_ncprod0 injm_center ?injm_cpair1g //. by rewrite -cpair_center_id center_sub. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
ncprod1
Aut_ncprod_fulln : Aut_in (Aut G) 'Z(G) \isog Aut 'Z(G) -> Aut_in (Aut (G_ n)) 'Z(G_ n) \isog Aut 'Z(G_ n). Proof. move=> AutZinG; elim: n => [|n IHn]. by rewrite center_ncprod0; apply/Aut_sub_fullP=> // g injg gG0; exists g. by case: ncprodS => gz isoZ; apply: Aut_cprod_by_full. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import fintype bigop finset fingroup morphism perm", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import cyclic" ]
solvable/center.v
Aut_ncprod_full
derived_atn (gT : finGroupType) (A : {set gT}) := iter n (fun B => [~: B, B]) A. Arguments derived_at n%_N {gT} A%_g : simpl never.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
derived_at
derg0A : A^`(0) = A. Proof. by []. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
derg0
derg1A : A^`(1) = [~: A, A]. Proof. by []. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
derg1
dergSnn A : A^`(n.+1) = [~: A^`(n), A^`(n)]. Proof. by []. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
dergSn
der_group_setG n : group_set G^`(n). Proof. by case: n => [|n]; apply: groupP. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
der_group_set
derived_at_groupG n := Group (der_group_set G n).
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
derived_at_group
conjg_mulRx y : x ^ y = x * [~ x, y]. Proof. by rewrite mulKVg. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
conjg_mulR
conjg_Rmulx y : x ^ y = [~ y, x^-1] * x. Proof. by rewrite commgEr invgK mulgKV. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
conjg_Rmul
commMgJx y z : [~ x * y, z] = [~ x, z] ^ y * [~ y, z]. Proof. by rewrite !commgEr conjgM mulgA -conjMg mulgK. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
commMgJ
commgMJx y z : [~ x, y * z] = [~ x, z] * [~ x, y] ^ z. Proof. by rewrite !commgEl conjgM -mulgA -conjMg mulKVg. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
commgMJ
commMgRx y z : [~ x * y, z] = [~ x, z] * [~ x, z, y] * [~ y, z]. Proof. by rewrite commMgJ conjg_mulR. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
commMgR
commgMRx y z : [~ x, y * z] = [~ x, z] * [~ x, y] * [~ x, y, z]. Proof. by rewrite commgMJ conjg_mulR mulgA. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
commgMR
Hall_Witt_identityx y z : [~ x, y^-1, z] ^ y * [~ y, z^-1, x] ^ z * [~ z, x^-1, y] ^ x = 1. Proof. pose a x y z : gT := x * z * y ^ x. suffices{x y z} hw_aux x y z: [~ x, y^-1, z] ^ y = (a x y z)^-1 * (a y z x). by rewrite !hw_aux; move: a {hw_aux} => a; rewrite 2!mulgA !mulgK mulVg. by rewrite commgEr conjMg -conjgM -conjg_Rmul conjgE !invMg !mulgA. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
Hall_Witt_identity
commVg: [~ x^-1, y] = [~ x, y]^-1. Proof. apply/eqP; rewrite commgEl eq_sym eq_invg_mul invgK mulgA -cxz. by rewrite -conjg_mulR -conjMg mulgV conj1g. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
commVg
commXg: [~ x ^+ i, y] = [~ x, y] ^+ i. Proof. elim: i => [|i' IHi]; first exact: comm1g. by rewrite !expgS commMgJ /conjg commuteX // mulKg IHi. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
commXg
commgV: [~ x, y^-1] = [~ x, y]^-1. Proof. by rewrite -invg_comm commVg -(invg_comm x y) ?invgK. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
commgV
commgX: [~ x, y ^+ i] = [~ x, y] ^+ i. Proof. by rewrite -invg_comm commXg -(invg_comm x y) ?expgVn ?invgK. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
commgX
commXXg: [~ x ^+ i, y ^+ j] = [~ x, y] ^+ (i * j). Proof. by rewrite expgM commgX commXg //; apply: commuteX. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
commXXg
expMg_Rmul: (y * x) ^+ i = y ^+ i * x ^+ i * [~ x, y] ^+ 'C(i, 2). Proof. rewrite -bin2_sum; symmetry. elim: i => [|k IHk] /=; first by rewrite big_geq ?mulg1. rewrite big_nat_recr //= addnC expgD !expgS -{}IHk !mulgA; congr (_ * _). by rewrite -!mulgA commuteX2 // -commgX // [mul y]lock 3!mulgA -commgC. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
expMg_Rmul
commG1A : [~: A, 1] = 1. Proof. by apply/commG1P; rewrite centsC sub1G. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
commG1