fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
comm1GA : [~: 1, A] = 1. Proof. by rewrite commGC commG1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
comm1G
commg_subA B : [~: A, B] \subset A <*> B. Proof. by rewrite comm_subG // (joing_subl, joing_subr). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
commg_sub
commg_normlG A : G \subset 'N([~: G, A]). Proof. apply/subsetP=> x Gx; rewrite inE -genJ gen_subG. apply/subsetP=> _ /imsetP[_ /imset2P[y z Gy Az ->] ->]. by rewrite -(mulgK [~ x, z] (_ ^ x)) -commMgJ !(mem_commg, groupMl, groupV). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
commg_norml
commg_normrG A : G \subset 'N([~: A, G]). Proof. by rewrite commGC commg_norml. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
commg_normr
commg_normG H : G <*> H \subset 'N([~: G, H]). Proof. by rewrite join_subG ?commg_norml ?commg_normr. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
commg_norm
commg_normalG H : [~: G, H] <| G <*> H. Proof. by rewrite /(_ <| _) commg_sub commg_norm. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
commg_normal
normsRlA G B : A \subset G -> A \subset 'N([~: G, B]). Proof. by move=> sAG; apply: subset_trans (commg_norml G B). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
normsRl
normsRrA G B : A \subset G -> A \subset 'N([~: B, G]). Proof. by move=> sAG; apply: subset_trans (commg_normr G B). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
normsRr
commg_subrG H : ([~: G, H] \subset H) = (G \subset 'N(H)). Proof. rewrite gen_subG; apply/subsetP/subsetP=> [sRH x Gx | nGH xy]. rewrite inE; apply/subsetP=> _ /imsetP[y Ky ->]. by rewrite conjg_Rmul groupMr // sRH // imset2_f ?groupV. case/imset2P=> x y Gx Hy ->{xy}. by rewrite commgEr groupMr // memJ_norm (groupV, nGH). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
commg_subr
commg_sublG H : ([~: G, H] \subset G) = (H \subset 'N(G)). Proof. by rewrite commGC commg_subr. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
commg_subl
commg_subIA B G H : A \subset 'N_G(H) -> B \subset 'N_H(G) -> [~: A, B] \subset G :&: H. Proof. rewrite !subsetI -(gen_subG _ 'N(G)) -(gen_subG _ 'N(H)). rewrite -commg_subr -commg_subl; case/andP=> sAG sRH; case/andP=> sBH sRG. by rewrite (subset_trans _ sRG) ?(subset_trans _ sRH) ?commgSS ?subset_gen. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
commg_subI
quotient_cents2A B K : A \subset 'N(K) -> B \subset 'N(K) -> (A / K \subset 'C(B / K)) = ([~: A, B] \subset K). Proof. move=> nKA nKB. by rewrite (sameP commG1P trivgP) /= -quotientR // quotient_sub1 // comm_subG. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
quotient_cents2
quotient_cents2rA B K : [~: A, B] \subset K -> (A / K) \subset 'C(B / K). Proof. move=> sABK; rewrite -2![_ / _]morphimIdom -!quotientE. by rewrite quotient_cents2 ?subsetIl ?(subset_trans _ sABK) ?commgSS ?subsetIr. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
quotient_cents2r
sub_der1_normG H : G^`(1) \subset H -> H \subset G -> G \subset 'N(H). Proof. by move=> sG'H sHG; rewrite -commg_subr (subset_trans _ sG'H) ?commgS. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
sub_der1_norm
sub_der1_normalG H : G^`(1) \subset H -> H \subset G -> H <| G. Proof. by move=> sG'H sHG; rewrite /(H <| G) sHG sub_der1_norm. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
sub_der1_normal
sub_der1_abelianG H : G^`(1) \subset H -> abelian (G / H). Proof. by move=> sG'H; apply: quotient_cents2r. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
sub_der1_abelian
der1_minG H : G \subset 'N(H) -> abelian (G / H) -> G^`(1) \subset H. Proof. by move=> nHG abGH; rewrite -quotient_cents2. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
der1_min
der_abeliann G : abelian (G^`(n) / G^`(n.+1)). Proof. by rewrite sub_der1_abelian // der_subS. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
der_abelian
commg_normSlG H K : G \subset 'N(H) -> [~: G, H] \subset 'N([~: K, H]). Proof. by move=> nHG; rewrite normsRr // commg_subr. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
commg_normSl
commg_normSrG H K : G \subset 'N(H) -> [~: H, G] \subset 'N([~: H, K]). Proof. by move=> nHG; rewrite !(commGC H) commg_normSl. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
commg_normSr
commMGrG H K : [~: G, K] * [~: H, K] \subset [~: G * H , K]. Proof. by rewrite mul_subG ?commSg ?(mulG_subl, mulG_subr). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
commMGr
commMGG H K : H \subset 'N([~: G, K]) -> [~: G * H , K] = [~: G, K] * [~: H, K]. Proof. move=> nRH; apply/eqP; rewrite eqEsubset commMGr andbT. have nRHK: [~: H, K] \subset 'N([~: G, K]) by rewrite comm_subG ?commg_normr. have defM := norm_joinEr nRHK; rewrite -defM gen_subG /=. apply/subsetP=> _ /imset2P[_ z /imset2P[x y Gx Hy ->] Kz ->]. by rewrite commMgJ {}defM mem_mulg ?memJ_norm ?mem_commg // (subsetP nRH). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
commMG
comm3G1PA B C : reflect {in A & B & C, forall h k l, [~ h, k, l] = 1} ([~: A, B, C] :==: 1). Proof. have R_C := sameP trivgP commG1P. rewrite -subG1 R_C gen_subG -{}R_C gen_subG. apply: (iffP subsetP) => [cABC x y z Ax By Cz | cABC xyz]. by apply/set1P; rewrite cABC // !imset2_f. by case/imset2P=> _ z /imset2P[x y Ax By ->] Cz ->; rewrite cABC. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
comm3G1P
three_subgroupG H K : [~: G, H, K] :=: 1 -> [~: H, K, G] :=: 1-> [~: K, G, H] :=: 1. Proof. move/eqP/comm3G1P=> cGHK /eqP/comm3G1P cHKG. apply/eqP/comm3G1P=> x y z Kx Gy Hz; symmetry. rewrite -(conj1g y) -(Hall_Witt_identity y^-1 z x) invgK. rewrite [X in X ^ z]cGHK ?groupV // [X in X ^ x]cHKG ?groupV //. by rewrite !conj1g !mul1g conjgKV. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
three_subgroup
der1_joing_cycles(x y : gT) : let XY := <[x]> <*> <[y]> in let xy := [~ x, y] in xy \in 'C(XY) -> XY^`(1) = <[xy]>. Proof. rewrite joing_idl joing_idr /= -sub_cent1 => /norms_gen nRxy. apply/eqP; rewrite eqEsubset cycle_subG mem_commg ?mem_gen ?set21 ?set22 //. rewrite der1_min // quotient_gen -1?gen_subG // quotientU abelian_gen. rewrite /abelian subUset centU !subsetI andbC centsC -andbA -!abelianE. rewrite !quotient_abelian ?(abelianS (subset_gen _) (cycle_abelian _)) //=. by rewrite andbb quotient_cents2r ?genS // /commg_set imset2_set1l imset_set1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
der1_joing_cycles
commgACG x y z : x \in G -> y \in G -> z \in G -> commute y z -> abelian [~: [set x], G] -> [~ x, y, z] = [~ x, z, y]. Proof. move=> Gx Gy Gz cyz /centsP cRxG; pose cx' u := [~ x^-1, u]. have xR3 u v: [~ x, u, v] = x^-1 * (cx' u * cx' v) * x ^ (u * v). rewrite [X in X * _]mulgA -conjg_mulR conjVg [cx' v]commgEl. by rewrite [X in X * _]mulgA -invMg -mulgA conjgM -conjMg -!commgEl. suffices RxGcx' u: u \in G -> cx' u \in [~: [set x], G]. by rewrite !xR3 {}cyz; congr (_ * _ * _); rewrite cRxG ?RxGcx'. move=> Gu; suffices/groupMl <-: [~ x, u] ^ x^-1 \in [~: [set x], G]. by rewrite -commMgJ mulgV comm1g group1. by rewrite memJ_norm ?mem_commg ?set11 // groupV (subsetP (commg_normr _ _)). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
commgAC
comm_norm_cent_centH G K : H \subset 'N(G) -> H \subset 'C(K) -> G \subset 'N(K) -> [~: G, H] \subset 'C(K). Proof. move=> nGH /centsP cKH nKG; rewrite commGC gen_subG centsC. apply/centsP=> x Kx _ /imset2P[y z Hy Gz ->]; red. rewrite mulgA -[x * _]cKH ?groupV // -!mulgA; congr (_ * _). rewrite (mulgA x) (conjgC x) (conjgCV z) 2!mulgA [in RHS]mulgA; congr (_ * _). by rewrite -2!mulgA (cKH y) // -mem_conjg (normsP nKG). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
comm_norm_cent_cent
charRH K G : H \char G -> K \char G -> [~: H, K] \char G. Proof. case/charP=> sHG chH /charP[sKG chK]; apply/charP. by split=> [|f infj Gf]; [rewrite comm_subG | rewrite morphimR // chH // chK]. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
charR
der_charn G : G^`(n) \char G. Proof. by elim: n => [|n IHn]; rewrite ?char_refl // dergSn charR. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
der_char
der_subn G : G^`(n) \subset G. Proof. by rewrite char_sub ?der_char. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
der_sub
der_normn G : G \subset 'N(G^`(n)). Proof. by rewrite char_norm ?der_char. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
der_norm
der_normaln G : G^`(n) <| G. Proof. by rewrite char_normal ?der_char. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
der_normal
der_subSn G : G^`(n.+1) \subset G^`(n). Proof. by rewrite comm_subG. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
der_subS
der_normalSn G : G^`(n.+1) <| G^`(n). Proof. by rewrite sub_der1_normal // der_subS. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
der_normalS
morphim_derrT D (f : {morphism D >-> rT}) n G : G \subset D -> f @* G^`(n) = (f @* G)^`(n). Proof. move=> sGD; elim: n => // n IHn. by rewrite !dergSn -IHn morphimR ?(subset_trans (der_sub n G)). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
morphim_der
dergSn G H : G \subset H -> G^`(n) \subset H^`(n). Proof. by move=> sGH; elim: n => // n IHn; apply: commgSS. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
dergS
quotient_dern G H : G \subset 'N(H) -> G^`(n) / H = (G / H)^`(n). Proof. exact: morphim_der. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
quotient_der
derJG n x : (G :^ x)^`(n) = G^`(n) :^ x. Proof. by elim: n => //= n IHn; rewrite !dergSn IHn -conjsRg. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
derJ
derG1PG : reflect (G^`(1) = 1) (abelian G). Proof. exact: commG1P. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
derG1P
der_contn : GFunctor.continuous (@derived_at n). Proof. by move=> aT rT G f; rewrite morphim_der. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
der_cont
der_igFunn := [igFun by der_sub^~ n & der_cont n].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
der_igFun
der_gFunn := [gFun by der_cont n].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
der_gFun
der_mgFunn := [mgFun by dergS^~ n].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
der_mgFun
isog_der(aT rT : finGroupType) n (G : {group aT}) (H : {group rT}) : G \isog H -> G^`(n) \isog H^`(n). Proof. exact: gFisog. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat fintype", "From mathcomp Require Import bigop finset binomial fingroup morphism", "From mathcomp Require Import automorphism quotient gfunctor" ]
solvable/commutator.v
isog_der
cyclicA := [exists x, A == <[x]>].
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
cyclic
cyclicPA : reflect (exists x, A = <[x]>) (cyclic A). Proof. exact: exists_eqP. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
cyclicP
cycle_cyclicx : cyclic <[x]>. Proof. by apply/cyclicP; exists x. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
cycle_cyclic
cyclic1: cyclic [1 gT]. Proof. by rewrite -cycle1 cycle_cyclic. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
cyclic1
Zpm(i : 'Z_#[a]) := a ^+ i.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
Zpm
ZpmM: {in Zp #[a] &, {morph Zpm : x y / x * y}}. Proof. rewrite /Zpm; case: (eqVneq a 1) => [-> | nta] i j _ _. by rewrite !expg1n ?mulg1. by rewrite /= {3}Zp_cast ?order_gt1 // expg_mod_order expgD. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
ZpmM
Zpm_morphism:= Morphism ZpmM.
Canonical
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
Zpm_morphism
im_Zpm: Zpm @* Zp #[a] = <[a]>. Proof. apply/eqP; rewrite eq_sym eqEcard cycle_subG /= andbC morphimEdom. rewrite (leq_trans (leq_imset_card _ _)) ?card_Zp //= /Zp order_gt1. case: eqP => /= [a1 | _]; first by rewrite imset_set1 morph1 a1 set11. by apply/imsetP; exists 1%R; rewrite ?expg1 ?inE. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
im_Zpm
injm_Zpm: 'injm Zpm. Proof. apply/injmP/dinjectiveP/card_uniqP. rewrite size_map -cardE card_Zp //= {7}/order -im_Zpm morphimEdom /=. by apply: eq_card => x; apply/imageP/imsetP=> [] [i Zp_i ->]; exists i. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
injm_Zpm
eq_expg_mod_orderm n : (a ^+ m == a ^+ n) = (m == n %[mod #[a]]). Proof. have [->|] := eqVneq a 1; first by rewrite order1 !modn1 !expg1n eqxx. rewrite -order_gt1 => lt1a; have ZpT: Zp #[a] = setT by rewrite /Zp lt1a. have: injective Zpm by move=> i j; apply (injmP injm_Zpm); rewrite /= ZpT inE. move/inj_eq=> eqZ; symmetry; rewrite -(Zp_cast lt1a). by rewrite -[_ == _](eqZ (inZp m) (inZp n)) /Zpm /= Zp_cast ?expg_mod_order. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
eq_expg_mod_order
eq_expg_ordd (m n : 'I_d) : d <= #[a]%g -> (a ^+ m == a ^+ n) = (m == n). Proof. by move=> d_leq; rewrite eq_expg_mod_order !modn_small// (leq_trans _ d_leq). Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
eq_expg_ord
expgD_Zpd (n m : 'Z_d) : (d > 0)%N -> #[a]%g %| d -> a ^+ (n + m)%R = a ^+ n * a ^+ m. Proof. move=> d_gt0 xdvd; apply/eqP; rewrite -expgD eq_expg_mod_order/= modn_dvdm//. by case: d d_gt0 {m n} xdvd => [|[|[]]]//= _; rewrite dvdn1 => /eqP->. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
expgD_Zp
Zp_isom: isom (Zp #[a]) <[a]> Zpm. Proof. by apply/isomP; rewrite injm_Zpm im_Zpm. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
Zp_isom
Zp_isog: isog (Zp #[a]) <[a]>. Proof. exact: isom_isog Zp_isom. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
Zp_isog
cyclic_abelianA : cyclic A -> abelian A. Proof. by case/cyclicP=> a ->; apply: cycle_abelian. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
cyclic_abelian
cycleMsuba b : commute a b -> coprime #[a] #[b] -> <[a]> \subset <[a * b]>. Proof. move=> cab co_ab; apply/subsetP=> _ /cycleP[k ->]. apply/cycleP; exists (chinese #[a] #[b] k 0); symmetry. rewrite expgMn // -[in LHS]expg_mod_order chinese_modl // expg_mod_order. by rewrite /chinese addn0 -mulnA mulnCA expgM expg_order expg1n mulg1. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
cycleMsub
cycleMa b : commute a b -> coprime #[a] #[b] -> <[a * b]> = <[a]> * <[b]>. Proof. move=> cab co_ab; apply/eqP; rewrite eqEsubset -(cent_joinEl (cents_cycle cab)). rewrite join_subG {3}cab !cycleMsub // 1?coprime_sym //. by rewrite -genM_join cycle_subG mem_gen // imset2_f ?cycle_id. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
cycleM
cyclicMA B : cyclic A -> cyclic B -> B \subset 'C(A) -> coprime #|A| #|B| -> cyclic (A * B). Proof. move=> /cyclicP[a ->] /cyclicP[b ->]; rewrite cent_cycle cycle_subG => cab coab. by rewrite -cycleM ?cycle_cyclic //; apply/esym/cent1P. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
cyclicM
cyclicYK H : cyclic K -> cyclic H -> H \subset 'C(K) -> coprime #|K| #|H| -> cyclic (K <*> H). Proof. by move=> cycK cycH cKH coKH; rewrite cent_joinEr // cyclicM. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
cyclicY
order_dvdna n : #[a] %| n = (a ^+ n == 1). Proof. by rewrite (eq_expg_mod_order a n 0) mod0n. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
order_dvdn
order_infa n : a ^+ n.+1 == 1 -> #[a] <= n.+1. Proof. by rewrite -order_dvdn; apply: dvdn_leq. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
order_inf
order_dvdGG a : a \in G -> #[a] %| #|G|. Proof. by move=> Ga; apply: cardSg; rewrite cycle_subG. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
order_dvdG
expg_cardGG a : a \in G -> a ^+ #|G| = 1. Proof. by move=> Ga; apply/eqP; rewrite -order_dvdn order_dvdG. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
expg_cardG
expg_znatG x k : x \in G -> x ^+ (k%:R : 'Z_(#|G|))%R = x ^+ k. Proof. case: (eqsVneq G 1) => [-> /set1P-> | ntG Gx]; first by rewrite !expg1n. apply/eqP; rewrite val_Zp_nat ?cardG_gt1 // eq_expg_mod_order. by rewrite modn_dvdm ?order_dvdG. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
expg_znat
expg_znegG x (k : 'Z_(#|G|)) : x \in G -> x ^+ (- k)%R = x ^- k. Proof. move=> Gx; apply/eqP; rewrite eq_sym eq_invg_mul -expgD. by rewrite -(expg_znat _ Gx) natrD natr_Zp natr_negZp subrr. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
expg_zneg
nt_gen_primeG x : prime #|G| -> x \in G^# -> G :=: <[x]>. Proof. move=> Gpr /setD1P[]; rewrite -cycle_subG -cycle_eq1 => ntX sXG. apply/eqP; rewrite eqEsubset sXG andbT. by apply: contraR ntX => /(prime_TIg Gpr); rewrite (setIidPr sXG) => ->. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
nt_gen_prime
nt_prime_orderp x : prime p -> x ^+ p = 1 -> x != 1 -> #[x] = p. Proof. move=> p_pr xp ntx; apply/prime_nt_dvdP; rewrite ?order_eq1 //. by rewrite order_dvdn xp. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
nt_prime_order
orderXdvda n : #[a ^+ n] %| #[a]. Proof. by apply: order_dvdG; apply: mem_cycle. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
orderXdvd
orderXgcda n : #[a ^+ n] = #[a] %/ gcdn #[a] n. Proof. apply/eqP; rewrite eqn_dvd; apply/andP; split. rewrite order_dvdn -expgM -muln_divCA_gcd //. by rewrite expgM expg_order expg1n. have [-> | n_gt0] := posnP n; first by rewrite gcdn0 divnn order_gt0 dvd1n. rewrite -(dvdn_pmul2r n_gt0) divn_mulAC ?dvdn_gcdl // dvdn_lcm. by rewrite order_dvdn mulnC expgM expg_order eqxx dvdn_mulr. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
orderXgcd
orderXdiva n : n %| #[a] -> #[a ^+ n] = #[a] %/ n. Proof. by case/dvdnP=> q defq; rewrite orderXgcd {2}defq gcdnC gcdnMl. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
orderXdiv
orderXexpp m n x : #[x] = (p ^ n)%N -> #[x ^+ (p ^ m)] = (p ^ (n - m))%N. Proof. move=> ox; have [n_le_m | m_lt_n] := leqP n m. rewrite -(subnKC n_le_m) subnDA subnn expnD expgM -ox. by rewrite expg_order expg1n order1. rewrite orderXdiv ox ?dvdn_exp2l ?expnB ?(ltnW m_lt_n) //. by have:= order_gt0 x; rewrite ox expn_gt0 orbC -(ltn_predK m_lt_n). Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
orderXexp
orderXpfactorp k n x : #[x ^+ (p ^ k)] = n -> prime p -> p %| n -> #[x] = (p ^ k * n)%N. Proof. move=> oxp p_pr dv_p_n. suffices pk_x: p ^ k %| #[x] by rewrite -oxp orderXdiv // mulnC divnK. rewrite pfactor_dvdn // leqNgt; apply: contraL dv_p_n => lt_x_k. rewrite -oxp -p'natE // -(subnKC (ltnW lt_x_k)) expnD expgM. rewrite (pnat_dvd (orderXdvd _ _)) // -p_part // orderXdiv ?dvdn_part //. by rewrite -{1}[#[x]](partnC p) // mulKn // part_pnat. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
orderXpfactor
orderXprimep n x : #[x ^+ p] = n -> prime p -> p %| n -> #[x] = (p * n)%N. Proof. exact: (@orderXpfactor p 1). Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
orderXprime
orderXpnatm n x : #[x ^+ m] = n -> \pi(n).-nat m -> #[x] = (m * n)%N. Proof. move=> oxm n_m; have [m_gt0 _] := andP n_m. suffices m_x: m %| #[x] by rewrite -oxm orderXdiv // mulnC divnK. apply/dvdn_partP=> // p; rewrite mem_primes => /and3P[p_pr _ p_m]. have n_p: p \in \pi(n) by apply: (pnatP _ _ n_m). have p_oxm: p %| #[x ^+ (p ^ logn p m)]. apply: dvdn_trans (orderXdvd _ m`_p^'); rewrite -expgM -p_part ?partnC //. by rewrite oxm; rewrite mem_primes in n_p; case/and3P: n_p. by rewrite (orderXpfactor (erefl _) p_pr p_oxm) p_part // dvdn_mulr. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
orderXpnat
orderMa b : commute a b -> coprime #[a] #[b] -> #[a * b] = (#[a] * #[b])%N. Proof. by move=> cab co_ab; rewrite -coprime_cardMg -?cycleM. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
orderM
expg_invnA k := (egcdn k #|A|).1.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
expg_invn
expgKG k : coprime #|G| k -> {in G, cancel (natexp^~ k) (natexp^~ (expg_invn G k))}. Proof. move=> coGk x /order_dvdG Gx; apply/eqP. rewrite -expgM (eq_expg_mod_order _ _ 1) -(modn_dvdm 1 Gx). by rewrite -(chinese_modl coGk 1 0) /chinese mul1n addn0 modn_dvdm. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
expgK
cyclic_dprodK H G : K \x H = G -> cyclic K -> cyclic H -> cyclic G = coprime #|K| #|H| . Proof. case/dprodP=> _ defKH cKH tiKH cycK cycH; pose m := lcmn #|K| #|H|. apply/idP/idP=> [/cyclicP[x defG] | coKH]; last by rewrite -defKH cyclicM. rewrite /coprime -dvdn1 -(@dvdn_pmul2l m) ?lcmn_gt0 ?cardG_gt0 //. rewrite muln_lcm_gcd muln1 -TI_cardMg // defKH defG order_dvdn. have /mulsgP[y z Ky Hz ->]: x \in K * H by rewrite defKH defG cycle_id. rewrite -[1]mulg1 expgMn; last exact/commute_sym/(centsP cKH). apply/eqP; congr (_ * _); apply/eqP; rewrite -order_dvdn. exact: dvdn_trans (order_dvdG Ky) (dvdn_lcml _ _). exact: dvdn_trans (order_dvdG Hz) (dvdn_lcmr _ _). Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
cyclic_dprod
generator(A : {set gT}) a := A == <[a]>.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
generator
generator_cyclea : generator <[a]> a. Proof. exact: eqxx. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
generator_cycle
cycle_generatora x : generator <[a]> x -> x \in <[a]>. Proof. by move/(<[a]> =P _)->; apply: cycle_id. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
cycle_generator
generator_ordera b : generator <[a]> b -> #[a] = #[b]. Proof. by rewrite /order => /(<[a]> =P _)->. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
generator_order
Euler_exp_totienta n : coprime a n -> a ^ totient n = 1 %[mod n]. Proof. (case: n => [|[|n']] //; [by rewrite !modn1 | set n := n'.+2]) => co_a_n. have{co_a_n} Ua: coprime n (inZp a : 'I_n) by rewrite coprime_sym coprime_modl. have: FinRing.unit 'Z_n Ua ^+ totient n == 1. by rewrite -card_units_Zp // -order_dvdn order_dvdG ?inE. by rewrite -2!val_eqE unit_Zp_expg /= -/n modnXm => /eqP. Qed.
Theorem
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
Euler_exp_totient
eltmof #[y] %| #[x] := fun x_i => y ^+ invm (injm_Zpm x) x_i. Hypothesis dvd_y_x : #[y] %| #[x].
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
eltm
eltmEi : eltm dvd_y_x (x ^+ i) = y ^+ i. Proof. apply/eqP; rewrite eq_expg_mod_order. have [x_le1 | x_gt1] := leqP #[x] 1. suffices: #[y] %| 1 by rewrite dvdn1 => /eqP->; rewrite !modn1. by rewrite (dvdn_trans dvd_y_x) // dvdn1 order_eq1 -cycle_eq1 trivg_card_le1. rewrite -(expg_znat i (cycle_id x)) invmE /=; last by rewrite /Zp x_gt1 inE. by rewrite val_Zp_nat // modn_dvdm. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
eltmE
eltm_id: eltm dvd_y_x x = y. Proof. exact: (eltmE 1). Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
eltm_id
eltmM: {in <[x]> &, {morph eltm dvd_y_x : x_i x_j / x_i * x_j}}. Proof. move=> _ _ /cycleP[i ->] /cycleP[j ->]. by apply/eqP; rewrite -expgD !eltmE expgD. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
eltmM
eltm_morphism:= Morphism eltmM.
Canonical
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
eltm_morphism
im_eltm: eltm dvd_y_x @* <[x]> = <[y]>. Proof. by rewrite morphim_cycle ?cycle_id //= eltm_id. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
im_eltm
ker_eltm: 'ker (eltm dvd_y_x) = <[x ^+ #[y]]>. Proof. apply/eqP; rewrite eq_sym eqEcard cycle_subG 3!inE mem_cycle /= eltmE. rewrite expg_order eqxx (orderE y) -im_eltm card_morphim setIid -orderE. by rewrite orderXdiv ?dvdn_indexg //= leq_divRL ?indexg_gt0 ?Lagrange ?subsetIl. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
ker_eltm
injm_eltm: 'injm (eltm dvd_y_x) = (#[x] %| #[y]). Proof. by rewrite ker_eltm subG1 cycle_eq1 -order_dvdn. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
injm_eltm
cycle_sub_group(a : gT) m : m %| #[a] -> [set H : {group gT} | H \subset <[a]> & #|H| == m] = [set <[a ^+ (#[a] %/ m)]>%G]. Proof. move=> m_dv_a; have m_gt0: 0 < m by apply: dvdn_gt0 m_dv_a. have oam: #|<[a ^+ (#[a] %/ m)]>| = m. apply/eqP; rewrite [#|_|]orderXgcd -(divnMr m_gt0) muln_gcdl divnK //. by rewrite gcdnC gcdnMr mulKn. apply/eqP; rewrite eqEsubset sub1set inE /= cycleX oam eqxx !andbT. apply/subsetP=> X; rewrite in_set1 inE -val_eqE /= eqEcard oam. case/andP=> sXa /eqP oX; rewrite oX leqnn andbT. apply/subsetP=> x Xx; case/cycleP: (subsetP sXa _ Xx) => k def_x. have: (x ^+ m == 1)%g by rewrite -oX -order_dvdn cardSg // gen_subG sub1set. rewrite {x Xx}def_x -expgM -order_dvdn -[#[a]](Lagrange sXa) -oX mulnC. rewrite dvdn_pmul2r // mulnK // => /dvdnP[i ->]. by rewrite mulnC expgM groupX // cycle_id. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
cycle_sub_group
cycle_subgroup_chara (H : {group gT}) : H \subset <[a]> -> H \char <[a]>. Proof. move=> sHa; apply: lone_subgroup_char => // J sJa isoJH. have dvHa: #|H| %| #[a] by apply: cardSg. have{dvHa} /setP Huniq := esym (cycle_sub_group dvHa). move: (Huniq H) (Huniq J); rewrite !inE /=. by rewrite sHa sJa (card_isog isoJH) eqxx => /eqP<- /eqP<-. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
cycle_subgroup_char
morph_order: #[f x] %| #[x]. Proof. by rewrite order_dvdn -morphX // expg_order morph1. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
morph_order
morph_generatorA : generator A x -> generator (f @* A) (f x). Proof. by move/(A =P _)->; rewrite /generator morphim_cycle. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
morph_generator
cyclicSG H : H \subset G -> cyclic G -> cyclic H. Proof. move=> sHG /cyclicP[x defG]; apply/cyclicP. exists (x ^+ (#[x] %/ #|H|)); apply/congr_group/set1P. by rewrite -cycle_sub_group /order -defG ?cardSg // inE sHG eqxx. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype bigop prime finset fingroup morphism", "From mathcomp Require Import perm automorphism quotient gproduct ssralg", "From mathcomp Require Import finalg zmodp poly" ]
solvable/cyclic.v
cyclicS