fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
gFnormalgT (G : {group gT}) : F gT G <| G. Proof. exact/char_normal/gFchar. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFnormal
gFchar_transgT (G H : {group gT}) : H \char G -> F gT H \char G. Proof. exact/char_trans/gFchar. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFchar_trans
gFnormal_transgT (G H : {group gT}) : H <| G -> F gT H <| G. Proof. exact/char_normal_trans/gFchar. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFnormal_trans
gFnorm_transgT (A : {pred gT}) (G : {group gT}) : A \subset 'N(G) -> A \subset 'N(F gT G). Proof. by move/subset_trans/(_ (gFnorms G)). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFnorm_trans
injmF_subgT rT (G D : {group gT}) (f : {morphism D >-> rT}) : 'injm f -> G \subset D -> f @* (F gT G) \subset F rT (f @* G). Proof. move=> injf sGD; have:= gFiso_cont (injm_restrm sGD injf). by rewrite im_restrm morphim_restrm (setIidPr _) ?gFsub. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
injmF_sub
injmFgT rT (G D : {group gT}) (f : {morphism D >-> rT}) : 'injm f -> G \subset D -> f @* (F gT G) = F rT (f @* G). Proof. move=> injf sGD; have [sfGD injf'] := (morphimS f sGD, injm_invm injf). apply/esym/eqP; rewrite eqEsubset -(injmSK injf') ?gFsub_trans //. by rewrite !(subset_trans (injmF_sub _ _)) ?morphim_invm // gFsub_trans. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
injmF
gFisomgT rT (G D : {group gT}) R (f : {morphism D >-> rT}) : G \subset D -> isom G (gval R) f -> isom (F gT G) (F rT R) f. Proof. case/(restrmP f)=> g [gf _ _ _]; rewrite -{f}gf => /isomP[injg <-]. by rewrite sub_isom ?gFsub ?injmF. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFisom
gFisoggT rT (G : {group gT}) (R : {group rT}) : G \isog R -> F gT G \isog F rT R. Proof. by case/isogP=> f injf <-; rewrite -injmF // sub_isog ?gFsub. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFisog
gFcont: GFunctor.continuous F. Proof. by case F. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFcont
morphimFgT rT (G D : {group gT}) (f : {morphism D >-> rT}) : G \subset D -> f @* (F gT G) \subset F rT (f @* G). Proof. move=> sGD; rewrite -(setIidPr (gFsub F G)). by rewrite -{3}(setIid G) -!(morphim_restrm sGD) gFcont. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
morphimF
gFhereditary: GFunctor.hereditary F. Proof. by case F. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFhereditary
gFunctorIgT (G H : {group gT}) : F gT G :&: H = F gT G :&: F gT (G :&: H). Proof. rewrite -{1}(setIidPr (gFsub F G)) setIAC setIC. rewrite -(setIidPr (gFhereditary (subsetIl G H))). by rewrite setIC -setIA (setIidPr (gFsub F (G :&: H))). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFunctorI
pmorphimF: GFunctor.pcontinuous F. Proof. move=> gT rT G D f; rewrite -morphimIdom -(setIidPl (gFsub F G)) setICA. apply: (subset_trans (morphimS f (gFhereditary (subsetIr D G)))). by rewrite (subset_trans (morphimF F _ _ )) ?morphimIdom ?subsetIl. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
pmorphimF
gFidgT (G : {group gT}) : F gT (F gT G) = F gT G. Proof. apply/eqP; rewrite eqEsubset gFsub. by move/gFhereditary: (gFsub F G); rewrite setIid /=. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFid
gFmod_closed: GFunctor.closed (F1 %% F2). Proof. by move=> gT G; rewrite sub_cosetpre_quo ?gFsub ?gFnormal. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFmod_closed
gFmod_cont: GFunctor.continuous (F1 %% F2). Proof. move=> gT rT G f; have nF2 := gFnorm F2. have sDF: G \subset 'dom (coset (F2 _ G)) by rewrite nF2. have sDFf: G \subset 'dom (coset (F2 _ (f @* G)) \o f). by rewrite -sub_morphim_pre ?subsetIl // nF2. pose K := 'ker (restrm sDFf (coset (F2 _ (f @* G)) \o f)). have sFK: 'ker (restrm sDF (coset (F2 _ G))) \subset K. rewrite {}/K !ker_restrm ker_comp /= subsetI subsetIl !ker_coset /=. by rewrite -sub_morphim_pre ?subsetIl // morphimIdom ?morphimF. have sOF := gFsub F1 (G / F2 _ G); have sGG: G \subset G by []. rewrite -sub_quotient_pre; last first. by apply: subset_trans (nF2 _ _); rewrite morphimS ?gFmod_closed. suffices im_fact H : F2 _ G \subset gval H -> H \subset G -> factm sFK sGG @* (H / F2 _ G) = f @* H / F2 _ (f @* G). - rewrite -2?im_fact ?gFmod_closed ?gFsub //. by rewrite cosetpreK morphimF /= ?morphim_restrm ?setIid. by rewrite -sub_quotient_pre ?normG //= trivg_quotient sub1G. move=> sFH sHG; rewrite -(morphimIdom _ (H / _)) /= {2}morphim_restrm /= setIid. rewrite -morphimIG ?ker_coset // -(morphim_restrm sDF) morphim_factm. by rewrite morphim_restrm morphim_comp -quotientE morphimIdom. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFmod_cont
gFmod_igFun:= [igFun by gFmod_closed & gFmod_cont].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFmod_igFun
gFmod_gFun:= [gFun by gFmod_cont].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFmod_gFun
gFmod_hereditary: GFunctor.hereditary (F1 %% F2). Proof. move=> gT H G sHG; set FGH := _ :&: H; have nF2H := gFnorm F2 H. rewrite -sub_quotient_pre; last exact: subset_trans (subsetIr _ _) _. pose rH := restrm nF2H (coset (F2 _ H)); pose rHM := [morphism of rH]. have rnorm_simpl: rHM @* H = H / F2 _ H by rewrite morphim_restrm setIid. have nF2G := subset_trans sHG (gFnorm F2 G). pose rG := restrm nF2G (coset (F2 _ G)); pose rGM := [morphism of rG]. have sqKfK: 'ker rGM \subset 'ker rHM. rewrite !ker_restrm !ker_coset (setIidPr (gFsub F2 _)) setIC /=. exact: gFhereditary. have sHH := subxx H; rewrite -rnorm_simpl /= -(morphim_factm sqKfK sHH) /=. apply: subset_trans (gFcont F1 _); rewrite /= {2}morphim_restrm setIid /=. apply: subset_trans (morphimS _ (gFhereditary _ (quotientS _ sHG))) => /=. have ->: FGH / _ = restrm nF2H (coset _) @* FGH. by rewrite morphim_restrm setICA setIid. rewrite -(morphim_factm sqKfK sHH) morphimS //= morphim_restrm -quotientE. by rewrite setICA setIid (subset_trans (quotientI _ _ _)) // cosetpreK. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFmod_hereditary
gFmod_pgFun:= [pgFun by gFmod_hereditary].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFmod_pgFun
gFunctorS(F : GFunctor.mono_map) : GFunctor.monotonic F. Proof. by case: F. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFunctorS
gFcomp_closed: GFunctor.closed (F1 \o F2). Proof. by move=> gT G; rewrite !gFsub_trans. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFcomp_closed
gFcomp_cont: GFunctor.continuous (F1 \o F2). Proof. move=> gT rT G phi; rewrite (subset_trans (morphimF _ _ (gFsub _ _))) //. by rewrite (subset_trans (gFunctorS F1 (gFcont F2 phi))). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFcomp_cont
gFcomp_igFun:= [igFun by gFcomp_closed & gFcomp_cont].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFcomp_igFun
gFcomp_gFun:=[gFun by gFcomp_cont].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFcomp_gFun
gFcompS: GFunctor.monotonic (F1 \o F2). Proof. by move=> gT H G sHG; rewrite !gFunctorS. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFcompS
gFcomp_mgFun:= [mgFun by gFcompS].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFcomp_mgFun
idGfungT := @id {set gT}.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
idGfun
idGfun_closed: GFunctor.closed idGfun. Proof. by []. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
idGfun_closed
idGfun_cont: GFunctor.continuous idGfun. Proof. by []. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
idGfun_cont
idGfun_monotonic: GFunctor.monotonic idGfun. Proof. by []. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
idGfun_monotonic
bgFunc_id:= [igFun by idGfun_closed & idGfun_cont].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
bgFunc_id
gFunc_id:= [gFun by idGfun_cont].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
gFunc_id
mgFunc_id:= [mgFun by idGfun_monotonic].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
mgFunc_id
trivGfungT of {set gT} := [1 gT].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
trivGfun
trivGfun_cont: GFunctor.pcontinuous trivGfun. Proof. by move=> gT rT D G f; rewrite morphim1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
trivGfun_cont
trivGfun_igFun:= [igFun by sub1G & trivGfun_cont].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
trivGfun_igFun
trivGfun_gFun:= [gFun by trivGfun_cont].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
trivGfun_gFun
trivGfun_pgFun:= [pgFun by trivGfun_cont].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype", "From mathcomp Require Import bigop finset fingroup morphism automorphism", "From mathcomp Require Import quotient gproduct" ]
solvable/gfunctor.v
trivGfun_pgFun
subnormalA B := (A \subset B) && (iter #|B| (fun N => generated (class_support A N)) B == A).
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
subnormal
invariant_factorA B C := [&& A \subset 'N(B), A \subset 'N(C) & B <| C].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
invariant_factor
group_rel_of(r : rel {set gT}) := [rel H G : groupT | r H G].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
group_rel_of
stable_factorA V U := ([~: U, A] \subset V) && (V <| U).
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
stable_factor
central_factorA V U := [&& [~: U, A] \subset V, V \subset U & U \subset A].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
central_factor
maximalA B := [max A of G | G \proper B].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
maximal
maximal_eqA B := (A == B) || maximal A B.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
maximal_eq
maxnormalA B U := [max A of G | G \proper B & U \subset 'N(G)].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
maxnormal
minnormalA B := [min A of G | G :!=: 1 & B \subset 'N(G)].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
minnormal
simpleA := minnormal A A.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
simple
chief_factorA V U := maxnormal V U A && (U <| A).
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
chief_factor
subnormalPH G : reflect (exists2 s, normal.-series H s & last H s = G) (H <|<| G). Proof. apply: (iffP andP) => [[sHG snHG] | [s Hsn <-{G}]]. move: #|G| snHG => m; elim: m => [|m IHm] in G sHG *. by exists [::]; last by apply/eqP; rewrite eq_sym. rewrite iterSr => /IHm[|s Hsn defG]. by rewrite sub_gen // class_supportEr (bigD1 1) //= conjsg1 subsetUl. exists (rcons s G); rewrite ?last_rcons // -cats1 cat_path Hsn defG /=. rewrite /normal gen_subG class_support_subG //=. by rewrite norms_gen ?class_support_norm. set f := fun _ => <<_>>; have idf: iter _ f H == H. by elim=> //= m IHm; rewrite (eqP IHm) /f class_support_id genGid. have [m] := ubnP (size s); elim: m s Hsn => // m IHm /lastP[//|s G]. rewrite size_rcons last_rcons rcons_path /= ltnS. set K := last H s => /andP[Hsn /andP[sKG nKG]] lt_s_m. have /[1!subEproper]/predU1P[<-|prKG] := sKG; first exact: IHm. pose L := [group of f G]. have sHK: H \subset K by case/IHm: Hsn. have sLK: L \subset K by rewrite gen_subG class_support_sub_norm. rewrite -(subnK (proper_card (sub_proper_trans sLK prKG))) iterD iterSr. have defH: H = setIgr L H by rewrite -sub_setIgr ?sub_gen ?sub_class_support. have: normal.-series H (map (setIgr L) s) by rewrite defH path_setIgr. case/IHm=> [|_]; first by rewrite size_map. rewrite [in last _]defH last_map (subset_trans sHK) //=. by rewrite (setIidPr sLK) => /eqP->. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
subnormalP
subnormal_reflG : G <|<| G. Proof. by apply/subnormalP; exists [::]. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
subnormal_refl
subnormal_transK H G : H <|<| K -> K <|<| G -> H <|<| G. Proof. case/subnormalP=> [s1 Hs1 <-] /subnormalP[s2 Hs12 <-]. by apply/subnormalP; exists (s1 ++ s2); rewrite ?last_cat // cat_path Hs1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
subnormal_trans
normal_subnormalH G : H <| G -> H <|<| G. Proof. by move=> nsHG; apply/subnormalP; exists [:: G]; rewrite //= nsHG. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
normal_subnormal
setI_subnormalG H K : K \subset G -> H <|<| G -> H :&: K <|<| K. Proof. move=> sKG /subnormalP[s Hs defG]; apply/subnormalP. exists (map (setIgr K) s); first exact: path_setIgr. rewrite (last_map (setIgr K)) defG. by apply: val_inj; rewrite /= (setIidPr sKG). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
setI_subnormal
subnormal_subG H : H <|<| G -> H \subset G. Proof. by case/andP. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
subnormal_sub
invariant_subnormalA G H : A \subset 'N(G) -> A \subset 'N(H) -> H <|<| G -> exists2 s, (A.-invariant).-series H s & last H s = G. Proof. move=> nGA nHA /andP[]; move: #|G| => m. elim: m => [|m IHm] in G nGA * => sHG. by rewrite eq_sym; exists [::]; last apply/eqP. rewrite iterSr; set K := <<_>>. have nKA: A \subset 'N(K) by rewrite norms_gen ?norms_class_support. have sHK: H \subset K by rewrite sub_gen ?sub_class_support. case/IHm=> // s Hsn defK; exists (rcons s G); last by rewrite last_rcons. rewrite rcons_path Hsn !andbA defK nGA nKA /= -/K. by rewrite gen_subG class_support_subG ?norms_gen ?class_support_norm. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
invariant_subnormal
subnormalEsupportG H : H <|<| G -> H :=: G \/ <<class_support H G>> \proper G. Proof. case/andP=> sHG; set K := <<_>> => /eqP <-. have: K \subset G by rewrite gen_subG class_support_subG. rewrite subEproper; case/predU1P=> [defK|]; [left | by right]. by elim: #|G| => //= _ ->. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
subnormalEsupport
subnormalErG H : H <|<| G -> H :=: G \/ (exists K : {group gT}, [/\ H <|<| K, K <| G & K \proper G]). Proof. case/subnormalP=> s Hs <-{G}. elim/last_ind: s Hs => [|s G IHs]; first by left. rewrite last_rcons -cats1 cat_path /= andbT; set K := last H s. case/andP=> Hs nsKG; have /[1!subEproper] := normal_sub nsKG. case/predU1P=> [<- | prKG]; [exact: IHs | right; exists K; split=> //]. by apply/subnormalP; exists s. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
subnormalEr
subnormalElG H : H <|<| G -> H :=: G \/ (exists K : {group gT}, [/\ H <| K, K <|<| G & H \proper K]). Proof. case/subnormalP=> s Hs <-{G}; elim: s H Hs => /= [|K s IHs] H; first by left. case/andP=> nsHK Ks; have /[1!subEproper] := normal_sub nsHK. case/predU1P=> [-> | prHK]; [exact: IHs | right; exists K; split=> //]. by apply/subnormalP; exists s. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
subnormalEl
morphim_subnormal(rT : finGroupType) G (f : {morphism G >-> rT}) H K : H <|<| K -> f @* H <|<| f @* K. Proof. case/subnormalP => s Hs <-{K}; apply/subnormalP. elim: s H Hs => [|K s IHs] H /=; first by exists [::]. case/andP=> nsHK /IHs[fs Hfs <-]. by exists ([group of f @* K] :: fs); rewrite /= ?morphim_normal. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
morphim_subnormal
quotient_subnormalH G K : G <|<| K -> G / H <|<| K / H. Proof. exact: morphim_subnormal. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
quotient_subnormal
maximal_eqPM G : reflect (M \subset G /\ forall H, M \subset H -> H \subset G -> H :=: M \/ H :=: G) (maximal_eq M G). Proof. rewrite subEproper /maximal_eq; case: eqP => [->|_]; first left. by split=> // H sGH sHG; right; apply/eqP; rewrite eqEsubset sHG. apply: (iffP maxgroupP) => [] [sMG maxM]; split=> // H. by move/maxM=> maxMH; rewrite subEproper; case/predU1P; auto. by rewrite properEneq => /andP[/eqP neHG sHG] /maxM[]. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
maximal_eqP
maximal_existsH G : H \subset G -> H :=: G \/ (exists2 M : {group gT}, maximal M G & H \subset M). Proof. rewrite subEproper; case/predU1P=> sHG; first by left. suff [M *]: {M : {group gT} | maximal M G & H \subset M} by right; exists M. exact: maxgroup_exists. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
maximal_exists
mulg_normal_maximalG M H : M <| G -> maximal M G -> H \subset G -> ~~ (H \subset M) -> (M * H = G)%g. Proof. case/andP=> sMG nMG /maxgroupP[_ maxM] sHG not_sHM. apply/eqP; rewrite eqEproper mul_subG // -norm_joinEr ?(subset_trans sHG) //. by apply: contra not_sHM => /maxM <-; rewrite ?joing_subl ?joing_subr. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
mulg_normal_maximal
minnormal_existsG H : H :!=: 1 -> G \subset 'N(H) -> {M : {group gT} | minnormal M G & M \subset H}. Proof. by move=> ntH nHG; apply: mingroup_exists (H) _; rewrite ntH. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
minnormal_exists
morphpre_maximal: maximal (f @*^-1 M) (f @*^-1 G) = maximal M G. Proof. apply/maxgroupP/maxgroupP; rewrite morphpre_proper //= => [] [ltMG maxM]. split=> // H ltHG sMH; have dH := subset_trans (proper_sub ltHG) dG. rewrite -(morphpreK dH) [f @*^-1 H]maxM ?morphpreK ?morphpreSK //. by rewrite morphpre_proper. split=> // H ltHG sMH. have dH: H \subset D := subset_trans (proper_sub ltHG) (subsetIl D _). have defH: f @*^-1 (f @* H) = H. by apply: morphimGK dH; apply: subset_trans sMH; apply: ker_sub_pre. rewrite -defH morphpre_proper ?morphimS // in ltHG. by rewrite -defH [f @* H]maxM // -(morphpreK dM) morphimS. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
morphpre_maximal
morphpre_maximal_eq: maximal_eq (f @*^-1 M) (f @*^-1 G) = maximal_eq M G. Proof. by rewrite /maximal_eq morphpre_maximal !eqEsubset !morphpreSK. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
morphpre_maximal_eq
injm_maximal: maximal (f @* M) (f @* G) = maximal M G. Proof. rewrite -(morphpre_invm injf) -(morphpre_invm injf G). by rewrite morphpre_maximal ?morphim_invm. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
injm_maximal
injm_maximal_eq: maximal_eq (f @* M) (f @* G) = maximal_eq M G. Proof. by rewrite /maximal_eq injm_maximal // injm_eq. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
injm_maximal_eq
injm_maxnormal: maxnormal (f @* M) (f @* G) (f @* L) = maxnormal M G L. Proof. pose injfm := (injm_proper injf, injm_norms, injmSK injf, subsetIl). apply/maxgroupP/maxgroupP; rewrite !injfm // => [[nML maxM]]. split=> // H nHL sMH; have [/proper_sub sHG _] := andP nHL. have dH := subset_trans sHG dG; apply: (injm_morphim_inj injf) => //. by apply: maxM; rewrite !injfm. split=> // fH nHL sMH; have [/proper_sub sfHG _] := andP nHL. have{sfHG} dfH: fH \subset f @* D := subset_trans sfHG (morphim_sub f G). by rewrite -(morphpreK dfH) !injfm // in nHL sMH *; rewrite (maxM _ nHL). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
injm_maxnormal
injm_minnormal: minnormal (f @* M) (f @* G) = minnormal M G. Proof. pose injfm := (morphim_injm_eq1 injf, injm_norms, injmSK injf, subsetIl). apply/mingroupP/mingroupP; rewrite !injfm // => [[nML minM]]. split=> // H nHG sHM; have dH := subset_trans sHM dM. by apply: (injm_morphim_inj injf) => //; apply: minM; rewrite !injfm. split=> // fH nHG sHM; have dfH := subset_trans sHM (morphim_sub f M). by rewrite -(morphpreK dfH) !injfm // in nHG sHM *; rewrite (minM _ nHG). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
injm_minnormal
cosetpre_maximal(Q R : {group coset_of K}) : maximal (coset K @*^-1 Q) (coset K @*^-1 R) = maximal Q R. Proof. by rewrite morphpre_maximal ?sub_im_coset. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
cosetpre_maximal
cosetpre_maximal_eq(Q R : {group coset_of K}) : maximal_eq (coset K @*^-1 Q) (coset K @*^-1 R) = maximal_eq Q R. Proof. by rewrite /maximal_eq !eqEsubset !cosetpreSK cosetpre_maximal. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
cosetpre_maximal_eq
quotient_maximal: K <| G -> K <| H -> maximal (G / K) (H / K) = maximal G H. Proof. by move=> nKG nKH; rewrite -cosetpre_maximal ?quotientGK. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
quotient_maximal
quotient_maximal_eq: K <| G -> K <| H -> maximal_eq (G / K) (H / K) = maximal_eq G H. Proof. by move=> nKG nKH; rewrite -cosetpre_maximal_eq ?quotientGK. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
quotient_maximal_eq
maximalJx : maximal (G :^ x) (H :^ x) = maximal G H. Proof. rewrite -{1}(setTI G) -{1}(setTI H) -!morphim_conj. by rewrite injm_maximal ?subsetT ?injm_conj. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
maximalJ
maximal_eqJx : maximal_eq (G :^ x) (H :^ x) = maximal_eq G H. Proof. by rewrite /maximal_eq !eqEsubset !conjSg maximalJ. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
maximal_eqJ
maxnormal_normalA B : maxnormal A B B -> A <| B. Proof. by case/maxsetP=> /and3P[/gen_set_id /= -> pAB nAB]; rewrite /normal proper_sub. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
maxnormal_normal
maxnormal_properA B C : maxnormal A B C -> A \proper B. Proof. by case/maxsetP=> /and3P[gA pAB _] _; apply: (sub_proper_trans (subset_gen A)). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
maxnormal_proper
maxnormal_subA B C : maxnormal A B C -> A \subset B. Proof. by move=> maxA; rewrite proper_sub //; apply: (maxnormal_proper maxA). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
maxnormal_sub
ex_maxnormal_ntrivgG : G :!=: 1-> {N : {group gT} | maxnormal N G G}. Proof. move=> ntG; apply: ex_maxgroup; exists [1 gT]%G; rewrite norm1 proper1G. by rewrite subsetT ntG. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
ex_maxnormal_ntrivg
maxnormalMG H K : maxnormal H G G -> maxnormal K G G -> H :<>: K -> H * K = G. Proof. move=> maxH maxK /eqP; apply: contraNeq => ltHK_G. have [nsHG nsKG] := (maxnormal_normal maxH, maxnormal_normal maxK). have cHK: commute H K. exact: normC (subset_trans (normal_sub nsHG) (normal_norm nsKG)). wlog suffices: H K {maxH} maxK nsHG nsKG cHK ltHK_G / H \subset K. by move=> IH; rewrite eqEsubset !IH // -cHK. have{maxK} /maxgroupP[_ maxK] := maxK. apply/joing_idPr/maxK; rewrite ?joing_subr //= comm_joingE //. by rewrite properEneq ltHK_G; apply: normalM. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
maxnormalM
maxnormal_minnormalG L M : G \subset 'N(M) -> L \subset 'N(G) -> maxnormal M G L -> minnormal (G / M) (L / M). Proof. move=> nMG nGL /maxgroupP[/andP[/andP[sMG ltMG] nML] maxM]; apply/mingroupP. rewrite -subG1 quotient_sub1 ?ltMG ?quotient_norms //. split=> // Hb /andP[ntHb nHbL]; have nsMG: M <| G by apply/andP. case/inv_quotientS=> // H defHb sMH sHG; rewrite defHb; congr (_ / M). apply/eqP; rewrite eqEproper sHG /=; apply: contra ntHb => ltHG. have nsMH: M <| H := normalS sMH sHG nsMG. rewrite defHb quotientS1 // (maxM H) // ltHG /= -(quotientGK nsMH) -defHb. exact: norm_quotient_pre. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
maxnormal_minnormal
minnormal_maxnormalG L M : M <| G -> L \subset 'N(M) -> minnormal (G / M) (L / M) -> maxnormal M G L. Proof. case/andP=> sMG nMG nML /mingroupP[/andP[/= ntGM _] minGM]; apply/maxgroupP. split=> [|H /andP[/andP[sHG ltHG] nHL] sMH]. by rewrite /proper sMG nML andbT; apply: contra ntGM => /quotientS1 ->. apply/eqP; rewrite eqEsubset sMH andbT -quotient_sub1 ?(subset_trans sHG) //. rewrite subG1; apply: contraR ltHG => ntHM; rewrite -(quotientSGK nMG) //. by rewrite (minGM (H / M)%G) ?quotientS // ntHM quotient_norms. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
minnormal_maxnormal
simplePgT (G : {group gT}) : reflect (G :!=: 1 /\ forall H : {group gT}, H <| G -> H :=: 1 \/ H :=: G) (simple G). Proof. apply: (iffP mingroupP); rewrite normG andbT => [[ntG simG]]. split=> // N /andP[sNG nNG]. by case: (eqsVneq N 1) => [|ntN]; [left | right; apply: simG; rewrite ?ntN]. split=> // N /andP[ntN nNG] sNG. by case: (simG N) ntN => // [|->]; [apply/andP | case/eqP]. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
simpleP
quotient_simplegT (G H : {group gT}) : H <| G -> simple (G / H) = maxnormal H G G. Proof. move=> nsHG; have nGH := normal_norm nsHG. by apply/idP/idP; [apply: minnormal_maxnormal | apply: maxnormal_minnormal]. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
quotient_simple
isog_simplegT rT (G : {group gT}) (M : {group rT}) : G \isog M -> simple G = simple M. Proof. move=> eqGM; wlog suffices: gT rT G M eqGM / simple M -> simple G. by move=> IH; apply/idP/idP; apply: IH; rewrite // isog_sym. case/isogP: eqGM => f injf <- /simpleP[ntGf simGf]. apply/simpleP; split=> [|N nsNG]; first by rewrite -(morphim_injm_eq1 injf). rewrite -(morphim_invm injf (normal_sub nsNG)). have: f @* N <| f @* G by rewrite morphim_normal. by case/simGf=> /= ->; [left | right]; rewrite (morphim1, morphim_invm). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
isog_simple
simple_maxnormalgT (G : {group gT}) : simple G = maxnormal 1 G G. Proof. by rewrite -quotient_simple ?normal1 // -(isog_simple (quotient1_isog G)). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
simple_maxnormal
chief_factor_minnormalG V U : chief_factor G V U -> minnormal (U / V) (G / V). Proof. case/andP=> maxV /andP[sUG nUG]; apply: maxnormal_minnormal => //. by have /andP[_ nVG] := maxgroupp maxV; apply: subset_trans sUG nVG. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
chief_factor_minnormal
acts_irrQG U V : G \subset 'N(V) -> V <| U -> acts_irreducibly G (U / V) 'Q = minnormal (U / V) (G / V). Proof. move=> nVG nsVU; apply/mingroupP/mingroupP; case=> /andP[->] /=. rewrite astabsQ // subsetI nVG /= => nUG minUV. rewrite quotient_norms //; split=> // H /andP[ntH nHG] sHU. by apply: minUV (sHU); rewrite ntH -(cosetpreK H) actsQ // norm_quotient_pre. rewrite sub_quotient_pre // => nUG minU; rewrite astabsQ //. rewrite (subset_trans nUG); last first. by rewrite subsetI subsetIl /= -{2}(quotientGK nsVU) morphpre_norm. split=> // H /andP[ntH nHG] sHU. rewrite -{1}(cosetpreK H) astabsQ ?normal_cosetpre ?subsetI ?nVG //= in nHG. apply: minU sHU; rewrite ntH; apply: subset_trans (quotientS _ nHG) _. by rewrite -{2}(cosetpreK H) quotient_norm. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
acts_irrQ
chief_series_existsH G : H <| G -> {s | (G.-chief).-series 1%G s & last 1%G s = H}. Proof. have [m] := ubnP #|H|; elim: m H => // m IHm U leUm nsUG. have [-> | ntU] := eqVneq U 1%G; first by exists [::]. have [V maxV]: {V : {group gT} | maxnormal V U G}. by apply: ex_maxgroup; exists 1%G; rewrite proper1G ntU norms1. have /andP[ltVU nVG] := maxgroupp maxV. have [||s ch_s defV] := IHm V; first exact: leq_trans (proper_card ltVU) _. by rewrite /normal (subset_trans (proper_sub ltVU) (normal_sub nsUG)). exists (rcons s U); last by rewrite last_rcons. by rewrite rcons_path defV /= ch_s /chief_factor; apply/and3P. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
chief_series_exists
central_factor_centralH K : central_factor G H K -> (K / H) \subset 'Z(G / H). Proof. by case/and3P=> /quotient_cents2r *; rewrite subsetI quotientS. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
central_factor_central
central_central_factorH K : (K / H) \subset 'Z(G / H) -> H <| K -> H <| G -> central_factor G H K. Proof. case/subsetIP=> sKGb cGKb /andP[sHK nHK] /andP[sHG nHG]. by rewrite /central_factor -quotient_cents2 // cGKb sHK -(quotientSGK nHK). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import fintype bigop finset fingroup morphism", "From mathcomp Require Import automorphism quotient action commutator center" ]
solvable/gseries.v
central_central_factor
SchurZassenhaus_splitgT (G H : {group gT}) : Hall G H -> H <| G -> [splits G, over H]. Proof. have [n] := ubnP #|G|; elim: n => // n IHn in gT G H * => /ltnSE-Gn hallH nsHG. have [sHG nHG] := andP nsHG. have [-> | [p pr_p pH]] := trivgVpdiv H. by apply/splitsP; exists G; rewrite inE -subG1 subsetIl mul1g eqxx. have [P sylP] := Sylow_exists p H. case nPG: (P <| G); last first. pose N := ('N_G(P))%G; have sNG: N \subset G by rewrite subsetIl. have eqHN_G: H * N = G by apply: Frattini_arg sylP. pose H' := (H :&: N)%G. have nsH'N: H' <| N. by rewrite /normal subsetIr normsI ?normG ?(subset_trans sNG). have eq_iH: #|G : H| = #|N| %/ #|H'|. rewrite -divgS // -(divnMl (cardG_gt0 H')) mulnC -eqHN_G. by rewrite -mul_cardG (mulnC #|H'|) divnMl // cardG_gt0. have hallH': Hall N H'. rewrite /Hall -divgS subsetIr //= -eq_iH. by case/andP: hallH => _; apply: coprimeSg; apply: subsetIl. have: [splits N, over H']. apply: IHn hallH' nsH'N; apply: {n}leq_trans Gn. rewrite proper_card // properEneq sNG andbT; apply/eqP=> eqNG. by rewrite -eqNG normal_subnorm (subset_trans (pHall_sub sylP)) in nPG. case/splitsP=> K /complP[tiKN eqH'K]. have sKN: K \subset N by rewrite -(mul1g K) -eqH'K mulSg ?sub1set. apply/splitsP; exists K; rewrite inE -subG1; apply/andP; split. by rewrite /= -(setIidPr sKN) setIA tiKN. by rewrite eqEsubset -eqHN_G mulgS // -eqH'K mulGS mulSg ?subsetIl. pose Z := 'Z(P); pose Gbar := G / Z; pose Hbar := H / Z. have sZP: Z \subset P by ap ...
Theorem
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div choice", "From mathcomp Require Import fintype finset prime fingroup morphism", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import commutator center pgroup finmodule nilpotent", "From mathcomp Require Import sylow abelian maximal" ]
solvable/hall.v
SchurZassenhaus_split
SchurZassenhaus_trans_solgT (H K K1 : {group gT}) : solvable H -> K \subset 'N(H) -> K1 \subset H * K -> coprime #|H| #|K| -> #|K1| = #|K| -> exists2 x, x \in H & K1 :=: K :^ x. Proof. have [n] := ubnP #|H|. elim: n => // n IHn in gT H K K1 * => /ltnSE-leHn solH nHK. have [-> | ] := eqsVneq H 1. rewrite mul1g => sK1K _ eqK1K; exists 1; first exact: set11. by apply/eqP; rewrite conjsg1 eqEcard sK1K eqK1K /=. pose G := (H <*> K)%G. have defG: G :=: H * K by rewrite -normC // -norm_joinEl // joingC. have sHG: H \subset G by apply: joing_subl. have sKG: K \subset G by apply: joing_subr. have nsHG: H <| G by rewrite /(H <| G) sHG join_subG normG. case/(solvable_norm_abelem solH nsHG)=> M [sMH nsMG ntM] /and3P[_ abelM _]. have [sMG nMG] := andP nsMG; rewrite -defG => sK1G coHK oK1K. have nMsG (L : {set gT}): L \subset G -> L \subset 'N(M). by move/subset_trans->. have [coKM coHMK]: coprime #|M| #|K| /\ coprime #|H / M| #|K|. by apply/andP; rewrite -coprimeMl card_quotient ?nMsG ?Lagrange. have oKM (K' : {group gT}): K' \subset G -> #|K'| = #|K| -> #|K' / M| = #|K|. move=> sK'G oK'. rewrite -quotientMidr -?norm_joinEl ?card_quotient ?nMsG //; last first. by rewrite gen_subG subUset sK'G. rewrite -divgS /=; last by rewrite -gen_subG genS ?subsetUr. by rewrite norm_joinEl ?nMsG // coprime_cardMg ?mulnK // oK' coprime_sym. have [xb]: exists2 xb, xb \in H / M & K1 / M = (K / M) :^ xb. apply: IHn; try by rewrite (quotient_sol, morphim_norms, oKM K) ?(oKM K1). by apply: leq_tra ...
Theorem
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div choice", "From mathcomp Require Import fintype finset prime fingroup morphism", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import commutator center pgroup finmodule nilpotent", "From mathcomp Require Import sylow abelian maximal" ]
solvable/hall.v
SchurZassenhaus_trans_sol
SchurZassenhaus_trans_actsolgT (G A B : {group gT}) : solvable A -> A \subset 'N(G) -> B \subset A <*> G -> coprime #|G| #|A| -> #|A| = #|B| -> exists2 x, x \in G & B :=: A :^ x. Proof. set AG := A <*> G; have [n] := ubnP #|AG|. elim: n => // n IHn in gT A B G AG * => /ltnSE-leAn solA nGA sB_AG coGA oAB. have [A1 | ntA] := eqsVneq A 1. by exists 1; rewrite // conjsg1 A1 (@card1_trivg _ B) // -oAB A1 cards1. have [M [sMA nsMA ntM]] := solvable_norm_abelem solA (normal_refl A) ntA. case/is_abelemP=> q q_pr /abelem_pgroup qM; have nMA := normal_norm nsMA. have defAG: AG = A * G := norm_joinEl nGA. have sA_AG: A \subset AG := joing_subl _ _. have sG_AG: G \subset AG := joing_subr _ _. have sM_AG := subset_trans sMA sA_AG. have oAG: #|AG| = (#|A| * #|G|)%N by rewrite defAG coprime_cardMg 1?coprime_sym. have q'G: (#|G|`_q = 1)%N. rewrite part_p'nat ?p'natE -?prime_coprime // coprime_sym. have [_ _ [k oM]] := pgroup_pdiv qM ntM. by rewrite -(@coprime_pexpr k.+1) // -oM (coprimegS sMA). have coBG: coprime #|B| #|G| by rewrite -oAB coprime_sym. have defBG: B * G = AG. by apply/eqP; rewrite eqEcard mul_subG ?sG_AG //= oAG oAB coprime_cardMg. case nMG: (G \subset 'N(M)). have nsM_AG: M <| AG by rewrite /normal sM_AG join_subG nMA. have nMB: B \subset 'N(M) := subset_trans sB_AG (normal_norm nsM_AG). have sMB: M \subset B. have [Q sylQ]:= Sylow_exists q B; have sQB := pHall_sub sylQ. apply: subset_trans (normal_sub_max_pgroup (Hall_max _) qM nsM_AG) (sQB). rewrite pHallE (subse ...
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div choice", "From mathcomp Require Import fintype finset prime fingroup morphism", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import commutator center pgroup finmodule nilpotent", "From mathcomp Require Import sylow abelian maximal" ]
solvable/hall.v
SchurZassenhaus_trans_actsol
Hall_exists_subJpi gT (G : {group gT}) : solvable G -> exists2 H : {group gT}, pi.-Hall(G) H & forall K : {group gT}, K \subset G -> pi.-group K -> exists2 x, x \in G & K \subset H :^ x. Proof. have [n] := ubnP #|G|; elim: n gT G => // n IHn gT G /ltnSE-leGn solG. have [-> | ntG] := eqsVneq G 1. exists 1%G => [|_ /trivGP-> _]; last by exists 1; rewrite ?set11 ?sub1G. by rewrite pHallE sub1G cards1 part_p'nat. case: (solvable_norm_abelem solG (normal_refl _)) => // M [sMG nsMG ntM]. case/is_abelemP=> p pr_p /and3P[pM cMM _]. pose Gb := (G / M)%G; case: (IHn _ Gb) => [||Hb]; try exact: quotient_sol. by rewrite (leq_trans (ltn_quotient _ _)). case/and3P=> [sHbGb piHb pi'Hb'] transHb. case: (inv_quotientS nsMG sHbGb) => H def_H sMH sHG. have nMG := normal_norm nsMG; have nMH := subset_trans sHG nMG. have{transHb} transH (K : {group gT}): K \subset G -> pi.-group K -> exists2 x, x \in G & K \subset H :^ x. - move=> sKG piK; have nMK := subset_trans sKG nMG. case: (transHb (K / M)%G) => [||xb Gxb sKHxb]; first exact: morphimS. exact: morphim_pgroup. case/morphimP: Gxb => x Nx Gx /= def_x; exists x => //. apply/subsetP=> y Ky. have: y \in coset M y by rewrite val_coset (subsetP nMK, rcoset_refl). have: coset M y \in (H :^ x) / M. rewrite /quotient morphimJ //=. by rewrite def_x def_H in sKHxb; apply/(subsetP sKHxb)/mem_quotient. case/morphimP=> z Nz Hxz ->. rewrite val_coset //; case/rcosetP=> t Mt ->; rewrite groupMl //. by re ...
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div choice", "From mathcomp Require Import fintype finset prime fingroup morphism", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import commutator center pgroup finmodule nilpotent", "From mathcomp Require Import sylow abelian maximal" ]
solvable/hall.v
Hall_exists_subJ
Hall_Frattini_argpi (G K H : {group gT}) : solvable K -> K <| G -> pi.-Hall(K) H -> K * 'N_G(H) = G. Proof. move=> solK /andP[sKG nKG] hallH. have sHG: H \subset G by apply: subset_trans sKG; case/andP: hallH. rewrite setIC group_modl //; apply/setIidPr/subsetP=> x Gx. pose H1 := (H :^ x^-1)%G. have hallH1: pi.-Hall(K) H1 by rewrite pHallJnorm // groupV (subsetP nKG). case: (Hall_trans solK hallH hallH1) => y Ky defH. rewrite -(mulKVg y x) mem_mulg //; apply/normP. by rewrite conjsgM {1}defH conjsgK conjsgKV. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div choice", "From mathcomp Require Import fintype finset prime fingroup morphism", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import commutator center pgroup finmodule nilpotent", "From mathcomp Require Import sylow abelian maximal" ]
solvable/hall.v
Hall_Frattini_arg
coprime_norm_centA G : A \subset 'N(G) -> coprime #|G| #|A| -> 'N_G(A) = 'C_G(A). Proof. move=> nGA coGA; apply/eqP; rewrite eqEsubset andbC setIS ?cent_sub //=. rewrite subsetI subsetIl /= (sameP commG1P trivgP) -(coprime_TIg coGA). rewrite subsetI commg_subr subsetIr andbT. move: nGA; rewrite -commg_subl; apply: subset_trans. by rewrite commSg ?subsetIl. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div choice", "From mathcomp Require Import fintype finset prime fingroup morphism", "From mathcomp Require Import automorphism quotient action gproduct gfunctor", "From mathcomp Require Import commutator center pgroup finmodule nilpotent", "From mathcomp Require Import sylow abelian maximal" ]
solvable/hall.v
coprime_norm_cent