fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
Rez := locked_with Re_lock ((z + z^*) / 2%:R).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
Re
Imz := locked_with Im_lock ('i * (z^* - z) / 2%:R).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
Im
ReEz : 'Re z = (z + z^*) / 2%:R. Proof. by rewrite ['Re _]unlock. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ReE
ImEz : 'Im z = 'i * (z^* - z) / 2%:R. Proof. by rewrite ['Im _]unlock. Qed. Let nz2 : 2 != 0 :> C. Proof. by rewrite pnatr_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ImE
normCKCx : `|x| ^+ 2 = x^* * x. Proof. by rewrite normCK mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
normCKC
mul_conjC_ge0x : 0 <= x * x^*. Proof. by rewrite -normCK exprn_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
mul_conjC_ge0
mul_conjC_gt0x : (0 < x * x^* ) = (x != 0). Proof. have [->|x_neq0] := eqVneq; first by rewrite rmorph0 mulr0. by rewrite -normCK exprn_gt0 ?normr_gt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
mul_conjC_gt0
mul_conjC_eq0x : (x * x^* == 0) = (x == 0). Proof. by rewrite -normCK expf_eq0 normr_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
mul_conjC_eq0
conjC_ge0x : (0 <= x^* ) = (0 <= x). Proof. wlog suffices: x / 0 <= x -> 0 <= x^*. by move=> IH; apply/idP/idP=> /IH; rewrite ?conjCK. rewrite [in X in X -> _]le0r => /predU1P[-> | x_gt0]; first by rewrite rmorph0. by rewrite -(pmulr_rge0 _ x_gt0) mul_conjC_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
conjC_ge0
conjC_natn : (n%:R)^* = n%:R :> C. Proof. exact: rmorph_nat. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
conjC_nat
conjC0: 0^* = 0 :> C. Proof. exact: rmorph0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
conjC0
conjC1: 1^* = 1 :> C. Proof. exact: rmorph1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
conjC1
conjCN1: (- 1)^* = - 1 :> C. Proof. exact: rmorphN1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
conjCN1
conjC_eq0x : (x^* == 0) = (x == 0). Proof. exact: fmorph_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
conjC_eq0
invC_normx : x^-1 = `|x| ^- 2 * x^*. Proof. have [-> | nx_x] := eqVneq x 0; first by rewrite conjC0 mulr0 invr0. by rewrite normCK invfM divfK ?conjC_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
invC_norm
CrealEx : (x \is real) = (x^* == x). Proof. rewrite realEsqr ger0_def normrX normCK. by have [-> | /mulfI/inj_eq-> //] := eqVneq x 0; rewrite rmorph0 !eqxx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
CrealE
CrealP{x} : reflect (x^* = x) (x \is real). Proof. by rewrite CrealE; apply: eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
CrealP
conj_Crealx : x \is real -> x^* = x. Proof. by move/CrealP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
conj_Creal
conj_normCz : `|z|^* = `|z|. Proof. by rewrite conj_Creal ?normr_real. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
conj_normC
CrealJ: {mono (@conj C) : x / x \is Num.real}. Proof. by apply: (homo_mono1 conjCK) => x xreal; rewrite conj_Creal. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
CrealJ
geC0_conjx : 0 <= x -> x^* = x. Proof. by move=> /ger0_real/CrealP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
geC0_conj
geC0_unit_expx n : 0 <= x -> (x ^+ n.+1 == 1) = (x == 1). Proof. by move=> x_ge0; rewrite pexpr_eq1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
geC0_unit_exp
case_rootC:= rewrite /nthroot; case: (rootC_subproof _ _).
Ltac
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
case_rootC
root0Cx : 0.-root x = 0. Proof. by case_rootC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
root0C
rootCKn : (n > 0)%N -> cancel n.-root (fun x => x ^+ n). Proof. by case: n => //= n _ x; case_rootC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
rootCK
root1Cx : 1.-root x = x. Proof. exact: (@rootCK 1). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
root1C
rootC0n : n.-root 0 = 0. Proof. have [-> | n_gt0] := posnP n; first by rewrite root0C. by have /eqP := rootCK n_gt0 0; rewrite expf_eq0 n_gt0 /= => /eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
rootC0
rootC_injn : (n > 0)%N -> injective n.-root. Proof. by move/rootCK/can_inj. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
rootC_inj
eqr_rootCn : (n > 0)%N -> {mono n.-root : x y / x == y}. Proof. by move/rootC_inj/inj_eq. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
eqr_rootC
rootC_eq0n x : (n > 0)%N -> (n.-root x == 0) = (x == 0). Proof. by move=> n_gt0; rewrite -{1}(rootC0 n) eqr_rootC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
rootC_eq0
nonRealCi: ('i : C) \isn't real. Proof. by rewrite realEsqr sqrCi oppr_ge0 lt_geF ?ltr01. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
nonRealCi
neq0Ci: 'i != 0 :> C. Proof. by apply: contraNneq nonRealCi => ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
neq0Ci
normCi: `|'i| = 1 :> C. Proof. by apply/eqP; rewrite -(@pexpr_eq1 _ _ 2) // -normrX sqrCi normrN1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
normCi
invCi: 'i^-1 = - 'i :> C. Proof. by rewrite -div1r -[1]opprK -sqrCi mulNr mulfK ?neq0Ci. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
invCi
conjCi: 'i^* = - 'i :> C. Proof. by rewrite -invCi invC_norm normCi expr1n invr1 mul1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
conjCi
Crectx : x = 'Re x + 'i * 'Im x. Proof. rewrite !(ReE, ImE) 2!mulrA mulCii mulN1r opprB -mulrDl. by rewrite addrACA subrr addr0 mulrDl -splitr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
Crect
eqCPx y : x = y <-> ('Re x = 'Re y) /\ ('Im x = 'Im y). Proof. by split=> [->//|[eqRe eqIm]]; rewrite [x]Crect [y]Crect eqRe eqIm. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
eqCP
eqCx y : (x == y) = ('Re x == 'Re y) && ('Im x == 'Im y). Proof. by apply/eqP/(andPP eqP eqP) => /eqCP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
eqC
Creal_Rex : 'Re x \is real. Proof. by rewrite ReE CrealE fmorph_div rmorph_nat rmorphD /= conjCK addrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
Creal_Re
Creal_Imx : 'Im x \is real. Proof. rewrite ImE CrealE fmorph_div rmorph_nat rmorphM/= rmorphB/= conjCK. by rewrite conjCi -opprB mulrNN. Qed. Hint Resolve Creal_Re Creal_Im : core. Fact Re_is_zmod_morphism : zmod_morphism Re. Proof. by move=> x y; rewrite !ReE rmorphB addrACA -opprD mulrBl. Qed. #[export] HB.instance Definition _ := GRing.isZmodMorphism.Build C C Re Re_is_zmod_morphism. #[warning="-deprecated-since-mathcomp-2.5.0", deprecated(since="mathcomp 2.5.0", note="use `Re_is_zmod_morphism` instead")]
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
Creal_Im
Re_is_additive:= Re_is_zmod_morphism. Fact Im_is_zmod_morphism : zmod_morphism Im. Proof. by move=> x y; rewrite !ImE rmorphB opprD addrACA -opprD mulrBr mulrBl. Qed. #[export] HB.instance Definition _ := GRing.isZmodMorphism.Build C C Im Im_is_zmod_morphism. #[warning="-deprecated-since-mathcomp-2.5.0", deprecated(since="mathcomp 2.5.0", note="use `Im_is_zmod_morphism` instead")]
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
Re_is_additive
Im_is_additive:= Im_is_zmod_morphism.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
Im_is_additive
Creal_ImPz : reflect ('Im z = 0) (z \is real). Proof. rewrite ImE CrealE -subr_eq0 -(can_eq (mulKf neq0Ci)) mulr0. by rewrite -(can_eq (divfK nz2)) mul0r; apply: eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
Creal_ImP
Creal_RePz : reflect ('Re z = z) (z \in real). Proof. rewrite (sameP (Creal_ImP z) eqP) -(can_eq (mulKf neq0Ci)) mulr0. by rewrite -(inj_eq (addrI ('Re z))) addr0 -Crect eq_sym; apply: eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
Creal_ReP
ReMl: {in real, forall x, {morph Re : z / x * z}}. Proof. by move=> x Rx z /=; rewrite !ReE rmorphM /= (conj_Creal Rx) -mulrDr -mulrA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ReMl
ReMr: {in real, forall x, {morph Re : z / z * x}}. Proof. by move=> x Rx z /=; rewrite mulrC ReMl // mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ReMr
ImMl: {in real, forall x, {morph Im : z / x * z}}. Proof. by move=> x Rx z; rewrite !ImE rmorphM /= (conj_Creal Rx) -mulrBr mulrCA !mulrA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ImMl
ImMr: {in real, forall x, {morph Im : z / z * x}}. Proof. by move=> x Rx z /=; rewrite mulrC ImMl // mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ImMr
Re_i: 'Re 'i = 0. Proof. by rewrite ReE conjCi subrr mul0r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
Re_i
Im_i: 'Im 'i = 1. Proof. rewrite ImE conjCi -opprD mulrN -mulr2n mulrnAr mulCii. by rewrite mulNrn opprK divff. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
Im_i
Re_conjz : 'Re z^* = 'Re z. Proof. by rewrite !ReE addrC conjCK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
Re_conj
Im_conjz : 'Im z^* = - 'Im z. Proof. by rewrite !ImE -mulNr -mulrN opprB conjCK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
Im_conj
Re_rect: {in real &, forall x y, 'Re (x + 'i * y) = x}. Proof. move=> x y Rx Ry; rewrite /= raddfD /= (Creal_ReP x Rx). by rewrite ReMr // Re_i mul0r addr0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
Re_rect
Im_rect: {in real &, forall x y, 'Im (x + 'i * y) = y}. Proof. move=> x y Rx Ry; rewrite /= raddfD /= (Creal_ImP x Rx) add0r. by rewrite ImMr // Im_i mul1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
Im_rect
conjC_rect: {in real &, forall x y, (x + 'i * y)^* = x - 'i * y}. Proof. by move=> x y Rx Ry; rewrite /= rmorphD rmorphM /= conjCi mulNr !conj_Creal. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
conjC_rect
addC_rectx1 y1 x2 y2 : (x1 + 'i * y1) + (x2 + 'i * y2) = x1 + x2 + 'i * (y1 + y2). Proof. by rewrite addrACA -mulrDr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
addC_rect
oppC_rectx y : - (x + 'i * y) = - x + 'i * (- y). Proof. by rewrite mulrN -opprD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
oppC_rect
subC_rectx1 y1 x2 y2 : (x1 + 'i * y1) - (x2 + 'i * y2) = x1 - x2 + 'i * (y1 - y2). Proof. by rewrite oppC_rect addC_rect. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
subC_rect
mulC_rectx1 y1 x2 y2 : (x1 + 'i * y1) * (x2 + 'i * y2) = x1 * x2 - y1 * y2 + 'i * (x1 * y2 + x2 * y1). Proof. rewrite mulrDl !mulrDr (AC (2*2) (1*4*(2*3)))/= mulrACA. by rewrite -expr2 sqrCi mulN1r -!mulrA [_ * ('i * _)]mulrCA [_ * y1]mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
mulC_rect
ImMx y : 'Im (x * y) = 'Re x * 'Im y + 'Re y * 'Im x. Proof. rewrite [x in LHS]Crect [y in LHS]Crect mulC_rect. by rewrite !(Im_rect, rpredB, rpredD, rpredM). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ImM
ImMilx : 'Im ('i * x) = 'Re x. Proof. by rewrite ImM Re_i Im_i mul0r mulr1 add0r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ImMil
ReMilx : 'Re ('i * x) = - 'Im x. Proof. by rewrite -ImMil mulrA mulCii mulN1r raddfN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ReMil
ReMirx : 'Re (x * 'i) = - 'Im x. Proof. by rewrite mulrC ReMil. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ReMir
ImMirx : 'Im (x * 'i) = 'Re x. Proof. by rewrite mulrC ImMil. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ImMir
ReMx y : 'Re (x * y) = 'Re x * 'Re y - 'Im x * 'Im y. Proof. by rewrite -ImMil mulrCA ImM ImMil ReMil mulNr ['Im _ * _]mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ReM
normC2_rect: {in real &, forall x y, `|x + 'i * y| ^+ 2 = x ^+ 2 + y ^+ 2}. Proof. move=> x y Rx Ry; rewrite /= normCK rmorphD rmorphM /= conjCi !conj_Creal //. by rewrite mulrC mulNr -subr_sqr exprMn sqrCi mulN1r opprK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
normC2_rect
normC2_Re_Imz : `|z| ^+ 2 = 'Re z ^+ 2 + 'Im z ^+ 2. Proof. by rewrite -normC2_rect -?Crect. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
normC2_Re_Im
invC_Crectx y : (x + 'i * y)^-1 = (x^* - 'i * y^*) / `|x + 'i * y| ^+ 2. Proof. by rewrite /= invC_norm mulrC !rmorphE rmorphM /= conjCi mulNr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
invC_Crect
invC_rect: {in real &, forall x y, (x + 'i * y)^-1 = (x - 'i * y) / (x ^+ 2 + y ^+ 2)}. Proof. by move=> x y Rx Ry; rewrite invC_Crect normC2_rect ?conj_Creal. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
invC_rect
ImVx : 'Im x^-1 = - 'Im x / `|x| ^+ 2. Proof. rewrite [x in LHS]Crect invC_rect// ImMr ?(rpredV, rpredD, rpredX)//. by rewrite -mulrN Im_rect ?rpredN// -normC2_rect// -Crect. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ImV
ReVx : 'Re x^-1 = 'Re x / `|x| ^+ 2. Proof. rewrite [x in LHS]Crect invC_rect// ReMr ?(rpredV, rpredD, rpredX)//. by rewrite -mulrN Re_rect ?rpredN// -normC2_rect// -Crect. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ReV
rectC_mulrx y z : (x + 'i * y) * z = x * z + 'i * (y * z). Proof. by rewrite mulrDl mulrA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
rectC_mulr
rectC_mullx y z : z * (x + 'i * y) = z * x + 'i * (z * y). Proof. by rewrite mulrDr mulrCA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
rectC_mull
divC_Crectx1 y1 x2 y2 : (x1 + 'i * y1) / (x2 + 'i * y2) = (x1 * x2^* + y1 * y2^* + 'i * (x2^* * y1 - x1 * y2^*)) / `|x2 + 'i * y2| ^+ 2. Proof. rewrite invC_Crect// -mulrN [_ / _]rectC_mulr mulC_rect !mulrA -mulrBl. rewrite [_ * _ * y1]mulrAC -mulrDl mulrA -mulrDl !(mulrN, mulNr) opprK. by rewrite [- _ + _]addrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
divC_Crect
divC_rectx1 y1 x2 y2 : x1 \is real -> y1 \is real -> x2 \is real -> y2 \is real -> (x1 + 'i * y1) / (x2 + 'i * y2) = (x1 * x2 + y1 * y2 + 'i * (x2 * y1 - x1 * y2)) / (x2 ^+ 2 + y2 ^+ 2). Proof. by move=> *; rewrite divC_Crect normC2_rect ?conj_Creal. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
divC_rect
Im_divx y : 'Im (x / y) = ('Re y * 'Im x - 'Re x * 'Im y) / `|y| ^+ 2. Proof. by rewrite ImM ImV ReV mulrA [X in _ + X]mulrAC -mulrDl mulrN addrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
Im_div
Re_divx y : 'Re (x / y) = ('Re x * 'Re y + 'Im x * 'Im y) / `|y| ^+ 2. Proof. by rewrite ReM ImV ReV !mulrA -mulrBl mulrN opprK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
Re_div
leif_normC_Re_Crealz : `|'Re z| <= `|z| ?= iff (z \is real). Proof. rewrite -(mono_in_leif ler_sqr); try by rewrite qualifE /=. rewrite [`|'Re _| ^+ 2]normCK conj_Creal // normC2_Re_Im -expr2. rewrite addrC -leifBLR subrr (sameP (Creal_ImP _) eqP) -sqrf_eq0 eq_sym. by apply: leif_eq; rewrite -realEsqr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
leif_normC_Re_Creal
leif_Re_Crealz : 'Re z <= `|z| ?= iff (0 <= z). Proof. have ubRe: 'Re z <= `|'Re z| ?= iff (0 <= 'Re z). by rewrite ger0_def eq_sym; apply/leif_eq/real_ler_norm. congr (_ <= _ ?= iff _): (leif_trans ubRe (leif_normC_Re_Creal z)). apply/andP/idP=> [[zRge0 /Creal_ReP <- //] | z_ge0]. by have Rz := ger0_real z_ge0; rewrite (Creal_ReP _ _). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
leif_Re_Creal
eqC_semipolarx y : `|x| = `|y| -> 'Re x = 'Re y -> 0 <= 'Im x * 'Im y -> x = y. Proof. move=> eq_norm eq_Re sign_Im. rewrite [x]Crect [y]Crect eq_Re; congr (_ + 'i * _). have /eqP := congr1 (fun z => z ^+ 2) eq_norm. rewrite !normC2_Re_Im eq_Re (can_eq (addKr _)) eqf_sqr => /pred2P[] // eq_Im. rewrite eq_Im mulNr -expr2 oppr_ge0 real_exprn_even_le0 //= in sign_Im. by rewrite eq_Im (eqP sign_Im) oppr0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
eqC_semipolar
rootC_Re_maxn x y : (n > 0)%N -> y ^+ n = x -> 0 <= 'Im y -> 'Re y <= 'Re (n.-root x). Proof. by move=> n_gt0 yn_x leI0y; case_rootC=> z /= _ /(_ y n_gt0 yn_x)/argCleP[]. Qed. Let neg_unity_root n : (n > 1)%N -> exists2 w : C, w ^+ n = 1 & 'Re w < 0. Proof. move=> n_gt1; have [|w /eqP pw_0] := closed_rootP (\poly_(i < n) (1 : C)) _. by rewrite size_poly_eq ?oner_eq0 // -(subnKC n_gt1). rewrite horner_poly (eq_bigr _ (fun _ _ => mul1r _)) in pw_0. have wn1: w ^+ n = 1 by apply/eqP; rewrite -subr_eq0 subrX1 pw_0 mulr0. suffices /existsP[i ltRwi0]: [exists i : 'I_n, 'Re (w ^+ i) < 0]. by exists (w ^+ i) => //; rewrite exprAC wn1 expr1n. apply: contra_eqT (congr1 Re pw_0) => /existsPn geRw0. rewrite raddf_sum raddf0 /= (bigD1 (Ordinal (ltnW n_gt1))) //=. rewrite (Creal_ReP _ _) ?rpred1 // gt_eqF ?ltr_wpDr ?ltr01 //=. by apply: sumr_ge0 => i _; rewrite real_leNgt ?rpred0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
rootC_Re_max
Im_rootC_ge0n x : (n > 1)%N -> 0 <= 'Im (n.-root x). Proof. set y := n.-root x => n_gt1; have n_gt0 := ltnW n_gt1. apply: wlog_neg; rewrite -real_ltNge ?rpred0 // => ltIy0. suffices [z zn_x leI0z]: exists2 z, z ^+ n = x & 'Im z >= 0. by rewrite /y; case_rootC => /= y1 _ /(_ z n_gt0 zn_x)/argCleP[]. have [w wn1 ltRw0] := neg_unity_root n_gt1. wlog leRI0yw: w wn1 ltRw0 / 0 <= 'Re y * 'Im w. move=> IHw; have: 'Re y * 'Im w \is real by rewrite rpredM. case/real_ge0P=> [|/ltW leRIyw0]; first exact: IHw. apply: (IHw w^* ); rewrite ?Re_conj ?Im_conj ?mulrN ?oppr_ge0 //. by rewrite -rmorphXn wn1 rmorph1. exists (w * y); first by rewrite exprMn wn1 mul1r rootCK. rewrite [w]Crect [y]Crect mulC_rect. by rewrite Im_rect ?rpredD ?rpredN 1?rpredM // addr_ge0 // ltW ?nmulr_rgt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
Im_rootC_ge0
rootC_lt0n x : (1 < n)%N -> (n.-root x < 0) = false. Proof. set y := n.-root x => n_gt1; have n_gt0 := ltnW n_gt1. apply: negbTE; apply: wlog_neg => /negbNE lt0y; rewrite le_gtF //. have Rx: x \is real by rewrite -[x](rootCK n_gt0) rpredX // ltr0_real. have Re_y: 'Re y = y by apply/Creal_ReP; rewrite ltr0_real. have [z zn_x leR0z]: exists2 z, z ^+ n = x & 'Re z >= 0. have [w wn1 ltRw0] := neg_unity_root n_gt1. exists (w * y); first by rewrite exprMn wn1 mul1r rootCK. by rewrite ReMr ?ltr0_real // ltW // nmulr_lgt0. without loss leI0z: z zn_x leR0z / 'Im z >= 0. move=> IHz; have: 'Im z \is real by []. case/real_ge0P=> [|/ltW leIz0]; first exact: IHz. apply: (IHz z^* ); rewrite ?Re_conj ?Im_conj ?oppr_ge0 //. by rewrite -rmorphXn /= zn_x conj_Creal. by apply: le_trans leR0z _; rewrite -Re_y ?rootC_Re_max ?ltr0_real. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
rootC_lt0
rootC_ge0n x : (n > 0)%N -> (0 <= n.-root x) = (0 <= x). Proof. set y := n.-root x => n_gt0. apply/idP/idP=> [/(exprn_ge0 n) | x_ge0]; first by rewrite rootCK. rewrite -(ge_leif (leif_Re_Creal y)). have Ray: `|y| \is real by apply: normr_real. rewrite -(Creal_ReP _ Ray) rootC_Re_max ?(Creal_ImP _ Ray) //. by rewrite -normrX rootCK // ger0_norm. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
rootC_ge0
rootC_gt0n x : (n > 0)%N -> (n.-root x > 0) = (x > 0). Proof. by move=> n_gt0; rewrite !lt0r rootC_ge0 ?rootC_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
rootC_gt0
rootC_le0n x : (1 < n)%N -> (n.-root x <= 0) = (x == 0). Proof. by move=> n_gt1; rewrite le_eqVlt rootC_lt0 // orbF rootC_eq0 1?ltnW. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
rootC_le0
ler_rootCln : (n > 0)%N -> {in Num.nneg, {mono n.-root : x y / x <= y}}. Proof. move=> n_gt0 x x_ge0 y; have [y_ge0 | not_y_ge0] := boolP (0 <= y). by rewrite -(ler_pXn2r n_gt0) ?qualifE /= ?rootC_ge0 ?rootCK. rewrite (contraNF (@le_trans _ _ _ 0 _ _)) ?rootC_ge0 //. by rewrite (contraNF (le_trans x_ge0)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ler_rootCl
ler_rootCn : (n > 0)%N -> {in Num.nneg &, {mono n.-root : x y / x <= y}}. Proof. by move=> n_gt0 x y x_ge0 _; apply: ler_rootCl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ler_rootC
ltr_rootCln : (n > 0)%N -> {in Num.nneg, {mono n.-root : x y / x < y}}. Proof. by move=> n_gt0 x x_ge0 y; rewrite !lt_def ler_rootCl ?eqr_rootC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ltr_rootCl
ltr_rootCn : (n > 0)%N -> {in Num.nneg &, {mono n.-root : x y / x < y}}. Proof. by move/ler_rootC/leW_mono_in. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ltr_rootC
exprCKn x : (0 < n)%N -> 0 <= x -> n.-root (x ^+ n) = x. Proof. move=> n_gt0 x_ge0; apply/eqP. by rewrite -(eqrXn2 n_gt0) ?rootC_ge0 ?exprn_ge0 ?rootCK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
exprCK
norm_rootCn x : `|n.-root x| = n.-root `|x|. Proof. have [-> | n_gt0] := posnP n; first by rewrite !root0C normr0. by apply/eqP; rewrite -(eqrXn2 n_gt0) ?rootC_ge0 // -normrX !rootCK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
norm_rootC
rootCXn x k : (n > 0)%N -> 0 <= x -> n.-root (x ^+ k) = n.-root x ^+ k. Proof. move=> n_gt0 x_ge0; apply/eqP. by rewrite -(eqrXn2 n_gt0) ?(exprn_ge0, rootC_ge0) // 1?exprAC !rootCK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
rootCX
rootC1n : (n > 0)%N -> n.-root 1 = 1. Proof. by move/(rootCX 0)/(_ ler01). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
rootC1
rootCpXn x k : (k > 0)%N -> 0 <= x -> n.-root (x ^+ k) = n.-root x ^+ k. Proof. by case: n => [|n] k_gt0; [rewrite !root0C expr0n gtn_eqF | apply: rootCX]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
rootCpX
rootCVn x : 0 <= x -> n.-root x^-1 = (n.-root x)^-1. Proof. move=> x_ge0; have [->|n_gt0] := posnP n; first by rewrite !root0C invr0. apply/eqP. by rewrite -(eqrXn2 n_gt0) ?(invr_ge0, rootC_ge0) // !exprVn !rootCK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
rootCV
rootC_eq1n x : (n > 0)%N -> (n.-root x == 1) = (x == 1). Proof. by move=> n_gt0; rewrite -{1}(rootC1 n_gt0) eqr_rootC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
rootC_eq1
rootC_ge1n x : (n > 0)%N -> (n.-root x >= 1) = (x >= 1). Proof. by move=> n_gt0; rewrite -{1}(rootC1 n_gt0) ler_rootCl // qualifE /= ler01. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
rootC_ge1
rootC_gt1n x : (n > 0)%N -> (n.-root x > 1) = (x > 1). Proof. by move=> n_gt0; rewrite !lt_def rootC_eq1 ?rootC_ge1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
rootC_gt1
rootC_le1n x : (n > 0)%N -> 0 <= x -> (n.-root x <= 1) = (x <= 1). Proof. by move=> n_gt0 x_ge0; rewrite -{1}(rootC1 n_gt0) ler_rootCl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
rootC_le1