fact
stringlengths 8
1.54k
| type
stringclasses 19
values | library
stringclasses 8
values | imports
listlengths 1
10
| filename
stringclasses 98
values | symbolic_name
stringlengths 1
42
| docstring
stringclasses 1
value |
|---|---|---|---|---|---|---|
Rez := locked_with Re_lock ((z + z^*) / 2%:R).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
Re
| |
Imz := locked_with Im_lock ('i * (z^* - z) / 2%:R).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
Im
| |
ReEz : 'Re z = (z + z^*) / 2%:R. Proof. by rewrite ['Re _]unlock. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
ReE
| |
ImEz : 'Im z = 'i * (z^* - z) / 2%:R.
Proof. by rewrite ['Im _]unlock. Qed.
Let nz2 : 2 != 0 :> C. Proof. by rewrite pnatr_eq0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
ImE
| |
normCKCx : `|x| ^+ 2 = x^* * x. Proof. by rewrite normCK mulrC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
normCKC
| |
mul_conjC_ge0x : 0 <= x * x^*.
Proof. by rewrite -normCK exprn_ge0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
mul_conjC_ge0
| |
mul_conjC_gt0x : (0 < x * x^* ) = (x != 0).
Proof.
have [->|x_neq0] := eqVneq; first by rewrite rmorph0 mulr0.
by rewrite -normCK exprn_gt0 ?normr_gt0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
mul_conjC_gt0
| |
mul_conjC_eq0x : (x * x^* == 0) = (x == 0).
Proof. by rewrite -normCK expf_eq0 normr_eq0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
mul_conjC_eq0
| |
conjC_ge0x : (0 <= x^* ) = (0 <= x).
Proof.
wlog suffices: x / 0 <= x -> 0 <= x^*.
by move=> IH; apply/idP/idP=> /IH; rewrite ?conjCK.
rewrite [in X in X -> _]le0r => /predU1P[-> | x_gt0]; first by rewrite rmorph0.
by rewrite -(pmulr_rge0 _ x_gt0) mul_conjC_ge0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
conjC_ge0
| |
conjC_natn : (n%:R)^* = n%:R :> C. Proof. exact: rmorph_nat. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
conjC_nat
| |
conjC0: 0^* = 0 :> C. Proof. exact: rmorph0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
conjC0
| |
conjC1: 1^* = 1 :> C. Proof. exact: rmorph1. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
conjC1
| |
conjCN1: (- 1)^* = - 1 :> C. Proof. exact: rmorphN1. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
conjCN1
| |
conjC_eq0x : (x^* == 0) = (x == 0). Proof. exact: fmorph_eq0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
conjC_eq0
| |
invC_normx : x^-1 = `|x| ^- 2 * x^*.
Proof.
have [-> | nx_x] := eqVneq x 0; first by rewrite conjC0 mulr0 invr0.
by rewrite normCK invfM divfK ?conjC_eq0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
invC_norm
| |
CrealEx : (x \is real) = (x^* == x).
Proof.
rewrite realEsqr ger0_def normrX normCK.
by have [-> | /mulfI/inj_eq-> //] := eqVneq x 0; rewrite rmorph0 !eqxx.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
CrealE
| |
CrealP{x} : reflect (x^* = x) (x \is real).
Proof. by rewrite CrealE; apply: eqP. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
CrealP
| |
conj_Crealx : x \is real -> x^* = x.
Proof. by move/CrealP. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
conj_Creal
| |
conj_normCz : `|z|^* = `|z|.
Proof. by rewrite conj_Creal ?normr_real. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
conj_normC
| |
CrealJ: {mono (@conj C) : x / x \is Num.real}.
Proof. by apply: (homo_mono1 conjCK) => x xreal; rewrite conj_Creal. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
CrealJ
| |
geC0_conjx : 0 <= x -> x^* = x.
Proof. by move=> /ger0_real/CrealP. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
geC0_conj
| |
geC0_unit_expx n : 0 <= x -> (x ^+ n.+1 == 1) = (x == 1).
Proof. by move=> x_ge0; rewrite pexpr_eq1. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
geC0_unit_exp
| |
case_rootC:= rewrite /nthroot; case: (rootC_subproof _ _).
|
Ltac
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
case_rootC
| |
root0Cx : 0.-root x = 0. Proof. by case_rootC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
root0C
| |
rootCKn : (n > 0)%N -> cancel n.-root (fun x => x ^+ n).
Proof. by case: n => //= n _ x; case_rootC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
rootCK
| |
root1Cx : 1.-root x = x. Proof. exact: (@rootCK 1). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
root1C
| |
rootC0n : n.-root 0 = 0.
Proof.
have [-> | n_gt0] := posnP n; first by rewrite root0C.
by have /eqP := rootCK n_gt0 0; rewrite expf_eq0 n_gt0 /= => /eqP.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
rootC0
| |
rootC_injn : (n > 0)%N -> injective n.-root.
Proof. by move/rootCK/can_inj. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
rootC_inj
| |
eqr_rootCn : (n > 0)%N -> {mono n.-root : x y / x == y}.
Proof. by move/rootC_inj/inj_eq. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
eqr_rootC
| |
rootC_eq0n x : (n > 0)%N -> (n.-root x == 0) = (x == 0).
Proof. by move=> n_gt0; rewrite -{1}(rootC0 n) eqr_rootC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
rootC_eq0
| |
nonRealCi: ('i : C) \isn't real.
Proof. by rewrite realEsqr sqrCi oppr_ge0 lt_geF ?ltr01. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
nonRealCi
| |
neq0Ci: 'i != 0 :> C. Proof. by apply: contraNneq nonRealCi => ->. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
neq0Ci
| |
normCi: `|'i| = 1 :> C.
Proof. by apply/eqP; rewrite -(@pexpr_eq1 _ _ 2) // -normrX sqrCi normrN1. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
normCi
| |
invCi: 'i^-1 = - 'i :> C.
Proof. by rewrite -div1r -[1]opprK -sqrCi mulNr mulfK ?neq0Ci. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
invCi
| |
conjCi: 'i^* = - 'i :> C.
Proof. by rewrite -invCi invC_norm normCi expr1n invr1 mul1r. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
conjCi
| |
Crectx : x = 'Re x + 'i * 'Im x.
Proof.
rewrite !(ReE, ImE) 2!mulrA mulCii mulN1r opprB -mulrDl.
by rewrite addrACA subrr addr0 mulrDl -splitr.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
Crect
| |
eqCPx y : x = y <-> ('Re x = 'Re y) /\ ('Im x = 'Im y).
Proof. by split=> [->//|[eqRe eqIm]]; rewrite [x]Crect [y]Crect eqRe eqIm. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
eqCP
| |
eqCx y : (x == y) = ('Re x == 'Re y) && ('Im x == 'Im y).
Proof. by apply/eqP/(andPP eqP eqP) => /eqCP. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
eqC
| |
Creal_Rex : 'Re x \is real.
Proof. by rewrite ReE CrealE fmorph_div rmorph_nat rmorphD /= conjCK addrC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
Creal_Re
| |
Creal_Imx : 'Im x \is real.
Proof.
rewrite ImE CrealE fmorph_div rmorph_nat rmorphM/= rmorphB/= conjCK.
by rewrite conjCi -opprB mulrNN.
Qed.
Hint Resolve Creal_Re Creal_Im : core.
Fact Re_is_zmod_morphism : zmod_morphism Re.
Proof. by move=> x y; rewrite !ReE rmorphB addrACA -opprD mulrBl. Qed.
#[export]
HB.instance Definition _ := GRing.isZmodMorphism.Build C C Re Re_is_zmod_morphism.
#[warning="-deprecated-since-mathcomp-2.5.0", deprecated(since="mathcomp 2.5.0",
note="use `Re_is_zmod_morphism` instead")]
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
Creal_Im
| |
Re_is_additive:= Re_is_zmod_morphism.
Fact Im_is_zmod_morphism : zmod_morphism Im.
Proof.
by move=> x y; rewrite !ImE rmorphB opprD addrACA -opprD mulrBr mulrBl.
Qed.
#[export]
HB.instance Definition _ := GRing.isZmodMorphism.Build C C Im Im_is_zmod_morphism.
#[warning="-deprecated-since-mathcomp-2.5.0", deprecated(since="mathcomp 2.5.0",
note="use `Im_is_zmod_morphism` instead")]
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
Re_is_additive
| |
Im_is_additive:= Im_is_zmod_morphism.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
Im_is_additive
| |
Creal_ImPz : reflect ('Im z = 0) (z \is real).
Proof.
rewrite ImE CrealE -subr_eq0 -(can_eq (mulKf neq0Ci)) mulr0.
by rewrite -(can_eq (divfK nz2)) mul0r; apply: eqP.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
Creal_ImP
| |
Creal_RePz : reflect ('Re z = z) (z \in real).
Proof.
rewrite (sameP (Creal_ImP z) eqP) -(can_eq (mulKf neq0Ci)) mulr0.
by rewrite -(inj_eq (addrI ('Re z))) addr0 -Crect eq_sym; apply: eqP.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
Creal_ReP
| |
ReMl: {in real, forall x, {morph Re : z / x * z}}.
Proof.
by move=> x Rx z /=; rewrite !ReE rmorphM /= (conj_Creal Rx) -mulrDr -mulrA.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
ReMl
| |
ReMr: {in real, forall x, {morph Re : z / z * x}}.
Proof. by move=> x Rx z /=; rewrite mulrC ReMl // mulrC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
ReMr
| |
ImMl: {in real, forall x, {morph Im : z / x * z}}.
Proof.
by move=> x Rx z; rewrite !ImE rmorphM /= (conj_Creal Rx) -mulrBr mulrCA !mulrA.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
ImMl
| |
ImMr: {in real, forall x, {morph Im : z / z * x}}.
Proof. by move=> x Rx z /=; rewrite mulrC ImMl // mulrC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
ImMr
| |
Re_i: 'Re 'i = 0. Proof. by rewrite ReE conjCi subrr mul0r. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
Re_i
| |
Im_i: 'Im 'i = 1.
Proof.
rewrite ImE conjCi -opprD mulrN -mulr2n mulrnAr mulCii.
by rewrite mulNrn opprK divff.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
Im_i
| |
Re_conjz : 'Re z^* = 'Re z.
Proof. by rewrite !ReE addrC conjCK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
Re_conj
| |
Im_conjz : 'Im z^* = - 'Im z.
Proof. by rewrite !ImE -mulNr -mulrN opprB conjCK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
Im_conj
| |
Re_rect: {in real &, forall x y, 'Re (x + 'i * y) = x}.
Proof.
move=> x y Rx Ry; rewrite /= raddfD /= (Creal_ReP x Rx).
by rewrite ReMr // Re_i mul0r addr0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
Re_rect
| |
Im_rect: {in real &, forall x y, 'Im (x + 'i * y) = y}.
Proof.
move=> x y Rx Ry; rewrite /= raddfD /= (Creal_ImP x Rx) add0r.
by rewrite ImMr // Im_i mul1r.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
Im_rect
| |
conjC_rect: {in real &, forall x y, (x + 'i * y)^* = x - 'i * y}.
Proof.
by move=> x y Rx Ry; rewrite /= rmorphD rmorphM /= conjCi mulNr !conj_Creal.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
conjC_rect
| |
addC_rectx1 y1 x2 y2 :
(x1 + 'i * y1) + (x2 + 'i * y2) = x1 + x2 + 'i * (y1 + y2).
Proof. by rewrite addrACA -mulrDr. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
addC_rect
| |
oppC_rectx y : - (x + 'i * y) = - x + 'i * (- y).
Proof. by rewrite mulrN -opprD. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
oppC_rect
| |
subC_rectx1 y1 x2 y2 :
(x1 + 'i * y1) - (x2 + 'i * y2) = x1 - x2 + 'i * (y1 - y2).
Proof. by rewrite oppC_rect addC_rect. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
subC_rect
| |
mulC_rectx1 y1 x2 y2 : (x1 + 'i * y1) * (x2 + 'i * y2) =
x1 * x2 - y1 * y2 + 'i * (x1 * y2 + x2 * y1).
Proof.
rewrite mulrDl !mulrDr (AC (2*2) (1*4*(2*3)))/= mulrACA.
by rewrite -expr2 sqrCi mulN1r -!mulrA [_ * ('i * _)]mulrCA [_ * y1]mulrC.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
mulC_rect
| |
ImMx y : 'Im (x * y) = 'Re x * 'Im y + 'Re y * 'Im x.
Proof.
rewrite [x in LHS]Crect [y in LHS]Crect mulC_rect.
by rewrite !(Im_rect, rpredB, rpredD, rpredM).
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
ImM
| |
ImMilx : 'Im ('i * x) = 'Re x.
Proof. by rewrite ImM Re_i Im_i mul0r mulr1 add0r. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
ImMil
| |
ReMilx : 'Re ('i * x) = - 'Im x.
Proof. by rewrite -ImMil mulrA mulCii mulN1r raddfN. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
ReMil
| |
ReMirx : 'Re (x * 'i) = - 'Im x. Proof. by rewrite mulrC ReMil. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
ReMir
| |
ImMirx : 'Im (x * 'i) = 'Re x. Proof. by rewrite mulrC ImMil. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
ImMir
| |
ReMx y : 'Re (x * y) = 'Re x * 'Re y - 'Im x * 'Im y.
Proof. by rewrite -ImMil mulrCA ImM ImMil ReMil mulNr ['Im _ * _]mulrC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
ReM
| |
normC2_rect:
{in real &, forall x y, `|x + 'i * y| ^+ 2 = x ^+ 2 + y ^+ 2}.
Proof.
move=> x y Rx Ry; rewrite /= normCK rmorphD rmorphM /= conjCi !conj_Creal //.
by rewrite mulrC mulNr -subr_sqr exprMn sqrCi mulN1r opprK.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
normC2_rect
| |
normC2_Re_Imz : `|z| ^+ 2 = 'Re z ^+ 2 + 'Im z ^+ 2.
Proof. by rewrite -normC2_rect -?Crect. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
normC2_Re_Im
| |
invC_Crectx y : (x + 'i * y)^-1 = (x^* - 'i * y^*) / `|x + 'i * y| ^+ 2.
Proof. by rewrite /= invC_norm mulrC !rmorphE rmorphM /= conjCi mulNr. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
invC_Crect
| |
invC_rect:
{in real &, forall x y, (x + 'i * y)^-1 = (x - 'i * y) / (x ^+ 2 + y ^+ 2)}.
Proof. by move=> x y Rx Ry; rewrite invC_Crect normC2_rect ?conj_Creal. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
invC_rect
| |
ImVx : 'Im x^-1 = - 'Im x / `|x| ^+ 2.
Proof.
rewrite [x in LHS]Crect invC_rect// ImMr ?(rpredV, rpredD, rpredX)//.
by rewrite -mulrN Im_rect ?rpredN// -normC2_rect// -Crect.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
ImV
| |
ReVx : 'Re x^-1 = 'Re x / `|x| ^+ 2.
Proof.
rewrite [x in LHS]Crect invC_rect// ReMr ?(rpredV, rpredD, rpredX)//.
by rewrite -mulrN Re_rect ?rpredN// -normC2_rect// -Crect.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
ReV
| |
rectC_mulrx y z : (x + 'i * y) * z = x * z + 'i * (y * z).
Proof. by rewrite mulrDl mulrA. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
rectC_mulr
| |
rectC_mullx y z : z * (x + 'i * y) = z * x + 'i * (z * y).
Proof. by rewrite mulrDr mulrCA. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
rectC_mull
| |
divC_Crectx1 y1 x2 y2 :
(x1 + 'i * y1) / (x2 + 'i * y2) =
(x1 * x2^* + y1 * y2^* + 'i * (x2^* * y1 - x1 * y2^*)) /
`|x2 + 'i * y2| ^+ 2.
Proof.
rewrite invC_Crect// -mulrN [_ / _]rectC_mulr mulC_rect !mulrA -mulrBl.
rewrite [_ * _ * y1]mulrAC -mulrDl mulrA -mulrDl !(mulrN, mulNr) opprK.
by rewrite [- _ + _]addrC.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
divC_Crect
| |
divC_rectx1 y1 x2 y2 :
x1 \is real -> y1 \is real -> x2 \is real -> y2 \is real ->
(x1 + 'i * y1) / (x2 + 'i * y2) =
(x1 * x2 + y1 * y2 + 'i * (x2 * y1 - x1 * y2)) /
(x2 ^+ 2 + y2 ^+ 2).
Proof. by move=> *; rewrite divC_Crect normC2_rect ?conj_Creal. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
divC_rect
| |
Im_divx y : 'Im (x / y) = ('Re y * 'Im x - 'Re x * 'Im y) / `|y| ^+ 2.
Proof. by rewrite ImM ImV ReV mulrA [X in _ + X]mulrAC -mulrDl mulrN addrC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
Im_div
| |
Re_divx y : 'Re (x / y) = ('Re x * 'Re y + 'Im x * 'Im y) / `|y| ^+ 2.
Proof. by rewrite ReM ImV ReV !mulrA -mulrBl mulrN opprK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
Re_div
| |
leif_normC_Re_Crealz : `|'Re z| <= `|z| ?= iff (z \is real).
Proof.
rewrite -(mono_in_leif ler_sqr); try by rewrite qualifE /=.
rewrite [`|'Re _| ^+ 2]normCK conj_Creal // normC2_Re_Im -expr2.
rewrite addrC -leifBLR subrr (sameP (Creal_ImP _) eqP) -sqrf_eq0 eq_sym.
by apply: leif_eq; rewrite -realEsqr.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
leif_normC_Re_Creal
| |
leif_Re_Crealz : 'Re z <= `|z| ?= iff (0 <= z).
Proof.
have ubRe: 'Re z <= `|'Re z| ?= iff (0 <= 'Re z).
by rewrite ger0_def eq_sym; apply/leif_eq/real_ler_norm.
congr (_ <= _ ?= iff _): (leif_trans ubRe (leif_normC_Re_Creal z)).
apply/andP/idP=> [[zRge0 /Creal_ReP <- //] | z_ge0].
by have Rz := ger0_real z_ge0; rewrite (Creal_ReP _ _).
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
leif_Re_Creal
| |
eqC_semipolarx y :
`|x| = `|y| -> 'Re x = 'Re y -> 0 <= 'Im x * 'Im y -> x = y.
Proof.
move=> eq_norm eq_Re sign_Im.
rewrite [x]Crect [y]Crect eq_Re; congr (_ + 'i * _).
have /eqP := congr1 (fun z => z ^+ 2) eq_norm.
rewrite !normC2_Re_Im eq_Re (can_eq (addKr _)) eqf_sqr => /pred2P[] // eq_Im.
rewrite eq_Im mulNr -expr2 oppr_ge0 real_exprn_even_le0 //= in sign_Im.
by rewrite eq_Im (eqP sign_Im) oppr0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
eqC_semipolar
| |
rootC_Re_maxn x y :
(n > 0)%N -> y ^+ n = x -> 0 <= 'Im y -> 'Re y <= 'Re (n.-root x).
Proof.
by move=> n_gt0 yn_x leI0y; case_rootC=> z /= _ /(_ y n_gt0 yn_x)/argCleP[].
Qed.
Let neg_unity_root n : (n > 1)%N -> exists2 w : C, w ^+ n = 1 & 'Re w < 0.
Proof.
move=> n_gt1; have [|w /eqP pw_0] := closed_rootP (\poly_(i < n) (1 : C)) _.
by rewrite size_poly_eq ?oner_eq0 // -(subnKC n_gt1).
rewrite horner_poly (eq_bigr _ (fun _ _ => mul1r _)) in pw_0.
have wn1: w ^+ n = 1 by apply/eqP; rewrite -subr_eq0 subrX1 pw_0 mulr0.
suffices /existsP[i ltRwi0]: [exists i : 'I_n, 'Re (w ^+ i) < 0].
by exists (w ^+ i) => //; rewrite exprAC wn1 expr1n.
apply: contra_eqT (congr1 Re pw_0) => /existsPn geRw0.
rewrite raddf_sum raddf0 /= (bigD1 (Ordinal (ltnW n_gt1))) //=.
rewrite (Creal_ReP _ _) ?rpred1 // gt_eqF ?ltr_wpDr ?ltr01 //=.
by apply: sumr_ge0 => i _; rewrite real_leNgt ?rpred0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
rootC_Re_max
| |
Im_rootC_ge0n x : (n > 1)%N -> 0 <= 'Im (n.-root x).
Proof.
set y := n.-root x => n_gt1; have n_gt0 := ltnW n_gt1.
apply: wlog_neg; rewrite -real_ltNge ?rpred0 // => ltIy0.
suffices [z zn_x leI0z]: exists2 z, z ^+ n = x & 'Im z >= 0.
by rewrite /y; case_rootC => /= y1 _ /(_ z n_gt0 zn_x)/argCleP[].
have [w wn1 ltRw0] := neg_unity_root n_gt1.
wlog leRI0yw: w wn1 ltRw0 / 0 <= 'Re y * 'Im w.
move=> IHw; have: 'Re y * 'Im w \is real by rewrite rpredM.
case/real_ge0P=> [|/ltW leRIyw0]; first exact: IHw.
apply: (IHw w^* ); rewrite ?Re_conj ?Im_conj ?mulrN ?oppr_ge0 //.
by rewrite -rmorphXn wn1 rmorph1.
exists (w * y); first by rewrite exprMn wn1 mul1r rootCK.
rewrite [w]Crect [y]Crect mulC_rect.
by rewrite Im_rect ?rpredD ?rpredN 1?rpredM // addr_ge0 // ltW ?nmulr_rgt0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
Im_rootC_ge0
| |
rootC_lt0n x : (1 < n)%N -> (n.-root x < 0) = false.
Proof.
set y := n.-root x => n_gt1; have n_gt0 := ltnW n_gt1.
apply: negbTE; apply: wlog_neg => /negbNE lt0y; rewrite le_gtF //.
have Rx: x \is real by rewrite -[x](rootCK n_gt0) rpredX // ltr0_real.
have Re_y: 'Re y = y by apply/Creal_ReP; rewrite ltr0_real.
have [z zn_x leR0z]: exists2 z, z ^+ n = x & 'Re z >= 0.
have [w wn1 ltRw0] := neg_unity_root n_gt1.
exists (w * y); first by rewrite exprMn wn1 mul1r rootCK.
by rewrite ReMr ?ltr0_real // ltW // nmulr_lgt0.
without loss leI0z: z zn_x leR0z / 'Im z >= 0.
move=> IHz; have: 'Im z \is real by [].
case/real_ge0P=> [|/ltW leIz0]; first exact: IHz.
apply: (IHz z^* ); rewrite ?Re_conj ?Im_conj ?oppr_ge0 //.
by rewrite -rmorphXn /= zn_x conj_Creal.
by apply: le_trans leR0z _; rewrite -Re_y ?rootC_Re_max ?ltr0_real.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
rootC_lt0
| |
rootC_ge0n x : (n > 0)%N -> (0 <= n.-root x) = (0 <= x).
Proof.
set y := n.-root x => n_gt0.
apply/idP/idP=> [/(exprn_ge0 n) | x_ge0]; first by rewrite rootCK.
rewrite -(ge_leif (leif_Re_Creal y)).
have Ray: `|y| \is real by apply: normr_real.
rewrite -(Creal_ReP _ Ray) rootC_Re_max ?(Creal_ImP _ Ray) //.
by rewrite -normrX rootCK // ger0_norm.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
rootC_ge0
| |
rootC_gt0n x : (n > 0)%N -> (n.-root x > 0) = (x > 0).
Proof. by move=> n_gt0; rewrite !lt0r rootC_ge0 ?rootC_eq0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
rootC_gt0
| |
rootC_le0n x : (1 < n)%N -> (n.-root x <= 0) = (x == 0).
Proof.
by move=> n_gt1; rewrite le_eqVlt rootC_lt0 // orbF rootC_eq0 1?ltnW.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
rootC_le0
| |
ler_rootCln : (n > 0)%N -> {in Num.nneg, {mono n.-root : x y / x <= y}}.
Proof.
move=> n_gt0 x x_ge0 y; have [y_ge0 | not_y_ge0] := boolP (0 <= y).
by rewrite -(ler_pXn2r n_gt0) ?qualifE /= ?rootC_ge0 ?rootCK.
rewrite (contraNF (@le_trans _ _ _ 0 _ _)) ?rootC_ge0 //.
by rewrite (contraNF (le_trans x_ge0)).
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
ler_rootCl
| |
ler_rootCn : (n > 0)%N -> {in Num.nneg &, {mono n.-root : x y / x <= y}}.
Proof. by move=> n_gt0 x y x_ge0 _; apply: ler_rootCl. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
ler_rootC
| |
ltr_rootCln : (n > 0)%N -> {in Num.nneg, {mono n.-root : x y / x < y}}.
Proof. by move=> n_gt0 x x_ge0 y; rewrite !lt_def ler_rootCl ?eqr_rootC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
ltr_rootCl
| |
ltr_rootCn : (n > 0)%N -> {in Num.nneg &, {mono n.-root : x y / x < y}}.
Proof. by move/ler_rootC/leW_mono_in. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
ltr_rootC
| |
exprCKn x : (0 < n)%N -> 0 <= x -> n.-root (x ^+ n) = x.
Proof.
move=> n_gt0 x_ge0; apply/eqP.
by rewrite -(eqrXn2 n_gt0) ?rootC_ge0 ?exprn_ge0 ?rootCK.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
exprCK
| |
norm_rootCn x : `|n.-root x| = n.-root `|x|.
Proof.
have [-> | n_gt0] := posnP n; first by rewrite !root0C normr0.
by apply/eqP; rewrite -(eqrXn2 n_gt0) ?rootC_ge0 // -normrX !rootCK.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
norm_rootC
| |
rootCXn x k : (n > 0)%N -> 0 <= x -> n.-root (x ^+ k) = n.-root x ^+ k.
Proof.
move=> n_gt0 x_ge0; apply/eqP.
by rewrite -(eqrXn2 n_gt0) ?(exprn_ge0, rootC_ge0) // 1?exprAC !rootCK.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
rootCX
| |
rootC1n : (n > 0)%N -> n.-root 1 = 1.
Proof. by move/(rootCX 0)/(_ ler01). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
rootC1
| |
rootCpXn x k : (k > 0)%N -> 0 <= x -> n.-root (x ^+ k) = n.-root x ^+ k.
Proof.
by case: n => [|n] k_gt0; [rewrite !root0C expr0n gtn_eqF | apply: rootCX].
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
rootCpX
| |
rootCVn x : 0 <= x -> n.-root x^-1 = (n.-root x)^-1.
Proof.
move=> x_ge0; have [->|n_gt0] := posnP n; first by rewrite !root0C invr0.
apply/eqP.
by rewrite -(eqrXn2 n_gt0) ?(invr_ge0, rootC_ge0) // !exprVn !rootCK.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
rootCV
| |
rootC_eq1n x : (n > 0)%N -> (n.-root x == 1) = (x == 1).
Proof. by move=> n_gt0; rewrite -{1}(rootC1 n_gt0) eqr_rootC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
rootC_eq1
| |
rootC_ge1n x : (n > 0)%N -> (n.-root x >= 1) = (x >= 1).
Proof.
by move=> n_gt0; rewrite -{1}(rootC1 n_gt0) ler_rootCl // qualifE /= ler01.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
rootC_ge1
| |
rootC_gt1n x : (n > 0)%N -> (n.-root x > 1) = (x > 1).
Proof. by move=> n_gt0; rewrite !lt_def rootC_eq1 ?rootC_ge1. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
rootC_gt1
| |
rootC_le1n x : (n > 0)%N -> 0 <= x -> (n.-root x <= 1) = (x <= 1).
Proof. by move=> n_gt0 x_ge0; rewrite -{1}(rootC1 n_gt0) ler_rootCl. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
rootC_le1
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.