fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
rootC_lt1n x : (n > 0)%N -> 0 <= x -> (n.-root x < 1) = (x < 1). Proof. by move=> n_gt0 x_ge0; rewrite !lt_neqAle rootC_eq1 ?rootC_le1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
rootC_lt1
rootCMln x z : 0 <= x -> n.-root (x * z) = n.-root x * n.-root z. Proof. rewrite le0r => /predU1P[-> | x_gt0]; first by rewrite !(mul0r, rootC0). have [| n_gt1 | ->] := ltngtP n 1; last by rewrite !root1C. by case: n => //; rewrite !root0C mul0r. have [x_ge0 n_gt0] := (ltW x_gt0, ltnW n_gt1). have nx_gt0: 0 < n.-root x by rewrite rootC_gt0. have Rnx: n.-root x \is real by rewrite ger0_real ?ltW. apply: eqC_semipolar; last 1 first; try apply/eqP. - by rewrite ImMl // !(Im_rootC_ge0, mulr_ge0, rootC_ge0). - by rewrite -(eqrXn2 n_gt0) // -!normrX exprMn !rootCK. rewrite eq_le; apply/andP; split; last first. rewrite rootC_Re_max ?exprMn ?rootCK ?ImMl //. by rewrite mulr_ge0 ?Im_rootC_ge0 ?ltW. rewrite -[n.-root _](mulVKf (negbT (gt_eqF nx_gt0))) !(ReMl Rnx) //. rewrite ler_pM2l // rootC_Re_max ?exprMn ?exprVn ?rootCK ?mulKf ?gt_eqF //. by rewrite ImMl ?rpredV // mulr_ge0 ?invr_ge0 ?Im_rootC_ge0 ?ltW. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
rootCMl
rootCMrn x z : 0 <= x -> n.-root (z * x) = n.-root z * n.-root x. Proof. by move=> x_ge0; rewrite mulrC rootCMl // mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
rootCMr
imaginaryCE: 'i = sqrtC (-1). Proof. have : sqrtC (-1) ^+ 2 - 'i ^+ 2 == 0 by rewrite sqrCi rootCK // subrr. rewrite subr_sqr mulf_eq0 subr_eq0 addr_eq0; have [//|_/= /eqP sCN1E] := eqP. by have := @Im_rootC_ge0 2 (-1) isT; rewrite sCN1E raddfN /= Im_i ler0N1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
imaginaryCE
leif_rootC_AGM(I : finType) (A : {pred I}) (n := #|A|) E : {in A, forall i, 0 <= E i} -> n.-root (\prod_(i in A) E i) <= (\sum_(i in A) E i) / n%:R ?= iff [forall i in A, forall j in A, E i == E j]. Proof. move=> Ege0; have [n0 | n_gt0] := posnP n. rewrite n0 root0C invr0 mulr0; apply/leif_refl/forall_inP=> i. by rewrite (card0_eq n0). rewrite -(mono_in_leif (ler_pXn2r n_gt0)) ?rootCK //=; first 1 last. - by rewrite qualifE /= rootC_ge0 // prodr_ge0. - by rewrite rpred_div ?rpred_nat ?rpred_sum. exact: leif_AGM. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
leif_rootC_AGM
sqrtC0: sqrtC 0 = 0. Proof. exact: rootC0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqrtC0
sqrtC1: sqrtC 1 = 1. Proof. exact: rootC1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqrtC1
sqrtCKx : sqrtC x ^+ 2 = x. Proof. exact: rootCK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqrtCK
sqrCKx : 0 <= x -> sqrtC (x ^+ 2) = x. Proof. exact: exprCK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqrCK
sqrtC_ge0x : (0 <= sqrtC x) = (0 <= x). Proof. exact: rootC_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqrtC_ge0
sqrtC_eq0x : (sqrtC x == 0) = (x == 0). Proof. exact: rootC_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqrtC_eq0
sqrtC_gt0x : (sqrtC x > 0) = (x > 0). Proof. exact: rootC_gt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqrtC_gt0
sqrtC_lt0x : (sqrtC x < 0) = false. Proof. exact: rootC_lt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqrtC_lt0
sqrtC_le0x : (sqrtC x <= 0) = (x == 0). Proof. exact: rootC_le0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqrtC_le0
ler_sqrtC: {in Num.nneg &, {mono sqrtC : x y / x <= y}}. Proof. exact: ler_rootC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ler_sqrtC
ltr_sqrtC: {in Num.nneg &, {mono sqrtC : x y / x < y}}. Proof. exact: ltr_rootC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
ltr_sqrtC
eqr_sqrtC: {mono sqrtC : x y / x == y}. Proof. exact: eqr_rootC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
eqr_sqrtC
sqrtC_inj: injective sqrtC. Proof. exact: rootC_inj. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqrtC_inj
sqrtCM: {in Num.nneg &, {morph sqrtC : x y / x * y}}. Proof. by move=> x y _; apply: rootCMr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqrtCM
sqrtC_realx : 0 <= x -> sqrtC x \in Num.real. Proof. by rewrite -sqrtC_ge0; apply: ger0_real. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqrtC_real
sqrCK_Px : reflect (sqrtC (x ^+ 2) = x) ((0 <= 'Im x) && ~~ (x < 0)). Proof. apply: (iffP andP) => [[leI0x not_gt0x] | <-]; last first. by rewrite sqrtC_lt0 Im_rootC_ge0. have /eqP := sqrtCK (x ^+ 2); rewrite eqf_sqr => /pred2P[] // defNx. apply: sqrCK; rewrite -real_leNgt ?rpred0 // in not_gt0x; apply/Creal_ImP/le_anti; by rewrite leI0x -oppr_ge0 -raddfN -defNx Im_rootC_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqrCK_P
normC_defx : `|x| = sqrtC (x * x^* ). Proof. by rewrite -normCK sqrCK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
normC_def
norm_conjCx : `|x^*| = `|x|. Proof. by rewrite !normC_def conjCK mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
norm_conjC
normC_rect: {in real &, forall x y, `|x + 'i * y| = sqrtC (x ^+ 2 + y ^+ 2)}. Proof. by move=> x y Rx Ry; rewrite /= normC_def -normCK normC2_rect. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
normC_rect
normC_Re_Imz : `|z| = sqrtC ('Re z ^+ 2 + 'Im z ^+ 2). Proof. by rewrite normC_def -normCK normC2_Re_Im. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
normC_Re_Im
normCDeqx y : `|x + y| = `|x| + `|y| -> {t : C | `|t| == 1 & (x, y) = (`|x| * t, `|y| * t)}. Proof. move=> lin_xy; apply: sig2_eqW; pose u z := if z == 0 then 1 else z / `|z|. have uE z: (`|u z| = 1) * (`|z| * u z = z). rewrite /u; have [->|nz_z] := eqVneq; first by rewrite normr0 normr1 mul0r. by rewrite normf_div normr_id mulrCA divff ?mulr1 ?normr_eq0. have [->|nz_x] := eqVneq x 0; first by exists (u y); rewrite uE ?normr0 ?mul0r. exists (u x); rewrite uE // /u (negPf nz_x); congr (_ , _). have{lin_xy} def2xy: `|x| * `|y| *+ 2 = x * y ^* + y * x ^*. apply/(addrI (x * x^* ))/(addIr (y * y^* )); rewrite -2!{1}normCK -sqrrD. by rewrite addrA -[RHS]addrA -!mulrDr -mulrDl -rmorphD -normCK lin_xy. have def_xy: x * y^* = y * x^*. apply/eqP; rewrite -subr_eq0 -[_ == 0](@expf_eq0 _ _ 2). rewrite (canRL (subrK _) (subr_sqrDB _ _)) opprK -def2xy exprMn_n exprMn. by rewrite mulrN (@GRing.mul C).[AC (2*2) (1*4*(3*2))] -!normCK mulNrn addNr. have{def_xy def2xy} def_yx: `|y * x| = y * x^*. by apply: (mulIf nz2); rewrite !mulr_natr mulrC normrM def2xy def_xy. rewrite -{1}(divfK nz_x y) invC_norm mulrCA -{}def_yx !normrM invfM. by rewrite mulrCA divfK ?normr_eq0 // mulrAC mulrA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
normCDeq
normC_sum_eq(I : finType) (P : pred I) (F : I -> C) : `|\sum_(i | P i) F i| = \sum_(i | P i) `|F i| -> {t : C | `|t| == 1 & forall i, P i -> F i = `|F i| * t}. Proof. have [i /andP[Pi nzFi] | F0] := pickP [pred i | P i & F i != 0]; last first. exists 1 => [|i Pi]; first by rewrite normr1. by case/nandP: (F0 i) => [/negP[]// | /negbNE/eqP->]; rewrite normr0 mul0r. rewrite !(bigD1 i Pi) /= => norm_sumF; pose Q j := P j && (j != i). rewrite -normr_eq0 in nzFi; set c := F i / `|F i|; exists c => [|j Pj]. by rewrite normrM normfV normr_id divff. have [Qj | /nandP[/negP[]// | /negbNE/eqP->]] := boolP (Q j); last first. by rewrite mulrC divfK. have: `|F i + F j| = `|F i| + `|F j|. do [rewrite !(bigD1 j Qj) /=; set z := \sum_(k | _) `|_|] in norm_sumF. apply/eqP; rewrite eq_le ler_normD -(lerD2r z) -addrA -norm_sumF addrA. by rewrite (le_trans (ler_normD _ _)) // lerD2l ler_norm_sum. by case/normCDeq=> k _ [/(canLR (mulKf nzFi)) <-]; rewrite -(mulrC (F i)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
normC_sum_eq
normC_sum_eq1(I : finType) (P : pred I) (F : I -> C) : `|\sum_(i | P i) F i| = (\sum_(i | P i) `|F i|) -> (forall i, P i -> `|F i| = 1) -> {t : C | `|t| == 1 & forall i, P i -> F i = t}. Proof. case/normC_sum_eq=> t t1 defF normF. by exists t => // i Pi; rewrite defF // normF // mul1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
normC_sum_eq1
normC_sum_upper(I : finType) (P : pred I) (F G : I -> C) : (forall i, P i -> `|F i| <= G i) -> \sum_(i | P i) F i = \sum_(i | P i) G i -> forall i, P i -> F i = G i. Proof. set sumF := \sum_(i | _) _; set sumG := \sum_(i | _) _ => leFG eq_sumFG. have posG i: P i -> 0 <= G i by move/leFG; apply: le_trans. have norm_sumG: `|sumG| = sumG by rewrite ger0_norm ?sumr_ge0. have norm_sumF: `|sumF| = \sum_(i | P i) `|F i|. apply/eqP; rewrite eq_le ler_norm_sum eq_sumFG norm_sumG -subr_ge0 -sumrB. by rewrite sumr_ge0 // => i Pi; rewrite subr_ge0 ?leFG. have [t _ defF] := normC_sum_eq norm_sumF. have [/(psumr_eq0P posG) G0 i Pi | nz_sumG] := eqVneq sumG 0. by apply/eqP; rewrite G0 // -normr_eq0 eq_le normr_ge0 -(G0 i Pi) leFG. have t1: t = 1. apply: (mulfI nz_sumG); rewrite mulr1 -{1}norm_sumG -eq_sumFG norm_sumF. by rewrite mulr_suml -(eq_bigr _ defF). have /psumr_eq0P eqFG i: P i -> 0 <= G i - F i. by move=> Pi; rewrite subr_ge0 defF // t1 mulr1 leFG. move=> i /eqFG/(canRL (subrK _))->; rewrite ?add0r //. by rewrite sumrB -/sumF eq_sumFG subrr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
normC_sum_upper
normCBeqx y : `|x - y| = `|x| - `|y| -> {t | `|t| == 1 & (x, y) = (`|x| * t, `|y| * t)}. Proof. set z := x - y; rewrite -(subrK y x) -/z => /(canLR (subrK _))/esym-Dx. have [t t_1 [Dz Dy]] := normCDeq Dx. by exists t; rewrite // Dx mulrDl -Dz -Dy. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
normCBeq
sqrtC:= 2.-root.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
sqrtC
deg2_poly_factor: p = a *: ('X - r1%:P) * ('X - r2%:P). Proof. by apply: deg2_poly_factor; rewrite ?pnatr_eq0// sqrtCK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_factor
deg2_poly_root1: root p r1. Proof. by apply: deg2_poly_root1; rewrite ?pnatr_eq0// sqrtCK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_root1
deg2_poly_root2: root p r2. Proof. by apply: deg2_poly_root2; rewrite ?pnatr_eq0// sqrtCK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_root2
deg2_poly_factor: p = ('X - r1%:P) * ('X - r2%:P). Proof. by apply: deg2_poly_factor; rewrite ?pnatr_eq0// sqrtCK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_factor
deg2_poly_root1: root p r1. Proof. by apply: deg2_poly_root1; rewrite ?pnatr_eq0// sqrtCK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_root1
deg2_poly_root2: root p r2. Proof. by apply: deg2_poly_root2; rewrite ?pnatr_eq0// sqrtCK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_root2
deg2_poly_minx : p.[- b / (2 * a)] <= p.[x]. Proof. rewrite [p]deg2_poly_canonical ?pnatr_eq0// -/a -/b -/c /delta !hornerE/=. by rewrite ler_pM2l// lerD2r addrC mulNr subrr expr0n sqr_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_min
deg2_poly_minE: p.[- b / (2 * a)] = - delta / (4 * a). Proof. rewrite [p]deg2_poly_canonical ?pnatr_eq0// -/a -/b -/c -/delta !hornerE/=. rewrite [X in X^+2]addrC [in LHS]mulNr subrr expr0n add0r mulNr. by rewrite mulrC mulNr invfM mulrA mulfVK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_minE
deg2_poly_gt0: reflect (forall x, 0 < p.[x]) (delta < 0). Proof. apply/(iffP idP) => [dlt0 x | /(_ (- b / (2 * a)))]; last first. by rewrite deg2_poly_minE ltr_pdivlMr// mul0r oppr_gt0. apply: lt_le_trans (deg2_poly_min _). by rewrite deg2_poly_minE ltr_pdivlMr// mul0r oppr_gt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_gt0
deg2_poly_ge0: reflect (forall x, 0 <= p.[x]) (delta <= 0). Proof. apply/(iffP idP) => [dlt0 x | /(_ (- b / (2 * a)))]; last first. by rewrite deg2_poly_minE ler_pdivlMr// mul0r oppr_ge0. apply: le_trans (deg2_poly_min _). by rewrite deg2_poly_minE ler_pdivlMr// mul0r oppr_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_ge0
deg2_poly_maxx : p.[x] <= p.[- b / (2 * a)]. Proof. by rewrite -lerN2 -!hornerN -b2a deg2_poly_min// coefN oppr_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_max
deg2_poly_maxE: p.[- b / (2 * a)] = - delta / (4 * a). Proof. apply/eqP; rewrite [eqbRHS]mulNr -eqr_oppLR -hornerN -b2a. by rewrite deg2_poly_minE// deltaN coefN mulrN divrNN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_maxE
deg2_poly_lt0: reflect (forall x, p.[x] < 0) (delta < 0). Proof. rewrite -deltaN; apply/(iffP (deg2_poly_gt0 _ _)); rewrite ?coefN ?oppr_ge0//. - by move=> gt0 x; rewrite -oppr_gt0 -hornerN gt0. - by move=> lt0 x; rewrite hornerN oppr_gt0 lt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_lt0
deg2_poly_le0: reflect (forall x, p.[x] <= 0) (delta <= 0). Proof. rewrite -deltaN; apply/(iffP (deg2_poly_ge0 _ _)); rewrite ?coefN ?oppr_ge0//. - by move=> ge0 x; rewrite -oppr_ge0 -hornerN ge0. - by move=> le0 x; rewrite hornerN oppr_ge0 le0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_le0
deg2_poly_factor: 0 <= delta -> p = a *: ('X - r1%:P) * ('X - r2%:P). Proof. by move=> dge0; apply: deg2_poly_factor; rewrite ?sqr_sqrtr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_factor
deg2_poly_root1: 0 <= delta -> root p r1. Proof. by move=> dge0; apply: deg2_poly_root1; rewrite ?sqr_sqrtr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_root1
deg2_poly_root2: 0 <= delta -> root p r2. Proof. by move=> dge0; apply: deg2_poly_root2; rewrite ?sqr_sqrtr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_root2
deg2_poly_noroot: reflect (forall x, ~~ root p x) (delta < 0). Proof. apply/(iffP idP) => [dlt0 x | /(_ r1)]. case: ltgtP aneq0 => [agt0 _|alt0 _|//]; rewrite rootE; last first. exact/lt0r_neq0/(deg2_poly_gt0 degp (ltW alt0)). rewrite -oppr_eq0 -hornerN. apply/lt0r_neq0/deg2_poly_gt0; rewrite ?size_polyN ?coefN ?oppr_ge0 ?ltW//. by rewrite sqrrN -mulrA mulrNN mulrA. by rewrite ltNge; apply: contraNN => ?; apply: deg2_poly_root1. Qed. Hypothesis age0 : 0 <= a. Let agt0 : 0 < a. Proof. by rewrite lt_def aneq0. Qed. Let a2gt0 : 0 < 2 * a. Proof. by rewrite mulr_gt0 ?ltr0n. Qed. Let a4gt0 : 0 < 4 * a. Proof. by rewrite mulr_gt0 ?ltr0n. Qed. Let aa4gt0 : 0 < 4 * a * a. Proof. by rewrite mulr_gt0 ?ltr0n. Qed. Let xb4 x : (x + b / (2 * a)) ^+ 2 * (4 * a * a) = (x * (2 * a) + b) ^+ 2. Proof. have -> : 4 * a * a = (2 * a) ^+ 2 by rewrite expr2 mulrACA -natrM mulrA. by rewrite -exprMn mulrDl mulfVK ?mulf_neq0 ?pnatr_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_noroot
deg2_poly_gt0lx : x < r1 -> 0 < p.[x]. Proof. move=> xltr1; have [? | dge0] := ltP delta 0; first exact: deg2_poly_gt0. have {}xltr1 : sqrt delta < - (x * (2 * a) + b). by rewrite ltrNr -ltrBrDr addrC -ltr_pdivlMr. rewrite [p]deg2_poly_canonical// -/a -/b -/c -/delta !hornerE/=. rewrite mulr_gt0// subr_gt0 ltr_pdivrMr// xb4 -sqrrN. rewrite -ltr_sqrt ?sqrtr_sqr ?(lt_le_trans xltr1) ?ler_norm//. by rewrite exprn_gt0 ?(le_lt_trans _ xltr1) ?sqrtr_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_gt0l
deg2_poly_gt0rx : r2 < x -> 0 < p.[x]. Proof. move=> xgtr2; have [? | dge0] := ltP delta 0; first exact: deg2_poly_gt0. have {}xgtr2 : sqrt delta < x * (2 * a) + b. by rewrite -ltrBlDr addrC -ltr_pdivrMr. rewrite [p]deg2_poly_canonical// -/a -/b -/c -/delta !hornerE/=. rewrite mulr_gt0// subr_gt0 ltr_pdivrMr// xb4. rewrite -ltr_sqrt ?sqrtr_sqr ?(lt_le_trans xgtr2) ?ler_norm//. by rewrite exprn_gt0 ?(le_lt_trans _ xgtr2) ?sqrtr_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_gt0r
deg2_poly_lt0mx : r1 < x < r2 -> p.[x] < 0. Proof. move=> /andP[r1ltx xltr2]. have [dle0 | dgt0] := leP delta 0. by move: (lt_trans r1ltx xltr2); rewrite /r1 /r2 ler0_sqrtr// oppr0 ltxx. rewrite [p]deg2_poly_canonical// !hornerE/= -/a -/b -/c -/delta. rewrite pmulr_rlt0// subr_lt0 ltr_pdivlMr// xb4 -ltr_sqrt// sqrtr_sqr ltr_norml. by rewrite -ltrBlDr addrC -ltr_pdivrMr// r1ltx -ltrBrDr addrC -ltr_pdivlMr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_lt0m
deg2_poly_ge0lx : x <= r1 -> 0 <= p.[x]. Proof. rewrite le_eqVlt => /orP[/eqP->|xltr1]; last exact/ltW/deg2_poly_gt0l. have [dge0|dlt0] := leP 0 delta; last by apply: deg2_poly_ge0 => //; apply: ltW. by rewrite le_eqVlt (rootP (deg2_poly_root1 dge0)) eqxx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_ge0l
deg2_poly_ge0rx : r2 <= x -> 0 <= p.[x]. Proof. rewrite le_eqVlt => /orP[/eqP<-|xgtr2]; last exact/ltW/deg2_poly_gt0r. have [dge0|dlt0] := leP 0 delta; last by apply: deg2_poly_ge0 => //; apply: ltW. by rewrite le_eqVlt (rootP (deg2_poly_root2 dge0)) eqxx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_ge0r
deg2_poly_le0mx : 0 <= delta -> r1 <= x <= r2 -> p.[x] <= 0. Proof. move=> dge0; rewrite le_eqVlt andb_orl => /orP[/andP[/eqP<- _]|]. by rewrite le_eqVlt (rootP (deg2_poly_root1 dge0)) eqxx. rewrite le_eqVlt andb_orr => /orP[/andP[_ /eqP->]|]. by rewrite le_eqVlt (rootP (deg2_poly_root2 dge0)) eqxx. by move=> ?; apply/ltW/deg2_poly_lt0m. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_le0m
deg2_poly_lt0lx : x < r1 -> p.[x] < 0. Proof. by move=> ?; rewrite -oppr_gt0 -hornerN deg2_poly_gt0l// deltaN r1N. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_lt0l
deg2_poly_lt0rx : r2 < x -> p.[x] < 0. Proof. by move=> ?; rewrite -oppr_gt0 -hornerN deg2_poly_gt0r// deltaN r2N. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_lt0r
deg2_poly_gt0mx : r1 < x < r2 -> 0 < p.[x]. Proof. by move=> ?; rewrite -oppr_lt0 -hornerN deg2_poly_lt0m// deltaN r1N r2N. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_gt0m
deg2_poly_le0lx : x <= r1 -> p.[x] <= 0. Proof. by move=> ?; rewrite -oppr_ge0 -hornerN deg2_poly_ge0l// deltaN r1N. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_le0l
deg2_poly_le0rx : r2 <= x -> p.[x] <= 0. Proof. by move=> ?; rewrite -oppr_ge0 -hornerN deg2_poly_ge0r// deltaN r2N. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_le0r
deg2_poly_ge0mx : 0 <= delta -> r1 <= x <= r2 -> 0 <= p.[x]. Proof. by move=> ? ?; rewrite -oppr_le0 -hornerN deg2_poly_le0m ?deltaN// r1N r2N. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_ge0m
deg2_poly_minx : p.[- b / 2] <= p.[x]. Proof. by rewrite -a2 deg2_poly_min -/a ?a1 ?ler01. Qed. Let deltam : delta = b ^+ 2 - 4 * a * c. Proof. by rewrite a1 mulr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_min
deg2_poly_minE: p.[- b / 2] = - delta / 4. Proof. by rewrite -a2 -a4 deltam deg2_poly_minE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_minE
deg2_poly_gt0: reflect (forall x, 0 < p.[x]) (delta < 0). Proof. by rewrite deltam; apply: deg2_poly_gt0; rewrite // -/a a1 ler01. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_gt0
deg2_poly_ge0: reflect (forall x, 0 <= p.[x]) (delta <= 0). Proof. by rewrite deltam; apply: deg2_poly_ge0; rewrite // -/a a1 ler01. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_ge0
deg2_poly_factor: 0 <= delta -> p = ('X - r1%:P) * ('X - r2%:P). Proof. by move=> dge0; apply: deg2_poly_factor; rewrite ?sqr_sqrtr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_factor
deg2_poly_root1: 0 <= delta -> root p r1. Proof. by move=> dge0; apply: deg2_poly_root1; rewrite ?sqr_sqrtr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_root1
deg2_poly_root2: 0 <= delta -> root p r2. Proof. by move=> dge0; apply: deg2_poly_root2; rewrite ?sqr_sqrtr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_root2
deg2_poly_noroot: reflect (forall x, ~~ root p x) (delta < 0). Proof. by rewrite deltam; apply: deg2_poly_noroot. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_noroot
deg2_poly_gt0lx : x < r1 -> 0 < p.[x]. Proof. by move=> ?; apply: deg2_poly_gt0l; rewrite // -/a ?a1 ?ler01 ?mulr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_gt0l
deg2_poly_gt0rx : r2 < x -> 0 < p.[x]. Proof. by move=> ?; apply: deg2_poly_gt0r; rewrite // -/a ?a1 ?ler01 ?mulr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_gt0r
deg2_poly_lt0mx : r1 < x < r2 -> p.[x] < 0. Proof. by move=> ?; apply: deg2_poly_lt0m; rewrite // -/a ?a1 ?ler01 ?mulr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_lt0m
deg2_poly_ge0lx : x <= r1 -> 0 <= p.[x]. Proof. by move=> ?; apply: deg2_poly_ge0l; rewrite // -/a ?a1 ?ler01 ?mulr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_ge0l
deg2_poly_ge0rx : r2 <= x -> 0 <= p.[x]. Proof. by move=> ?; apply: deg2_poly_ge0r; rewrite // -/a ?a1 ?ler01 ?mulr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_ge0r
deg2_poly_le0mx : 0 <= delta -> r1 <= x <= r2 -> p.[x] <= 0. move=> dge0 xm. by apply: deg2_poly_le0m; rewrite -/a -/b -/c ?a1 ?mulr1 -/delta ?ler01. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg2_poly_le0m
deg_le2_poly_delta_ge0: 0 <= a -> (forall x, 0 <= p.[x]) -> delta <= 0. Proof. move=> age0 pge0; move: degp; rewrite leq_eqVlt => /orP[/eqP|] degp'. exact/(Real.deg2_poly_ge0 degp' age0). have a0 : a = 0 by rewrite /a nth_default. rewrite /delta a0 mulr0 mul0r subr0 exprn_even_le0//=. have [//|/eqP nzb] := eqP; move: (pge0 ((- 1 - c) / b)). have -> : p = b *: 'X + c%:P. apply/polyP => + /[!coefE] => -[|[|i]] /=; rewrite !Monoid.simpm//. by rewrite nth_default// -ltnS (leq_trans degp'). by rewrite !hornerE/= mulrAC mulfV// mul1r subrK ler0N1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg_le2_poly_delta_ge0
deg_le2_poly_delta_le0: a <= 0 -> (forall x, p.[x] <= 0) -> delta <= 0. Proof. move=> ale0 ple0; rewrite /delta -sqrrN -[c]opprK mulrN -mulNr -[-(4 * a)]mulrN. rewrite -!coefN deg_le2_poly_delta_ge0 ?size_polyN ?coefN ?oppr_ge0// => x. by rewrite hornerN oppr_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg_le2_poly_delta_le0
deg_le2_poly_ge0: (forall x, 0 <= p.[x]) -> delta <= 0. Proof. have [age0|alt0] := leP 0 a; first exact: deg_le2_poly_delta_ge0. move=> pge0; move: degp; rewrite leq_eqVlt => /orP[/eqP|] degp'; last first. by move: alt0; rewrite /a nth_default ?ltxx. have [//|dge0] := leP delta 0. pose r1 := (- b - sqrt delta) / (2 * a). pose r2 := (- b + sqrt delta) / (2 * a). pose x0 := Num.max (r1 + 1) (r2 + 1). move: (pge0 x0); rewrite (Real.deg2_poly_factor degp' (ltW dge0)). rewrite !hornerE/= -mulrA nmulr_rge0// leNgt => /negbTE<-. by apply: mulr_gt0; rewrite subr_gt0 lt_max ltrDl ltr01 ?orbT. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg_le2_poly_ge0
deg_le2_poly_le0: (forall x, p.[x] <= 0) -> delta <= 0. Proof. move=> ple0; rewrite /delta -sqrrN -[c]opprK mulrN -mulNr -[-(4 * a)]mulrN. by rewrite -!coefN deg_le2_poly_ge0 ?size_polyN// => x; rewrite hornerN oppr_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly orderedzmod numdomain" ]
algebra/num_theory/numfield.v
deg_le2_poly_le0
DefinitionPOrderedZmodule := { R of Order.isPOrder ring_display R & GRing.Zmodule R }.
HB.structure
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly" ]
algebra/num_theory/orderedzmod.v
Definition
ler:= (@Order.le ring_display _) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly" ]
algebra/num_theory/orderedzmod.v
ler
ltr:= (@Order.lt ring_display _) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly" ]
algebra/num_theory/orderedzmod.v
ltr
ger:= (@Order.ge ring_display _) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly" ]
algebra/num_theory/orderedzmod.v
ger
gtr:= (@Order.gt ring_display _) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly" ]
algebra/num_theory/orderedzmod.v
gtr
lerif:= (@Order.leif ring_display _) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly" ]
algebra/num_theory/orderedzmod.v
lerif
lterif:= (@Order.lteif ring_display _) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly" ]
algebra/num_theory/orderedzmod.v
lterif
comparabler:= (@Order.comparable ring_display _) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly" ]
algebra/num_theory/orderedzmod.v
comparabler
maxr:= (@Order.max ring_display _).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly" ]
algebra/num_theory/orderedzmod.v
maxr
minr:= (@Order.min ring_display _).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly" ]
algebra/num_theory/orderedzmod.v
minr
pos_num_pred:= fun x : R => 0 < x.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly" ]
algebra/num_theory/orderedzmod.v
pos_num_pred
pos_num: qualifier 0 R := [qualify x | pos_num_pred x].
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly" ]
algebra/num_theory/orderedzmod.v
pos_num
neg_num_pred:= fun x : R => x < 0.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly" ]
algebra/num_theory/orderedzmod.v
neg_num_pred
neg_num: qualifier 0 R := [qualify x : R | neg_num_pred x].
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly" ]
algebra/num_theory/orderedzmod.v
neg_num
nneg_num_pred:= fun x : R => 0 <= x.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly" ]
algebra/num_theory/orderedzmod.v
nneg_num_pred
nneg_num: qualifier 0 R := [qualify x : R | nneg_num_pred x].
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly" ]
algebra/num_theory/orderedzmod.v
nneg_num
npos_num_pred:= fun x : R => x <= 0.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly" ]
algebra/num_theory/orderedzmod.v
npos_num_pred
npos_num: qualifier 0 R := [qualify x : R | npos_num_pred x].
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly" ]
algebra/num_theory/orderedzmod.v
npos_num
real_num_pred:= fun x : R => (0 <= x) || (x <= 0).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly" ]
algebra/num_theory/orderedzmod.v
real_num_pred
real_num: qualifier 0 R := [qualify x : R | real_num_pred x].
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly" ]
algebra/num_theory/orderedzmod.v
real_num
Rpos_pred:= pos_num_pred (only parsing). #[deprecated(since="mathcomp 2.5.0",note="Use pos_num instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice", "From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup", "From mathcomp Require Import ssralg poly" ]
algebra/num_theory/orderedzmod.v
Rpos_pred