fact
stringlengths 8
1.54k
| type
stringclasses 19
values | library
stringclasses 8
values | imports
listlengths 1
10
| filename
stringclasses 98
values | symbolic_name
stringlengths 1
42
| docstring
stringclasses 1
value |
|---|---|---|---|---|---|---|
rootC_lt1n x : (n > 0)%N -> 0 <= x -> (n.-root x < 1) = (x < 1).
Proof. by move=> n_gt0 x_ge0; rewrite !lt_neqAle rootC_eq1 ?rootC_le1. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
rootC_lt1
| |
rootCMln x z : 0 <= x -> n.-root (x * z) = n.-root x * n.-root z.
Proof.
rewrite le0r => /predU1P[-> | x_gt0]; first by rewrite !(mul0r, rootC0).
have [| n_gt1 | ->] := ltngtP n 1; last by rewrite !root1C.
by case: n => //; rewrite !root0C mul0r.
have [x_ge0 n_gt0] := (ltW x_gt0, ltnW n_gt1).
have nx_gt0: 0 < n.-root x by rewrite rootC_gt0.
have Rnx: n.-root x \is real by rewrite ger0_real ?ltW.
apply: eqC_semipolar; last 1 first; try apply/eqP.
- by rewrite ImMl // !(Im_rootC_ge0, mulr_ge0, rootC_ge0).
- by rewrite -(eqrXn2 n_gt0) // -!normrX exprMn !rootCK.
rewrite eq_le; apply/andP; split; last first.
rewrite rootC_Re_max ?exprMn ?rootCK ?ImMl //.
by rewrite mulr_ge0 ?Im_rootC_ge0 ?ltW.
rewrite -[n.-root _](mulVKf (negbT (gt_eqF nx_gt0))) !(ReMl Rnx) //.
rewrite ler_pM2l // rootC_Re_max ?exprMn ?exprVn ?rootCK ?mulKf ?gt_eqF //.
by rewrite ImMl ?rpredV // mulr_ge0 ?invr_ge0 ?Im_rootC_ge0 ?ltW.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
rootCMl
| |
rootCMrn x z : 0 <= x -> n.-root (z * x) = n.-root z * n.-root x.
Proof. by move=> x_ge0; rewrite mulrC rootCMl // mulrC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
rootCMr
| |
imaginaryCE: 'i = sqrtC (-1).
Proof.
have : sqrtC (-1) ^+ 2 - 'i ^+ 2 == 0 by rewrite sqrCi rootCK // subrr.
rewrite subr_sqr mulf_eq0 subr_eq0 addr_eq0; have [//|_/= /eqP sCN1E] := eqP.
by have := @Im_rootC_ge0 2 (-1) isT; rewrite sCN1E raddfN /= Im_i ler0N1.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
imaginaryCE
| |
leif_rootC_AGM(I : finType) (A : {pred I}) (n := #|A|) E :
{in A, forall i, 0 <= E i} ->
n.-root (\prod_(i in A) E i) <= (\sum_(i in A) E i) / n%:R
?= iff [forall i in A, forall j in A, E i == E j].
Proof.
move=> Ege0; have [n0 | n_gt0] := posnP n.
rewrite n0 root0C invr0 mulr0; apply/leif_refl/forall_inP=> i.
by rewrite (card0_eq n0).
rewrite -(mono_in_leif (ler_pXn2r n_gt0)) ?rootCK //=; first 1 last.
- by rewrite qualifE /= rootC_ge0 // prodr_ge0.
- by rewrite rpred_div ?rpred_nat ?rpred_sum.
exact: leif_AGM.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
leif_rootC_AGM
| |
sqrtC0: sqrtC 0 = 0. Proof. exact: rootC0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
sqrtC0
| |
sqrtC1: sqrtC 1 = 1. Proof. exact: rootC1. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
sqrtC1
| |
sqrtCKx : sqrtC x ^+ 2 = x. Proof. exact: rootCK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
sqrtCK
| |
sqrCKx : 0 <= x -> sqrtC (x ^+ 2) = x. Proof. exact: exprCK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
sqrCK
| |
sqrtC_ge0x : (0 <= sqrtC x) = (0 <= x). Proof. exact: rootC_ge0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
sqrtC_ge0
| |
sqrtC_eq0x : (sqrtC x == 0) = (x == 0). Proof. exact: rootC_eq0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
sqrtC_eq0
| |
sqrtC_gt0x : (sqrtC x > 0) = (x > 0). Proof. exact: rootC_gt0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
sqrtC_gt0
| |
sqrtC_lt0x : (sqrtC x < 0) = false. Proof. exact: rootC_lt0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
sqrtC_lt0
| |
sqrtC_le0x : (sqrtC x <= 0) = (x == 0). Proof. exact: rootC_le0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
sqrtC_le0
| |
ler_sqrtC: {in Num.nneg &, {mono sqrtC : x y / x <= y}}.
Proof. exact: ler_rootC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
ler_sqrtC
| |
ltr_sqrtC: {in Num.nneg &, {mono sqrtC : x y / x < y}}.
Proof. exact: ltr_rootC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
ltr_sqrtC
| |
eqr_sqrtC: {mono sqrtC : x y / x == y}.
Proof. exact: eqr_rootC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
eqr_sqrtC
| |
sqrtC_inj: injective sqrtC.
Proof. exact: rootC_inj. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
sqrtC_inj
| |
sqrtCM: {in Num.nneg &, {morph sqrtC : x y / x * y}}.
Proof. by move=> x y _; apply: rootCMr. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
sqrtCM
| |
sqrtC_realx : 0 <= x -> sqrtC x \in Num.real.
Proof. by rewrite -sqrtC_ge0; apply: ger0_real. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
sqrtC_real
| |
sqrCK_Px : reflect (sqrtC (x ^+ 2) = x) ((0 <= 'Im x) && ~~ (x < 0)).
Proof.
apply: (iffP andP) => [[leI0x not_gt0x] | <-]; last first.
by rewrite sqrtC_lt0 Im_rootC_ge0.
have /eqP := sqrtCK (x ^+ 2); rewrite eqf_sqr => /pred2P[] // defNx.
apply: sqrCK; rewrite -real_leNgt ?rpred0 // in not_gt0x;
apply/Creal_ImP/le_anti;
by rewrite leI0x -oppr_ge0 -raddfN -defNx Im_rootC_ge0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
sqrCK_P
| |
normC_defx : `|x| = sqrtC (x * x^* ).
Proof. by rewrite -normCK sqrCK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
normC_def
| |
norm_conjCx : `|x^*| = `|x|.
Proof. by rewrite !normC_def conjCK mulrC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
norm_conjC
| |
normC_rect:
{in real &, forall x y, `|x + 'i * y| = sqrtC (x ^+ 2 + y ^+ 2)}.
Proof. by move=> x y Rx Ry; rewrite /= normC_def -normCK normC2_rect. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
normC_rect
| |
normC_Re_Imz : `|z| = sqrtC ('Re z ^+ 2 + 'Im z ^+ 2).
Proof. by rewrite normC_def -normCK normC2_Re_Im. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
normC_Re_Im
| |
normCDeqx y :
`|x + y| = `|x| + `|y| ->
{t : C | `|t| == 1 & (x, y) = (`|x| * t, `|y| * t)}.
Proof.
move=> lin_xy; apply: sig2_eqW; pose u z := if z == 0 then 1 else z / `|z|.
have uE z: (`|u z| = 1) * (`|z| * u z = z).
rewrite /u; have [->|nz_z] := eqVneq; first by rewrite normr0 normr1 mul0r.
by rewrite normf_div normr_id mulrCA divff ?mulr1 ?normr_eq0.
have [->|nz_x] := eqVneq x 0; first by exists (u y); rewrite uE ?normr0 ?mul0r.
exists (u x); rewrite uE // /u (negPf nz_x); congr (_ , _).
have{lin_xy} def2xy: `|x| * `|y| *+ 2 = x * y ^* + y * x ^*.
apply/(addrI (x * x^* ))/(addIr (y * y^* )); rewrite -2!{1}normCK -sqrrD.
by rewrite addrA -[RHS]addrA -!mulrDr -mulrDl -rmorphD -normCK lin_xy.
have def_xy: x * y^* = y * x^*.
apply/eqP; rewrite -subr_eq0 -[_ == 0](@expf_eq0 _ _ 2).
rewrite (canRL (subrK _) (subr_sqrDB _ _)) opprK -def2xy exprMn_n exprMn.
by rewrite mulrN (@GRing.mul C).[AC (2*2) (1*4*(3*2))] -!normCK mulNrn addNr.
have{def_xy def2xy} def_yx: `|y * x| = y * x^*.
by apply: (mulIf nz2); rewrite !mulr_natr mulrC normrM def2xy def_xy.
rewrite -{1}(divfK nz_x y) invC_norm mulrCA -{}def_yx !normrM invfM.
by rewrite mulrCA divfK ?normr_eq0 // mulrAC mulrA.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
normCDeq
| |
normC_sum_eq(I : finType) (P : pred I) (F : I -> C) :
`|\sum_(i | P i) F i| = \sum_(i | P i) `|F i| ->
{t : C | `|t| == 1 & forall i, P i -> F i = `|F i| * t}.
Proof.
have [i /andP[Pi nzFi] | F0] := pickP [pred i | P i & F i != 0]; last first.
exists 1 => [|i Pi]; first by rewrite normr1.
by case/nandP: (F0 i) => [/negP[]// | /negbNE/eqP->]; rewrite normr0 mul0r.
rewrite !(bigD1 i Pi) /= => norm_sumF; pose Q j := P j && (j != i).
rewrite -normr_eq0 in nzFi; set c := F i / `|F i|; exists c => [|j Pj].
by rewrite normrM normfV normr_id divff.
have [Qj | /nandP[/negP[]// | /negbNE/eqP->]] := boolP (Q j); last first.
by rewrite mulrC divfK.
have: `|F i + F j| = `|F i| + `|F j|.
do [rewrite !(bigD1 j Qj) /=; set z := \sum_(k | _) `|_|] in norm_sumF.
apply/eqP; rewrite eq_le ler_normD -(lerD2r z) -addrA -norm_sumF addrA.
by rewrite (le_trans (ler_normD _ _)) // lerD2l ler_norm_sum.
by case/normCDeq=> k _ [/(canLR (mulKf nzFi)) <-]; rewrite -(mulrC (F i)).
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
normC_sum_eq
| |
normC_sum_eq1(I : finType) (P : pred I) (F : I -> C) :
`|\sum_(i | P i) F i| = (\sum_(i | P i) `|F i|) ->
(forall i, P i -> `|F i| = 1) ->
{t : C | `|t| == 1 & forall i, P i -> F i = t}.
Proof.
case/normC_sum_eq=> t t1 defF normF.
by exists t => // i Pi; rewrite defF // normF // mul1r.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
normC_sum_eq1
| |
normC_sum_upper(I : finType) (P : pred I) (F G : I -> C) :
(forall i, P i -> `|F i| <= G i) ->
\sum_(i | P i) F i = \sum_(i | P i) G i ->
forall i, P i -> F i = G i.
Proof.
set sumF := \sum_(i | _) _; set sumG := \sum_(i | _) _ => leFG eq_sumFG.
have posG i: P i -> 0 <= G i by move/leFG; apply: le_trans.
have norm_sumG: `|sumG| = sumG by rewrite ger0_norm ?sumr_ge0.
have norm_sumF: `|sumF| = \sum_(i | P i) `|F i|.
apply/eqP; rewrite eq_le ler_norm_sum eq_sumFG norm_sumG -subr_ge0 -sumrB.
by rewrite sumr_ge0 // => i Pi; rewrite subr_ge0 ?leFG.
have [t _ defF] := normC_sum_eq norm_sumF.
have [/(psumr_eq0P posG) G0 i Pi | nz_sumG] := eqVneq sumG 0.
by apply/eqP; rewrite G0 // -normr_eq0 eq_le normr_ge0 -(G0 i Pi) leFG.
have t1: t = 1.
apply: (mulfI nz_sumG); rewrite mulr1 -{1}norm_sumG -eq_sumFG norm_sumF.
by rewrite mulr_suml -(eq_bigr _ defF).
have /psumr_eq0P eqFG i: P i -> 0 <= G i - F i.
by move=> Pi; rewrite subr_ge0 defF // t1 mulr1 leFG.
move=> i /eqFG/(canRL (subrK _))->; rewrite ?add0r //.
by rewrite sumrB -/sumF eq_sumFG subrr.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
normC_sum_upper
| |
normCBeqx y :
`|x - y| = `|x| - `|y| -> {t | `|t| == 1 & (x, y) = (`|x| * t, `|y| * t)}.
Proof.
set z := x - y; rewrite -(subrK y x) -/z => /(canLR (subrK _))/esym-Dx.
have [t t_1 [Dz Dy]] := normCDeq Dx.
by exists t; rewrite // Dx mulrDl -Dz -Dy.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
normCBeq
| |
sqrtC:= 2.-root.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
sqrtC
| |
deg2_poly_factor: p = a *: ('X - r1%:P) * ('X - r2%:P).
Proof. by apply: deg2_poly_factor; rewrite ?pnatr_eq0// sqrtCK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_factor
| |
deg2_poly_root1: root p r1.
Proof. by apply: deg2_poly_root1; rewrite ?pnatr_eq0// sqrtCK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_root1
| |
deg2_poly_root2: root p r2.
Proof. by apply: deg2_poly_root2; rewrite ?pnatr_eq0// sqrtCK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_root2
| |
deg2_poly_factor: p = ('X - r1%:P) * ('X - r2%:P).
Proof. by apply: deg2_poly_factor; rewrite ?pnatr_eq0// sqrtCK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_factor
| |
deg2_poly_root1: root p r1.
Proof. by apply: deg2_poly_root1; rewrite ?pnatr_eq0// sqrtCK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_root1
| |
deg2_poly_root2: root p r2.
Proof. by apply: deg2_poly_root2; rewrite ?pnatr_eq0// sqrtCK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_root2
| |
deg2_poly_minx : p.[- b / (2 * a)] <= p.[x].
Proof.
rewrite [p]deg2_poly_canonical ?pnatr_eq0// -/a -/b -/c /delta !hornerE/=.
by rewrite ler_pM2l// lerD2r addrC mulNr subrr expr0n sqr_ge0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_min
| |
deg2_poly_minE: p.[- b / (2 * a)] = - delta / (4 * a).
Proof.
rewrite [p]deg2_poly_canonical ?pnatr_eq0// -/a -/b -/c -/delta !hornerE/=.
rewrite [X in X^+2]addrC [in LHS]mulNr subrr expr0n add0r mulNr.
by rewrite mulrC mulNr invfM mulrA mulfVK.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_minE
| |
deg2_poly_gt0: reflect (forall x, 0 < p.[x]) (delta < 0).
Proof.
apply/(iffP idP) => [dlt0 x | /(_ (- b / (2 * a)))]; last first.
by rewrite deg2_poly_minE ltr_pdivlMr// mul0r oppr_gt0.
apply: lt_le_trans (deg2_poly_min _).
by rewrite deg2_poly_minE ltr_pdivlMr// mul0r oppr_gt0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_gt0
| |
deg2_poly_ge0: reflect (forall x, 0 <= p.[x]) (delta <= 0).
Proof.
apply/(iffP idP) => [dlt0 x | /(_ (- b / (2 * a)))]; last first.
by rewrite deg2_poly_minE ler_pdivlMr// mul0r oppr_ge0.
apply: le_trans (deg2_poly_min _).
by rewrite deg2_poly_minE ler_pdivlMr// mul0r oppr_ge0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_ge0
| |
deg2_poly_maxx : p.[x] <= p.[- b / (2 * a)].
Proof. by rewrite -lerN2 -!hornerN -b2a deg2_poly_min// coefN oppr_ge0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_max
| |
deg2_poly_maxE: p.[- b / (2 * a)] = - delta / (4 * a).
Proof.
apply/eqP; rewrite [eqbRHS]mulNr -eqr_oppLR -hornerN -b2a.
by rewrite deg2_poly_minE// deltaN coefN mulrN divrNN.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_maxE
| |
deg2_poly_lt0: reflect (forall x, p.[x] < 0) (delta < 0).
Proof.
rewrite -deltaN; apply/(iffP (deg2_poly_gt0 _ _)); rewrite ?coefN ?oppr_ge0//.
- by move=> gt0 x; rewrite -oppr_gt0 -hornerN gt0.
- by move=> lt0 x; rewrite hornerN oppr_gt0 lt0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_lt0
| |
deg2_poly_le0: reflect (forall x, p.[x] <= 0) (delta <= 0).
Proof.
rewrite -deltaN; apply/(iffP (deg2_poly_ge0 _ _)); rewrite ?coefN ?oppr_ge0//.
- by move=> ge0 x; rewrite -oppr_ge0 -hornerN ge0.
- by move=> le0 x; rewrite hornerN oppr_ge0 le0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_le0
| |
deg2_poly_factor: 0 <= delta -> p = a *: ('X - r1%:P) * ('X - r2%:P).
Proof. by move=> dge0; apply: deg2_poly_factor; rewrite ?sqr_sqrtr. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_factor
| |
deg2_poly_root1: 0 <= delta -> root p r1.
Proof. by move=> dge0; apply: deg2_poly_root1; rewrite ?sqr_sqrtr. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_root1
| |
deg2_poly_root2: 0 <= delta -> root p r2.
Proof. by move=> dge0; apply: deg2_poly_root2; rewrite ?sqr_sqrtr. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_root2
| |
deg2_poly_noroot: reflect (forall x, ~~ root p x) (delta < 0).
Proof.
apply/(iffP idP) => [dlt0 x | /(_ r1)].
case: ltgtP aneq0 => [agt0 _|alt0 _|//]; rewrite rootE; last first.
exact/lt0r_neq0/(deg2_poly_gt0 degp (ltW alt0)).
rewrite -oppr_eq0 -hornerN.
apply/lt0r_neq0/deg2_poly_gt0; rewrite ?size_polyN ?coefN ?oppr_ge0 ?ltW//.
by rewrite sqrrN -mulrA mulrNN mulrA.
by rewrite ltNge; apply: contraNN => ?; apply: deg2_poly_root1.
Qed.
Hypothesis age0 : 0 <= a.
Let agt0 : 0 < a. Proof. by rewrite lt_def aneq0. Qed.
Let a2gt0 : 0 < 2 * a. Proof. by rewrite mulr_gt0 ?ltr0n. Qed.
Let a4gt0 : 0 < 4 * a. Proof. by rewrite mulr_gt0 ?ltr0n. Qed.
Let aa4gt0 : 0 < 4 * a * a. Proof. by rewrite mulr_gt0 ?ltr0n. Qed.
Let xb4 x : (x + b / (2 * a)) ^+ 2 * (4 * a * a) = (x * (2 * a) + b) ^+ 2.
Proof.
have -> : 4 * a * a = (2 * a) ^+ 2 by rewrite expr2 mulrACA -natrM mulrA.
by rewrite -exprMn mulrDl mulfVK ?mulf_neq0 ?pnatr_eq0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_noroot
| |
deg2_poly_gt0lx : x < r1 -> 0 < p.[x].
Proof.
move=> xltr1; have [? | dge0] := ltP delta 0; first exact: deg2_poly_gt0.
have {}xltr1 : sqrt delta < - (x * (2 * a) + b).
by rewrite ltrNr -ltrBrDr addrC -ltr_pdivlMr.
rewrite [p]deg2_poly_canonical// -/a -/b -/c -/delta !hornerE/=.
rewrite mulr_gt0// subr_gt0 ltr_pdivrMr// xb4 -sqrrN.
rewrite -ltr_sqrt ?sqrtr_sqr ?(lt_le_trans xltr1) ?ler_norm//.
by rewrite exprn_gt0 ?(le_lt_trans _ xltr1) ?sqrtr_ge0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_gt0l
| |
deg2_poly_gt0rx : r2 < x -> 0 < p.[x].
Proof.
move=> xgtr2; have [? | dge0] := ltP delta 0; first exact: deg2_poly_gt0.
have {}xgtr2 : sqrt delta < x * (2 * a) + b.
by rewrite -ltrBlDr addrC -ltr_pdivrMr.
rewrite [p]deg2_poly_canonical// -/a -/b -/c -/delta !hornerE/=.
rewrite mulr_gt0// subr_gt0 ltr_pdivrMr// xb4.
rewrite -ltr_sqrt ?sqrtr_sqr ?(lt_le_trans xgtr2) ?ler_norm//.
by rewrite exprn_gt0 ?(le_lt_trans _ xgtr2) ?sqrtr_ge0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_gt0r
| |
deg2_poly_lt0mx : r1 < x < r2 -> p.[x] < 0.
Proof.
move=> /andP[r1ltx xltr2].
have [dle0 | dgt0] := leP delta 0.
by move: (lt_trans r1ltx xltr2); rewrite /r1 /r2 ler0_sqrtr// oppr0 ltxx.
rewrite [p]deg2_poly_canonical// !hornerE/= -/a -/b -/c -/delta.
rewrite pmulr_rlt0// subr_lt0 ltr_pdivlMr// xb4 -ltr_sqrt// sqrtr_sqr ltr_norml.
by rewrite -ltrBlDr addrC -ltr_pdivrMr// r1ltx -ltrBrDr addrC -ltr_pdivlMr.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_lt0m
| |
deg2_poly_ge0lx : x <= r1 -> 0 <= p.[x].
Proof.
rewrite le_eqVlt => /orP[/eqP->|xltr1]; last exact/ltW/deg2_poly_gt0l.
have [dge0|dlt0] := leP 0 delta; last by apply: deg2_poly_ge0 => //; apply: ltW.
by rewrite le_eqVlt (rootP (deg2_poly_root1 dge0)) eqxx.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_ge0l
| |
deg2_poly_ge0rx : r2 <= x -> 0 <= p.[x].
Proof.
rewrite le_eqVlt => /orP[/eqP<-|xgtr2]; last exact/ltW/deg2_poly_gt0r.
have [dge0|dlt0] := leP 0 delta; last by apply: deg2_poly_ge0 => //; apply: ltW.
by rewrite le_eqVlt (rootP (deg2_poly_root2 dge0)) eqxx.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_ge0r
| |
deg2_poly_le0mx : 0 <= delta -> r1 <= x <= r2 -> p.[x] <= 0.
Proof.
move=> dge0; rewrite le_eqVlt andb_orl => /orP[/andP[/eqP<- _]|].
by rewrite le_eqVlt (rootP (deg2_poly_root1 dge0)) eqxx.
rewrite le_eqVlt andb_orr => /orP[/andP[_ /eqP->]|].
by rewrite le_eqVlt (rootP (deg2_poly_root2 dge0)) eqxx.
by move=> ?; apply/ltW/deg2_poly_lt0m.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_le0m
| |
deg2_poly_lt0lx : x < r1 -> p.[x] < 0.
Proof. by move=> ?; rewrite -oppr_gt0 -hornerN deg2_poly_gt0l// deltaN r1N. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_lt0l
| |
deg2_poly_lt0rx : r2 < x -> p.[x] < 0.
Proof. by move=> ?; rewrite -oppr_gt0 -hornerN deg2_poly_gt0r// deltaN r2N. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_lt0r
| |
deg2_poly_gt0mx : r1 < x < r2 -> 0 < p.[x].
Proof.
by move=> ?; rewrite -oppr_lt0 -hornerN deg2_poly_lt0m// deltaN r1N r2N.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_gt0m
| |
deg2_poly_le0lx : x <= r1 -> p.[x] <= 0.
Proof. by move=> ?; rewrite -oppr_ge0 -hornerN deg2_poly_ge0l// deltaN r1N. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_le0l
| |
deg2_poly_le0rx : r2 <= x -> p.[x] <= 0.
Proof. by move=> ?; rewrite -oppr_ge0 -hornerN deg2_poly_ge0r// deltaN r2N. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_le0r
| |
deg2_poly_ge0mx : 0 <= delta -> r1 <= x <= r2 -> 0 <= p.[x].
Proof.
by move=> ? ?; rewrite -oppr_le0 -hornerN deg2_poly_le0m ?deltaN// r1N r2N.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_ge0m
| |
deg2_poly_minx : p.[- b / 2] <= p.[x].
Proof. by rewrite -a2 deg2_poly_min -/a ?a1 ?ler01. Qed.
Let deltam : delta = b ^+ 2 - 4 * a * c. Proof. by rewrite a1 mulr1. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_min
| |
deg2_poly_minE: p.[- b / 2] = - delta / 4.
Proof. by rewrite -a2 -a4 deltam deg2_poly_minE. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_minE
| |
deg2_poly_gt0: reflect (forall x, 0 < p.[x]) (delta < 0).
Proof. by rewrite deltam; apply: deg2_poly_gt0; rewrite // -/a a1 ler01. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_gt0
| |
deg2_poly_ge0: reflect (forall x, 0 <= p.[x]) (delta <= 0).
Proof. by rewrite deltam; apply: deg2_poly_ge0; rewrite // -/a a1 ler01. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_ge0
| |
deg2_poly_factor: 0 <= delta -> p = ('X - r1%:P) * ('X - r2%:P).
Proof. by move=> dge0; apply: deg2_poly_factor; rewrite ?sqr_sqrtr. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_factor
| |
deg2_poly_root1: 0 <= delta -> root p r1.
Proof. by move=> dge0; apply: deg2_poly_root1; rewrite ?sqr_sqrtr. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_root1
| |
deg2_poly_root2: 0 <= delta -> root p r2.
Proof. by move=> dge0; apply: deg2_poly_root2; rewrite ?sqr_sqrtr. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_root2
| |
deg2_poly_noroot: reflect (forall x, ~~ root p x) (delta < 0).
Proof. by rewrite deltam; apply: deg2_poly_noroot. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_noroot
| |
deg2_poly_gt0lx : x < r1 -> 0 < p.[x].
Proof.
by move=> ?; apply: deg2_poly_gt0l; rewrite // -/a ?a1 ?ler01 ?mulr1.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_gt0l
| |
deg2_poly_gt0rx : r2 < x -> 0 < p.[x].
Proof.
by move=> ?; apply: deg2_poly_gt0r; rewrite // -/a ?a1 ?ler01 ?mulr1.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_gt0r
| |
deg2_poly_lt0mx : r1 < x < r2 -> p.[x] < 0.
Proof.
by move=> ?; apply: deg2_poly_lt0m; rewrite // -/a ?a1 ?ler01 ?mulr1.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_lt0m
| |
deg2_poly_ge0lx : x <= r1 -> 0 <= p.[x].
Proof.
by move=> ?; apply: deg2_poly_ge0l; rewrite // -/a ?a1 ?ler01 ?mulr1.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_ge0l
| |
deg2_poly_ge0rx : r2 <= x -> 0 <= p.[x].
Proof.
by move=> ?; apply: deg2_poly_ge0r; rewrite // -/a ?a1 ?ler01 ?mulr1.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_ge0r
| |
deg2_poly_le0mx : 0 <= delta -> r1 <= x <= r2 -> p.[x] <= 0.
move=> dge0 xm.
by apply: deg2_poly_le0m; rewrite -/a -/b -/c ?a1 ?mulr1 -/delta ?ler01.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg2_poly_le0m
| |
deg_le2_poly_delta_ge0: 0 <= a -> (forall x, 0 <= p.[x]) -> delta <= 0.
Proof.
move=> age0 pge0; move: degp; rewrite leq_eqVlt => /orP[/eqP|] degp'.
exact/(Real.deg2_poly_ge0 degp' age0).
have a0 : a = 0 by rewrite /a nth_default.
rewrite /delta a0 mulr0 mul0r subr0 exprn_even_le0//=.
have [//|/eqP nzb] := eqP; move: (pge0 ((- 1 - c) / b)).
have -> : p = b *: 'X + c%:P.
apply/polyP => + /[!coefE] => -[|[|i]] /=; rewrite !Monoid.simpm//.
by rewrite nth_default// -ltnS (leq_trans degp').
by rewrite !hornerE/= mulrAC mulfV// mul1r subrK ler0N1.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg_le2_poly_delta_ge0
| |
deg_le2_poly_delta_le0: a <= 0 -> (forall x, p.[x] <= 0) -> delta <= 0.
Proof.
move=> ale0 ple0; rewrite /delta -sqrrN -[c]opprK mulrN -mulNr -[-(4 * a)]mulrN.
rewrite -!coefN deg_le2_poly_delta_ge0 ?size_polyN ?coefN ?oppr_ge0// => x.
by rewrite hornerN oppr_ge0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg_le2_poly_delta_le0
| |
deg_le2_poly_ge0: (forall x, 0 <= p.[x]) -> delta <= 0.
Proof.
have [age0|alt0] := leP 0 a; first exact: deg_le2_poly_delta_ge0.
move=> pge0; move: degp; rewrite leq_eqVlt => /orP[/eqP|] degp'; last first.
by move: alt0; rewrite /a nth_default ?ltxx.
have [//|dge0] := leP delta 0.
pose r1 := (- b - sqrt delta) / (2 * a).
pose r2 := (- b + sqrt delta) / (2 * a).
pose x0 := Num.max (r1 + 1) (r2 + 1).
move: (pge0 x0); rewrite (Real.deg2_poly_factor degp' (ltW dge0)).
rewrite !hornerE/= -mulrA nmulr_rge0// leNgt => /negbTE<-.
by apply: mulr_gt0; rewrite subr_gt0 lt_max ltrDl ltr01 ?orbT.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg_le2_poly_ge0
| |
deg_le2_poly_le0: (forall x, p.[x] <= 0) -> delta <= 0.
Proof.
move=> ple0; rewrite /delta -sqrrN -[c]opprK mulrN -mulNr -[-(4 * a)]mulrN.
by rewrite -!coefN deg_le2_poly_ge0 ?size_polyN// => x; rewrite hornerN oppr_ge0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly orderedzmod numdomain"
] |
algebra/num_theory/numfield.v
|
deg_le2_poly_le0
| |
DefinitionPOrderedZmodule :=
{ R of Order.isPOrder ring_display R & GRing.Zmodule R }.
|
HB.structure
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly"
] |
algebra/num_theory/orderedzmod.v
|
Definition
| |
ler:= (@Order.le ring_display _) (only parsing).
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly"
] |
algebra/num_theory/orderedzmod.v
|
ler
| |
ltr:= (@Order.lt ring_display _) (only parsing).
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly"
] |
algebra/num_theory/orderedzmod.v
|
ltr
| |
ger:= (@Order.ge ring_display _) (only parsing).
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly"
] |
algebra/num_theory/orderedzmod.v
|
ger
| |
gtr:= (@Order.gt ring_display _) (only parsing).
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly"
] |
algebra/num_theory/orderedzmod.v
|
gtr
| |
lerif:= (@Order.leif ring_display _) (only parsing).
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly"
] |
algebra/num_theory/orderedzmod.v
|
lerif
| |
lterif:= (@Order.lteif ring_display _) (only parsing).
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly"
] |
algebra/num_theory/orderedzmod.v
|
lterif
| |
comparabler:= (@Order.comparable ring_display _) (only parsing).
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly"
] |
algebra/num_theory/orderedzmod.v
|
comparabler
| |
maxr:= (@Order.max ring_display _).
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly"
] |
algebra/num_theory/orderedzmod.v
|
maxr
| |
minr:= (@Order.min ring_display _).
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly"
] |
algebra/num_theory/orderedzmod.v
|
minr
| |
pos_num_pred:= fun x : R => 0 < x.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly"
] |
algebra/num_theory/orderedzmod.v
|
pos_num_pred
| |
pos_num: qualifier 0 R := [qualify x | pos_num_pred x].
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly"
] |
algebra/num_theory/orderedzmod.v
|
pos_num
| |
neg_num_pred:= fun x : R => x < 0.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly"
] |
algebra/num_theory/orderedzmod.v
|
neg_num_pred
| |
neg_num: qualifier 0 R := [qualify x : R | neg_num_pred x].
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly"
] |
algebra/num_theory/orderedzmod.v
|
neg_num
| |
nneg_num_pred:= fun x : R => 0 <= x.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly"
] |
algebra/num_theory/orderedzmod.v
|
nneg_num_pred
| |
nneg_num: qualifier 0 R := [qualify x : R | nneg_num_pred x].
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly"
] |
algebra/num_theory/orderedzmod.v
|
nneg_num
| |
npos_num_pred:= fun x : R => x <= 0.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly"
] |
algebra/num_theory/orderedzmod.v
|
npos_num_pred
| |
npos_num: qualifier 0 R := [qualify x : R | npos_num_pred x].
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly"
] |
algebra/num_theory/orderedzmod.v
|
npos_num
| |
real_num_pred:= fun x : R => (0 <= x) || (x <= 0).
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly"
] |
algebra/num_theory/orderedzmod.v
|
real_num_pred
| |
real_num: qualifier 0 R := [qualify x : R | real_num_pred x].
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly"
] |
algebra/num_theory/orderedzmod.v
|
real_num
| |
Rpos_pred:= pos_num_pred (only parsing).
#[deprecated(since="mathcomp 2.5.0",note="Use pos_num instead.")]
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import ssrAC div fintype path bigop order finset fingroup",
"From mathcomp Require Import ssralg poly"
] |
algebra/num_theory/orderedzmod.v
|
Rpos_pred
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.