fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
ltEseqlexis1 s2 : s1 < s2 = if s2 isn't x2 :: s2' then false else if s1 isn't x1 :: s1' then true else (x1 <= x2) && ((x1 >= x2) ==> (s1' < s2' :> seq T)). Proof. by case: s1. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltEseqlexi
lexi0ss : [::] <= s :> seq T. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lexi0s
lexis0s : s <= [::] = (s == [::]). Proof. by rewrite leEseqlexi. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lexis0
ltxi0ss : ([::] < s :> seq T) = (s != [::]). Proof. by case: s. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltxi0s
ltxis0s : s < [::] = false. Proof. by rewrite ltEseqlexi. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltxis0
lexi_consx1 s1 x2 s2 : x1 :: s1 <= x2 :: s2 :> seq T = (x1 <= x2) && ((x1 >= x2) ==> (s1 <= s2)). Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lexi_cons
ltxi_consx1 s1 x2 s2 : x1 :: s1 < x2 :: s2 :> seq T = (x1 <= x2) && ((x1 >= x2) ==> (s1 < s2)). Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltxi_cons
lexi_leheadx s1 y s2 : x :: s1 <= y :: s2 :> seq T -> x <= y. Proof. by rewrite lexi_cons => /andP[]. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lexi_lehead
ltxi_leheadx s1 y s2 : x :: s1 < y :: s2 :> seq T -> x <= y. Proof. by rewrite ltxi_cons => /andP[]. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltxi_lehead
eqhead_lexiE(x : T) s1 s2 : (x :: s1 <= x :: s2 :> seq _) = (s1 <= s2). Proof. by rewrite lexi_cons lexx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
eqhead_lexiE
eqhead_ltxiE(x : T) s1 s2 : (x :: s1 < x :: s2 :> seq _) = (s1 < s2). Proof. by rewrite ltxi_cons lexx. Qed. #[export] HB.instance Definition _ := hasBottom.Build _ (seq T) lexi0s.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
eqhead_ltxiE
sub_seqprod_lexid (T : preorderType disp) : subrel (<=%O : rel (seqprod_with d T)) (<=%O : rel (seq T)). Proof. elim=> [|x1 s1 ihs1] [|x2 s2]//=; rewrite le_cons lexi_cons /=. by move=> /andP[-> /ihs1->]; rewrite implybT. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
sub_seqprod_lexi
seqlexi_with:= type.
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
seqlexi_with
seqlexi:= type_.
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
seqlexi
leEseqlexi:= @leEseqlexi.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
leEseqlexi
lexi0s:= @lexi0s.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lexi0s
lexis0:= @lexis0.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lexis0
lexi_cons:= @lexi_cons.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lexi_cons
lexi_lehead:= @lexi_lehead.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lexi_lehead
eqhead_lexiE:= @eqhead_lexiE.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
eqhead_lexiE
ltEseqltxi:= @ltEseqlexi.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltEseqltxi
ltxi0s:= @ltxi0s.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltxi0s
ltxis0:= @ltxis0.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltxis0
ltxi_cons:= @ltxi_cons.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltxi_cons
ltxi_lehead:= @ltxi_lehead.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltxi_lehead
eqhead_ltxiE:= @eqhead_ltxiE.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
eqhead_ltxiE
sub_seqprod_lexi:= @sub_seqprod_lexi.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
sub_seqprod_lexi
seqlexi:= (seqlexi_with (seqlexi_display disp)). HB.instance Definition _ (T : preorderType disp) := Preorder.copy (seq T) (seqlexi T). HB.instance Definition _ (T : preorderType disp) := BPreorder.copy (seq T) (seqlexi T).
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
seqlexi
type(disp : disp_t) n T := n.-tuple T.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
type
type_(disp : disp_t) n (T : preorderType disp) := type (seqprod_display disp) n T. Context {disp disp' : disp_t}. Local Notation "n .-tuple" := (type disp' n) : type_scope.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
type_
leEtprodn T (t1 t2 : n.-tuple T) : t1 <= t2 = [forall i, tnth t1 i <= tnth t2 i]. Proof. elim: n => [|n IHn] in t1 t2 *. by rewrite tuple0 [t2]tuple0/= lexx; symmetry; apply/forallP => []. case: (tupleP t1) (tupleP t2) => [x1 {}t1] [x2 {}t2]. rewrite [_ <= _]le_cons [t1 <= t2 :> seq _]IHn. apply/idP/forallP => [/andP[lex12 /forallP/= let12 i]|lext12]. by case: (unliftP ord0 i) => [j ->|->]//; rewrite !tnthS. rewrite (lext12 ord0)/=; apply/forallP=> i. by have := lext12 (lift ord0 i); rewrite !tnthS. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
leEtprod
ltEtprodn T (t1 t2 : n.-tuple T) : t1 < t2 = [exists i, tnth t1 i < tnth t2 i] && [forall i, tnth t1 i <= tnth t2 i]. Proof. rewrite lt_leAnge !leEtprod negb_forall andbC. apply/andP/andP => -[] /existsP[x] xlt le; split=> //; apply/existsP; exists x. rewrite lt_leAnge xlt. by move: le => /forallP ->. by move: xlt; rewrite lt_leAnge => /andP[]. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltEtprod
Definition_ := hasBottom.Build _ (n.-tuple T) le0x.
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Definition
botEtprod: \bot = [tuple \bot | _ < n] :> n.-tuple T. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
botEtprod
Definition_ := hasTop.Build _ (n.-tuple T) lex1.
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Definition
topEtprod: \top = [tuple \top | _ < n] :> n.-tuple T. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
topEtprod
Definition_ (n : nat) (T : tbPreorderType disp) := Preorder.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : finPreorderType disp) := Preorder.on (n.-tuple T). #[export, warning="-HB.no-new-instance"] HB.instance Definition _ (n : nat) (T : finPreorderType disp) := Preorder.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : finBPreorderType disp) := Preorder.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : finTPreorderType disp) := Preorder.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : finTBPreorderType disp) := Preorder.on (n.-tuple T).
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Definition
leEtprod:= @leEtprod.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
leEtprod
ltEtprod:= @ltEtprod.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltEtprod
botEtprod:= @botEtprod.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
botEtprod
topEtprod:= @topEtprod.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
topEtprod
Definition_ n (T : preorderType disp) := Preorder.copy (n.-tuple T) (n.-tupleprod T). HB.instance Definition _ n (T : bPreorderType disp) := BPreorder.copy (n.-tuple T) (n.-tupleprod T). HB.instance Definition _ n (T : tPreorderType disp) := TPreorder.copy (n.-tuple T) (n.-tupleprod T). HB.instance Definition _ n (T : tbPreorderType disp) := TBPreorder.copy (n.-tuple T) (n.-tupleprod T).
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Definition
type(disp : disp_t) n T := n.-tuple T.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
type
type_(disp : disp_t) n (T : preorderType disp) := type (seqlexi_display disp) n T. Context {disp disp' : disp_t}. Local Notation "n .-tuple" := (type disp' n) : type_scope.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
type_
Definition_ n T := SubChoice.on (n.-tuple T). #[export] HB.instance Definition _ n T := [SubChoice_isSubPreorder of n.-tuple T by <: with disp'].
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Definition
botEtlexi: \bot = [tuple \bot | _ < n] :> n.-tuple T. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
botEtlexi
topEtlexi: \top = [tuple \top | _ < n] :> n.-tuple T. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
topEtlexi
Definition_ (n : nat) (T : bPreorderType disp) := Preorder.on (n.-tuple T). #[export, warning="-HB.no-new-instance"] HB.instance Definition _ (n : nat) (T : tPreorderType disp) := Preorder.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : tbPreorderType disp) := Preorder.on (n.-tuple T).
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Definition
sub_tprod_lexid n (T : preorderType disp) : subrel (<=%O : rel (n.-tupleprod[d] T)) (<=%O : rel (n.-tuple T)). Proof. exact: sub_seqprod_lexi. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
sub_tprod_lexi
topEtlexi:= @topEtlexi.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
topEtlexi
botEtlexi:= @botEtlexi.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
botEtlexi
sub_tprod_lexi:= @sub_tprod_lexi.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
sub_tprod_lexi
Definition_ n (T : preorderType disp) := Preorder.copy (n.-tuple T) (n.-tuplelexi T). HB.instance Definition _ n (T : bPreorderType disp) := BPreorder.copy (n.-tuple T) (n.-tuplelexi T). HB.instance Definition _ n (T : tPreorderType disp) := TPreorder.copy (n.-tuple T) (n.-tuplelexi T). HB.instance Definition _ n (T : tbPreorderType disp) := TBPreorder.copy (n.-tuple T) (n.-tuplelexi T).
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Definition
type(disp : disp_t) (T : finType) := {set T}. Context {disp : disp_t} {T : finType}. Local Notation "{ 'subset' T }" := (type disp T). Implicit Type (A B C : {subset T}).
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
type
le_defA B : A \subset B = (A :&: B == A). Proof. exact/setIidPl/eqP. Qed. #[export] HB.instance Definition _ := Choice.on {subset T}. #[export] HB.instance Definition _ := Le_isPreorder.Build disp {subset T} (@subxx _ _) (fun A B => @subset_trans _ B A). #[export] HB.instance Definition _ := hasBottom.Build disp {subset T} (@sub0set _). #[export] HB.instance Definition _ := hasTop.Build disp {subset T} (@subsetT _).
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le_def
leEsubsetA B : (A <= B) = (A \subset B). Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
leEsubset
leEsubset:= @leEsubset.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
leEsubset
Definition_ (T : finType) := TBPreorder.copy {set T} {subset T}.
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Definition
enumA := (sort <=%O (enum A)).
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum
cardE(A : {pred T}) : #|A| = size (enum A). Proof. by rewrite size_sort cardE. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
cardE
mem_enum(A : {pred T}) : enum A =i A. Proof. by move=> x; rewrite mem_sort mem_enum. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
mem_enum
enum_uniq(A : {pred T}) : uniq (enum A). Proof. by rewrite sort_uniq enum_uniq. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_uniq
cardT: #|T| = size (enum T). Proof. by rewrite cardT size_sort. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
cardT
enumT: enum T = sort <=%O (Finite.enum T). Proof. by rewrite enumT. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enumT
enum0: enum (pred0 : {pred T}) = [::]. Proof. by rewrite enum0. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum0
enum1(x : T) : enum (pred1 x) = [:: x]. Proof. by rewrite enum1. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum1
eq_enum(A B : {pred T}) : A =i B -> enum A = enum B. Proof. by move=> /eq_enum->. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
eq_enum
eq_cardT(A : {pred T}) : A =i predT -> #|A| = size (enum T). Proof. by move=> /eq_enum<-; rewrite cardE. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
eq_cardT
set_enum(A : {set T}) : [set x in enum A] = A. Proof. by apply/setP => x; rewrite inE mem_enum. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
set_enum
enum_set0: enum (set0 : {set T}) = [::]. Proof. by rewrite enum_set0. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_set0
enum_setT: enum [set: T] = sort <=%O (Finite.enum T). Proof. by rewrite enum_setT. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_setT
enum_set1(a : T) : enum [set a] = [:: a]. Proof. by rewrite enum_set1. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_set1
enum_ordn : enum 'I_n = fintype.enum 'I_n. Proof. rewrite (sorted_sort le_trans)// -(@sorted_map _ _ (val : 'I_n -> nat))/=. by rewrite val_enum_ord iota_sorted. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_ord
val_enum_ordn : [seq val i | i <- enum 'I_n] = iota 0 n. Proof. by rewrite enum_ord val_enum_ord. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
val_enum_ord
size_enum_ordn : size (enum 'I_n) = n. Proof. by rewrite -cardE card_ord. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
size_enum_ord
nth_enum_ord(n : nat) (i0 : 'I_n) (m : nat) : (m < n)%N -> nth i0 (enum 'I_n) m = m :> nat. Proof. by move=> lemn; rewrite enum_ord nth_enum_ord. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
nth_enum_ord
nth_ord_enum(n : nat) (i0 i : 'I_n) : nth i0 (enum 'I_n) i = i. Proof. by rewrite enum_ord nth_ord_enum. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
nth_ord_enum
index_enum_ord(n : nat) (i : 'I_n) : index i (enum 'I_n) = i. Proof. by rewrite enum_ord index_enum_ord. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
index_enum_ord
mono_sorted_enumd d' (T : finPreorderType d) (T' : preorderType d') (f : T -> T') : total (<=%O : rel T) -> {mono f : x y / (x <= y)%O} -> sorted <=%O [seq f x | x <- enum T]. Proof. move=> /sort_sorted ss_sorted lef; wlog [x0 x'0] : / (T * T')%type. by case: (enum T) => // x ? => /(_ (x, f x)). rewrite (sorted_pairwise le_trans). apply/(pairwiseP x'0) => i j; rewrite !inE !size_map -!cardT. move=> ilt jlt ij; rewrite !(nth_map x0) -?cardT// lef. by rewrite (sorted_leq_nth le_trans le_refl) ?inE -?cardT// 1?ltnW. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
mono_sorted_enum
enum_rank_inx0 A (Ax0 : x0 \in A) x := insubd (Ordinal (@enum_rank_subproof _ x0 A Ax0)) (index x (enum A)).
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_rank_in
enum_rankx := @enum_rank_in x T (erefl true) x.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_rank
enum_valA i := nth (@enum_default _ A i) (enum A) i. Prenex Implicits enum_val.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_val
enum_valPA i : @enum_val A i \in A. Proof. suff: enum_val i \in enum A by rewrite mem_enum. by apply: mem_nth; rewrite -cardE. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_valP
enum_val_nthA x i : @enum_val A i = nth x (enum A) i. Proof. by apply: set_nth_default; rewrite cardE in i *. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_val_nth
nth_enum_rank_inx00 x0 A Ax0 : {in A, cancel (@enum_rank_in x0 A Ax0) (nth x00 (enum A))}. Proof. move=> x Ax; rewrite /= insubdK ?nth_index ?mem_enum //. by rewrite cardE [_ \in _]index_mem mem_enum. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
nth_enum_rank_in
nth_enum_rankx0 : cancel enum_rank (nth x0 (enum T)). Proof. by move=> x; apply: nth_enum_rank_in. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
nth_enum_rank
enum_rankK_inx0 A Ax0 : {in A, cancel (@enum_rank_in x0 A Ax0) enum_val}. Proof. by move=> x; apply: nth_enum_rank_in. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_rankK_in
enum_rankK: cancel enum_rank enum_val. Proof. by move=> x; apply: enum_rankK_in. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_rankK
enum_valK_inx0 A Ax0 : cancel enum_val (@enum_rank_in x0 A Ax0). Proof. move=> x; apply: ord_inj; rewrite insubdK; last first. by rewrite cardE [_ \in _]index_mem mem_nth // -cardE. by rewrite index_uniq ?enum_uniq // -cardE. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_valK_in
enum_valK: cancel enum_val enum_rank. Proof. by move=> x; apply: enum_valK_in. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_valK
enum_rank_inj: injective enum_rank. Proof. exact: can_inj enum_rankK. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_rank_inj
enum_val_injA : injective (@enum_val A). Proof. by move=> i; apply: can_inj (enum_valK_in (enum_valP i)) (i). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_val_inj
enum_val_bij_inx0 A : x0 \in A -> {on A, bijective (@enum_val A)}. Proof. move=> Ax0; exists (enum_rank_in Ax0) => [i _|]; last exact: enum_rankK_in. exact: enum_valK_in. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_val_bij_in
eq_enum_rank_in(x0 y0 : T) A (Ax0 : x0 \in A) (Ay0 : y0 \in A) : {in A, enum_rank_in Ax0 =1 enum_rank_in Ay0}. Proof. by move=> x xA; apply: enum_val_inj; rewrite !enum_rankK_in. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
eq_enum_rank_in
enum_rank_in_inj(x0 y0 : T) A (Ax0 : x0 \in A) (Ay0 : y0 \in A) : {in A &, forall x y, enum_rank_in Ax0 x = enum_rank_in Ay0 y -> x = y}. Proof. by move=> x y xA yA /(congr1 enum_val); rewrite !enum_rankK_in. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_rank_in_inj
enum_rank_bij: bijective enum_rank. Proof. by move: enum_rankK enum_valK; exists (@enum_val T). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_rank_bij
enum_val_bij: bijective (@enum_val T). Proof. by move: enum_rankK enum_valK; exists enum_rank. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_val_bij
enum_val:= enum_val.
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_val
enum_rank_in:= enum_rank_in.
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_rank_in
enum_rank:= enum_rank.
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_rank