fact
stringlengths 8
1.54k
| type
stringclasses 19
values | library
stringclasses 8
values | imports
listlengths 1
10
| filename
stringclasses 98
values | symbolic_name
stringlengths 1
42
| docstring
stringclasses 1
value |
|---|---|---|---|---|---|---|
ltEseqlexis1 s2 :
s1 < s2 = if s2 isn't x2 :: s2' then false else
if s1 isn't x1 :: s1' then true else
(x1 <= x2) && ((x1 >= x2) ==> (s1' < s2' :> seq T)).
Proof. by case: s1. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
ltEseqlexi
| |
lexi0ss : [::] <= s :> seq T. Proof. by []. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
lexi0s
| |
lexis0s : s <= [::] = (s == [::]). Proof. by rewrite leEseqlexi. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
lexis0
| |
ltxi0ss : ([::] < s :> seq T) = (s != [::]). Proof. by case: s. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
ltxi0s
| |
ltxis0s : s < [::] = false. Proof. by rewrite ltEseqlexi. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
ltxis0
| |
lexi_consx1 s1 x2 s2 :
x1 :: s1 <= x2 :: s2 :> seq T = (x1 <= x2) && ((x1 >= x2) ==> (s1 <= s2)).
Proof. by []. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
lexi_cons
| |
ltxi_consx1 s1 x2 s2 :
x1 :: s1 < x2 :: s2 :> seq T = (x1 <= x2) && ((x1 >= x2) ==> (s1 < s2)).
Proof. by []. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
ltxi_cons
| |
lexi_leheadx s1 y s2 : x :: s1 <= y :: s2 :> seq T -> x <= y.
Proof. by rewrite lexi_cons => /andP[]. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
lexi_lehead
| |
ltxi_leheadx s1 y s2 : x :: s1 < y :: s2 :> seq T -> x <= y.
Proof. by rewrite ltxi_cons => /andP[]. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
ltxi_lehead
| |
eqhead_lexiE(x : T) s1 s2 : (x :: s1 <= x :: s2 :> seq _) = (s1 <= s2).
Proof. by rewrite lexi_cons lexx. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
eqhead_lexiE
| |
eqhead_ltxiE(x : T) s1 s2 : (x :: s1 < x :: s2 :> seq _) = (s1 < s2).
Proof. by rewrite ltxi_cons lexx. Qed.
#[export]
HB.instance Definition _ := hasBottom.Build _ (seq T) lexi0s.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
eqhead_ltxiE
| |
sub_seqprod_lexid (T : preorderType disp) :
subrel (<=%O : rel (seqprod_with d T)) (<=%O : rel (seq T)).
Proof.
elim=> [|x1 s1 ihs1] [|x2 s2]//=; rewrite le_cons lexi_cons /=.
by move=> /andP[-> /ihs1->]; rewrite implybT.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
sub_seqprod_lexi
| |
seqlexi_with:= type.
|
Notation
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
seqlexi_with
| |
seqlexi:= type_.
|
Notation
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
seqlexi
| |
leEseqlexi:= @leEseqlexi.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
leEseqlexi
| |
lexi0s:= @lexi0s.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
lexi0s
| |
lexis0:= @lexis0.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
lexis0
| |
lexi_cons:= @lexi_cons.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
lexi_cons
| |
lexi_lehead:= @lexi_lehead.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
lexi_lehead
| |
eqhead_lexiE:= @eqhead_lexiE.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
eqhead_lexiE
| |
ltEseqltxi:= @ltEseqlexi.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
ltEseqltxi
| |
ltxi0s:= @ltxi0s.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
ltxi0s
| |
ltxis0:= @ltxis0.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
ltxis0
| |
ltxi_cons:= @ltxi_cons.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
ltxi_cons
| |
ltxi_lehead:= @ltxi_lehead.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
ltxi_lehead
| |
eqhead_ltxiE:= @eqhead_ltxiE.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
eqhead_ltxiE
| |
sub_seqprod_lexi:= @sub_seqprod_lexi.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
sub_seqprod_lexi
| |
seqlexi:= (seqlexi_with (seqlexi_display disp)).
HB.instance Definition _ (T : preorderType disp) :=
Preorder.copy (seq T) (seqlexi T).
HB.instance Definition _ (T : preorderType disp) :=
BPreorder.copy (seq T) (seqlexi T).
|
Notation
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
seqlexi
| |
type(disp : disp_t) n T := n.-tuple T.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
type
| |
type_(disp : disp_t) n (T : preorderType disp) :=
type (seqprod_display disp) n T.
Context {disp disp' : disp_t}.
Local Notation "n .-tuple" := (type disp' n) : type_scope.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
type_
| |
leEtprodn T (t1 t2 : n.-tuple T) :
t1 <= t2 = [forall i, tnth t1 i <= tnth t2 i].
Proof.
elim: n => [|n IHn] in t1 t2 *.
by rewrite tuple0 [t2]tuple0/= lexx; symmetry; apply/forallP => [].
case: (tupleP t1) (tupleP t2) => [x1 {}t1] [x2 {}t2].
rewrite [_ <= _]le_cons [t1 <= t2 :> seq _]IHn.
apply/idP/forallP => [/andP[lex12 /forallP/= let12 i]|lext12].
by case: (unliftP ord0 i) => [j ->|->]//; rewrite !tnthS.
rewrite (lext12 ord0)/=; apply/forallP=> i.
by have := lext12 (lift ord0 i); rewrite !tnthS.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
leEtprod
| |
ltEtprodn T (t1 t2 : n.-tuple T) :
t1 < t2 = [exists i, tnth t1 i < tnth t2 i] &&
[forall i, tnth t1 i <= tnth t2 i].
Proof.
rewrite lt_leAnge !leEtprod negb_forall andbC.
apply/andP/andP => -[] /existsP[x] xlt le; split=> //; apply/existsP; exists x.
rewrite lt_leAnge xlt.
by move: le => /forallP ->.
by move: xlt; rewrite lt_leAnge => /andP[].
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
ltEtprod
| |
Definition_ := hasBottom.Build _ (n.-tuple T) le0x.
|
HB.instance
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
Definition
| |
botEtprod: \bot = [tuple \bot | _ < n] :> n.-tuple T.
Proof. by []. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
botEtprod
| |
Definition_ := hasTop.Build _ (n.-tuple T) lex1.
|
HB.instance
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
Definition
| |
topEtprod: \top = [tuple \top | _ < n] :> n.-tuple T.
Proof. by []. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
topEtprod
| |
Definition_ (n : nat) (T : tbPreorderType disp) :=
Preorder.on (n.-tuple T).
#[export]
HB.instance Definition _ (n : nat) (T : finPreorderType disp) :=
Preorder.on (n.-tuple T).
#[export, warning="-HB.no-new-instance"]
HB.instance Definition _ (n : nat) (T : finPreorderType disp) :=
Preorder.on (n.-tuple T).
#[export]
HB.instance Definition _ (n : nat) (T : finBPreorderType disp) :=
Preorder.on (n.-tuple T).
#[export]
HB.instance Definition _ (n : nat) (T : finTPreorderType disp) :=
Preorder.on (n.-tuple T).
#[export]
HB.instance Definition _ (n : nat) (T : finTBPreorderType disp) :=
Preorder.on (n.-tuple T).
|
HB.instance
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
Definition
| |
leEtprod:= @leEtprod.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
leEtprod
| |
ltEtprod:= @ltEtprod.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
ltEtprod
| |
botEtprod:= @botEtprod.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
botEtprod
| |
topEtprod:= @topEtprod.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
topEtprod
| |
Definition_ n (T : preorderType disp) :=
Preorder.copy (n.-tuple T) (n.-tupleprod T).
HB.instance Definition _ n (T : bPreorderType disp) :=
BPreorder.copy (n.-tuple T) (n.-tupleprod T).
HB.instance Definition _ n (T : tPreorderType disp) :=
TPreorder.copy (n.-tuple T) (n.-tupleprod T).
HB.instance Definition _ n (T : tbPreorderType disp) :=
TBPreorder.copy (n.-tuple T) (n.-tupleprod T).
|
HB.instance
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
Definition
| |
type(disp : disp_t) n T := n.-tuple T.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
type
| |
type_(disp : disp_t) n (T : preorderType disp) :=
type (seqlexi_display disp) n T.
Context {disp disp' : disp_t}.
Local Notation "n .-tuple" := (type disp' n) : type_scope.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
type_
| |
Definition_ n T := SubChoice.on (n.-tuple T).
#[export]
HB.instance Definition _ n T :=
[SubChoice_isSubPreorder of n.-tuple T by <: with disp'].
|
HB.instance
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
Definition
| |
botEtlexi: \bot = [tuple \bot | _ < n] :> n.-tuple T. Proof. by []. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
botEtlexi
| |
topEtlexi: \top = [tuple \top | _ < n] :> n.-tuple T. Proof. by []. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
topEtlexi
| |
Definition_ (n : nat) (T : bPreorderType disp) :=
Preorder.on (n.-tuple T).
#[export, warning="-HB.no-new-instance"]
HB.instance Definition _ (n : nat) (T : tPreorderType disp) :=
Preorder.on (n.-tuple T).
#[export]
HB.instance Definition _ (n : nat) (T : tbPreorderType disp) :=
Preorder.on (n.-tuple T).
|
HB.instance
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
Definition
| |
sub_tprod_lexid n (T : preorderType disp) :
subrel (<=%O : rel (n.-tupleprod[d] T)) (<=%O : rel (n.-tuple T)).
Proof. exact: sub_seqprod_lexi. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
sub_tprod_lexi
| |
topEtlexi:= @topEtlexi.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
topEtlexi
| |
botEtlexi:= @botEtlexi.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
botEtlexi
| |
sub_tprod_lexi:= @sub_tprod_lexi.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
sub_tprod_lexi
| |
Definition_ n (T : preorderType disp) :=
Preorder.copy (n.-tuple T) (n.-tuplelexi T).
HB.instance Definition _ n (T : bPreorderType disp) :=
BPreorder.copy (n.-tuple T) (n.-tuplelexi T).
HB.instance Definition _ n (T : tPreorderType disp) :=
TPreorder.copy (n.-tuple T) (n.-tuplelexi T).
HB.instance Definition _ n (T : tbPreorderType disp) :=
TBPreorder.copy (n.-tuple T) (n.-tuplelexi T).
|
HB.instance
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
Definition
| |
type(disp : disp_t) (T : finType) := {set T}.
Context {disp : disp_t} {T : finType}.
Local Notation "{ 'subset' T }" := (type disp T).
Implicit Type (A B C : {subset T}).
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
type
| |
le_defA B : A \subset B = (A :&: B == A).
Proof. exact/setIidPl/eqP. Qed.
#[export]
HB.instance Definition _ := Choice.on {subset T}.
#[export]
HB.instance Definition _ := Le_isPreorder.Build disp {subset T}
(@subxx _ _) (fun A B => @subset_trans _ B A).
#[export]
HB.instance Definition _ := hasBottom.Build disp {subset T} (@sub0set _).
#[export]
HB.instance Definition _ := hasTop.Build disp {subset T} (@subsetT _).
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
le_def
| |
leEsubsetA B : (A <= B) = (A \subset B).
Proof. by []. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
leEsubset
| |
leEsubset:= @leEsubset.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
leEsubset
| |
Definition_ (T : finType) :=
TBPreorder.copy {set T} {subset T}.
|
HB.instance
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
Definition
| |
enumA := (sort <=%O (enum A)).
|
Notation
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
enum
| |
cardE(A : {pred T}) : #|A| = size (enum A).
Proof. by rewrite size_sort cardE. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
cardE
| |
mem_enum(A : {pred T}) : enum A =i A.
Proof. by move=> x; rewrite mem_sort mem_enum. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
mem_enum
| |
enum_uniq(A : {pred T}) : uniq (enum A).
Proof. by rewrite sort_uniq enum_uniq. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
enum_uniq
| |
cardT: #|T| = size (enum T).
Proof. by rewrite cardT size_sort. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
cardT
| |
enumT: enum T = sort <=%O (Finite.enum T).
Proof. by rewrite enumT. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
enumT
| |
enum0: enum (pred0 : {pred T}) = [::].
Proof. by rewrite enum0. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
enum0
| |
enum1(x : T) : enum (pred1 x) = [:: x].
Proof. by rewrite enum1. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
enum1
| |
eq_enum(A B : {pred T}) : A =i B -> enum A = enum B.
Proof. by move=> /eq_enum->. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
eq_enum
| |
eq_cardT(A : {pred T}) : A =i predT -> #|A| = size (enum T).
Proof. by move=> /eq_enum<-; rewrite cardE. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
eq_cardT
| |
set_enum(A : {set T}) : [set x in enum A] = A.
Proof. by apply/setP => x; rewrite inE mem_enum. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
set_enum
| |
enum_set0: enum (set0 : {set T}) = [::].
Proof. by rewrite enum_set0. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
enum_set0
| |
enum_setT: enum [set: T] = sort <=%O (Finite.enum T).
Proof. by rewrite enum_setT. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
enum_setT
| |
enum_set1(a : T) : enum [set a] = [:: a].
Proof. by rewrite enum_set1. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
enum_set1
| |
enum_ordn : enum 'I_n = fintype.enum 'I_n.
Proof.
rewrite (sorted_sort le_trans)// -(@sorted_map _ _ (val : 'I_n -> nat))/=.
by rewrite val_enum_ord iota_sorted.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
enum_ord
| |
val_enum_ordn : [seq val i | i <- enum 'I_n] = iota 0 n.
Proof. by rewrite enum_ord val_enum_ord. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
val_enum_ord
| |
size_enum_ordn : size (enum 'I_n) = n.
Proof. by rewrite -cardE card_ord. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
size_enum_ord
| |
nth_enum_ord(n : nat) (i0 : 'I_n) (m : nat) :
(m < n)%N -> nth i0 (enum 'I_n) m = m :> nat.
Proof. by move=> lemn; rewrite enum_ord nth_enum_ord. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
nth_enum_ord
| |
nth_ord_enum(n : nat) (i0 i : 'I_n) : nth i0 (enum 'I_n) i = i.
Proof. by rewrite enum_ord nth_ord_enum. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
nth_ord_enum
| |
index_enum_ord(n : nat) (i : 'I_n) : index i (enum 'I_n) = i.
Proof. by rewrite enum_ord index_enum_ord. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
index_enum_ord
| |
mono_sorted_enumd d' (T : finPreorderType d)
(T' : preorderType d') (f : T -> T') :
total (<=%O : rel T) -> {mono f : x y / (x <= y)%O} ->
sorted <=%O [seq f x | x <- enum T].
Proof.
move=> /sort_sorted ss_sorted lef; wlog [x0 x'0] : / (T * T')%type.
by case: (enum T) => // x ? => /(_ (x, f x)).
rewrite (sorted_pairwise le_trans).
apply/(pairwiseP x'0) => i j; rewrite !inE !size_map -!cardT.
move=> ilt jlt ij; rewrite !(nth_map x0) -?cardT// lef.
by rewrite (sorted_leq_nth le_trans le_refl) ?inE -?cardT// 1?ltnW.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
mono_sorted_enum
| |
enum_rank_inx0 A (Ax0 : x0 \in A) x :=
insubd (Ordinal (@enum_rank_subproof _ x0 A Ax0)) (index x (enum A)).
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
enum_rank_in
| |
enum_rankx := @enum_rank_in x T (erefl true) x.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
enum_rank
| |
enum_valA i := nth (@enum_default _ A i) (enum A) i.
Prenex Implicits enum_val.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
enum_val
| |
enum_valPA i : @enum_val A i \in A.
Proof.
suff: enum_val i \in enum A by rewrite mem_enum.
by apply: mem_nth; rewrite -cardE.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
enum_valP
| |
enum_val_nthA x i : @enum_val A i = nth x (enum A) i.
Proof. by apply: set_nth_default; rewrite cardE in i *. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
enum_val_nth
| |
nth_enum_rank_inx00 x0 A Ax0 :
{in A, cancel (@enum_rank_in x0 A Ax0) (nth x00 (enum A))}.
Proof.
move=> x Ax; rewrite /= insubdK ?nth_index ?mem_enum //.
by rewrite cardE [_ \in _]index_mem mem_enum.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
nth_enum_rank_in
| |
nth_enum_rankx0 : cancel enum_rank (nth x0 (enum T)).
Proof. by move=> x; apply: nth_enum_rank_in. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
nth_enum_rank
| |
enum_rankK_inx0 A Ax0 :
{in A, cancel (@enum_rank_in x0 A Ax0) enum_val}.
Proof. by move=> x; apply: nth_enum_rank_in. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
enum_rankK_in
| |
enum_rankK: cancel enum_rank enum_val.
Proof. by move=> x; apply: enum_rankK_in. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
enum_rankK
| |
enum_valK_inx0 A Ax0 : cancel enum_val (@enum_rank_in x0 A Ax0).
Proof.
move=> x; apply: ord_inj; rewrite insubdK; last first.
by rewrite cardE [_ \in _]index_mem mem_nth // -cardE.
by rewrite index_uniq ?enum_uniq // -cardE.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
enum_valK_in
| |
enum_valK: cancel enum_val enum_rank.
Proof. by move=> x; apply: enum_valK_in. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
enum_valK
| |
enum_rank_inj: injective enum_rank.
Proof. exact: can_inj enum_rankK. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
enum_rank_inj
| |
enum_val_injA : injective (@enum_val A).
Proof. by move=> i; apply: can_inj (enum_valK_in (enum_valP i)) (i). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
enum_val_inj
| |
enum_val_bij_inx0 A : x0 \in A -> {on A, bijective (@enum_val A)}.
Proof.
move=> Ax0; exists (enum_rank_in Ax0) => [i _|]; last exact: enum_rankK_in.
exact: enum_valK_in.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
enum_val_bij_in
| |
eq_enum_rank_in(x0 y0 : T) A (Ax0 : x0 \in A) (Ay0 : y0 \in A) :
{in A, enum_rank_in Ax0 =1 enum_rank_in Ay0}.
Proof. by move=> x xA; apply: enum_val_inj; rewrite !enum_rankK_in. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
eq_enum_rank_in
| |
enum_rank_in_inj(x0 y0 : T) A (Ax0 : x0 \in A) (Ay0 : y0 \in A) :
{in A &, forall x y, enum_rank_in Ax0 x = enum_rank_in Ay0 y -> x = y}.
Proof. by move=> x y xA yA /(congr1 enum_val); rewrite !enum_rankK_in. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
enum_rank_in_inj
| |
enum_rank_bij: bijective enum_rank.
Proof. by move: enum_rankK enum_valK; exists (@enum_val T). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
enum_rank_bij
| |
enum_val_bij: bijective (@enum_val T).
Proof. by move: enum_rankK enum_valK; exists enum_rank. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
enum_val_bij
| |
enum_val:= enum_val.
|
Notation
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
enum_val
| |
enum_rank_in:= enum_rank_in.
|
Notation
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
enum_rank_in
| |
enum_rank:= enum_rank.
|
Notation
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset"
] |
order/preorder.v
|
enum_rank
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.