fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
homo_ltn_lt: (forall i, f i < f i.+1) -> {homo f : i j / i < j}. Proof. by apply: homo_ltn; apply: lt_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
homo_ltn_lt
nondecnP: (forall i, f i <= f i.+1) -> {homo f : i j / i <= j}. Proof. by apply: homo_leq => //; apply: le_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
nondecnP
nhomo_ltn_lt: (forall i, f i > f i.+1) -> {homo f : i j /~ i < j}. Proof. move=> f_dec; apply: homo_sym. by apply: homo_ltn f_dec => ? ? ? ? /lt_trans->. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
nhomo_ltn_lt
nonincnP: (forall i, f i >= f i.+1) -> {homo f : i j /~ i <= j}. Proof. move=> /= f_dec; apply: homo_sym. by apply: homo_leq f_dec => //= ? ? ? ? /le_trans->. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
nonincnP
dvd:= (@le dvd_display _).
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
dvd
sdvd:= (@lt dvd_display _).
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
sdvd
nat0:= (@top dvd_display _).
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
nat0
nat1:= (@bottom dvd_display _).
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
nat1
t:= nat. #[export] HB.instance Definition _ := Choice.copy t nat.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
t
Definition_ := @Le_isPreorder.Build dvd_display t dvdn dvdnn dvdn_trans.
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Definition
Definition_ := @hasBottom.Build _ t 1 dvd1n. #[export] HB.instance Definition _ := @hasTop.Build _ t 0 dvdn0. Import DvdSyntax.
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Definition
dvdE: dvd = dvdn :> rel t. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
dvdE
nat1E: nat1 = 1%N :> t. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
nat1E
nat0E: nat0 = 0%N :> t. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
nat0E
natdvd:= t.
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
natdvd
dvdEnat:= dvdE.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
dvdEnat
nat1E:= nat1E.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
nat1E
nat0E:= nat0E.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
nat0E
Definition_ := [SubChoice_isSubPreorder of 'I_n by <: with ord_display].
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Definition
leEord: (le : rel 'I_n) = leq. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
leEord
ltEord: (lt : rel 'I_n) = (fun m n => m < n)%N. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltEord
botEord: \bot = ord0. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
botEord
topEord: \top = ord_max. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
topEord
leEord:= leEord.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
leEord
ltEord:= ltEord.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltEord
botEord:= botEord.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
botEord
topEord:= topEord.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
topEord
leEbool: le = (leq : rel bool). Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
leEbool
ltEboolx y : (x < y) = (x < y)%N. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltEbool
leEbool:= leEbool.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
leEbool
ltEbool:= ltEbool.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltEbool
prod_display(displ dispr : disp_t) : disp_t := Disp (prod_display_unit (d1 displ) (d1 dispr)) (prod_display_unit (d2 displ) (d2 dispr)). Fact seqprod_display (disp : disp_t) : disp_t. Proof. exact: disp. Qed.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
prod_display
type(disp : disp_t) (T T' : Type) := T * T'.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
type
type_(disp1 disp2 : disp_t) (T : preorderType disp1) (T' : preorderType disp2) := type (prod_display disp1 disp2) T T'.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
type_
Definition_ := Preorder.on T1'. Let T2' : Type := T2. HB.instance Definition _ := Preorder.on T2'.
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Definition
lex y := (x.1 <= y.1) && (x.2 <= y.2).
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le
ltx y := (x.1 < y.1) && (x.2 <= y.2) || (x.1 <= y.1) && (x.2 < y.2). #[export] HB.instance Definition _ := @isDuallyPreorder.Build disp3 (T1 * T2) le lt (@lt_def _ _ T1' T2') (@lt_def _ _ T1^d T2^d) (@refl _ _ T1' T2') (@refl _ _ T1^d T2^d) (@trans _ _ T1' T2') (@trans _ _ T1^d T2^d).
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt
leEprodx y : (x <= y) = (x.1 <= y.1) && (x.2 <= y.2). Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
leEprod
ltEprodx y : (x < y) = (x.1 < y.1) && (x.2 <= y.2) || (x.1 <= y.1) && (x.2 < y.2). Proof. rewrite lt_leAnge !leEprod negb_and andb_orr andbAC -lt_leAnge -andbA. by rewrite -lt_leAnge. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltEprod
le_pair(x1 y1 : T1) (x2 y2 : T2) : (x1, x2) <= (y1, y2) :> T1 * T2 = (x1 <= y1) && (x2 <= y2). Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le_pair
lt_pair(x1 y1 : T1) (x2 y2 : T2) : (x1, x2) < (y1, y2) :> T1 * T2 = (x1 < y1) && (x2 <= y2) || (x1 <= y1) && (x2 < y2). Proof. exact/ltEprod. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_pair
Definition_ := BPreorder.on T1'. Let T2' : Type := T2. HB.instance Definition _ := BPreorder.on T2'. #[export] HB.instance Definition _ := @hasBottom.Build disp3 (T1 * T2) (\bot, \bot) (@le0x _ _ T1' T2').
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Definition
botEprod: \bot = (\bot, \bot) :> T1 * T2. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
botEprod
Definition_ := @hasTop.Build disp3 (T1 * T2) (\top, \top) (@le0x _ _ T1^d T2^d).
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Definition
topEprod: \top = (\top, \top) :> T1 * T2. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
topEprod
Definition_ (disp1 disp2 disp3 : disp_t) (T1 : tbPreorderType disp1) (T2 : tbPreorderType disp2) := Preorder.on (type disp3 T1 T2).
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Definition
Definition_ (T1 : finPreorderType disp1) (T2 : finPreorderType disp2) := Preorder.on (type disp3 T1 T2). #[export] HB.instance Definition _ (T1 : finBPreorderType disp1) (T2 : finBPreorderType disp2) := Preorder.on (type disp3 T1 T2). #[export] HB.instance Definition _ (T1 : finTPreorderType disp1) (T2 : finTPreorderType disp2) := Preorder.on (type disp3 T1 T2). #[export] HB.instance Definition _ (T1 : finTBPreorderType disp1) (T2 : finTBPreorderType disp2) := Preorder.on (type disp3 T1 T2).
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Definition
leEprod:= @leEprod.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
leEprod
ltEprod:= @ltEprod.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltEprod
le_pair:= @le_pair.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le_pair
lt_pair:= @lt_pair.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_pair
botEprod:= @botEprod.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
botEprod
topEprod:= @topEprod.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
topEprod
Definition_ (T : preorderType disp1) (T' : preorderType disp2) := Preorder.copy (T * T')%type (T *p T'). HB.instance Definition _ (T1 : bPreorderType disp1) (T2 : bPreorderType disp2) := BPreorder.copy (T1 * T2)%type (prod T1 T2). HB.instance Definition _ (T1 : tPreorderType disp1) (T2 : tPreorderType disp2) := TPreorder.copy (T1 * T2)%type (prod T1 T2). HB.instance Definition _ (T1 : tbPreorderType disp1) (T2 : tbPreorderType disp2) := TBPreorder.copy (T1 * T2)%type (prod T1 T2). HB.instance Definition _ (T1 : finPreorderType disp1) (T2 : finPreorderType disp2) := FinPreorder.copy (T1 * T2)%type (prod T1 T2). HB.instance Definition _ (T1 : finBPreorderType disp1) (T2 : finBPreorderType disp2) := FinBPreorder.copy (T1 * T2)%type (prod T1 T2). HB.instance Definition _ (T1 : finTPreorderType disp1) (T2 : finTPreorderType disp2) := FinTPreorder.copy (T1 * T2)%type (prod T1 T2). HB.instance Definition _ (T1 : finTBPreorderType disp1) (T2 : finTBPreorderType disp2) := FinTBPreorder.copy (T1 * T2)%type (prod T1 T2).
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Definition
type(disp : disp_t) (T T' : Type) := T * T'.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
type
type_(disp1 disp2 : disp_t) (T : preorderType disp1) (T' : preorderType disp2) := type (lexi_display disp1 disp2) T T'.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
type_
Definition_ := Preorder.on T1'. Let T2' : Type := T2. HB.instance Definition _ := Preorder.on T2'.
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Definition
lex y := (x.1 <= y.1) && ((x.1 >= y.1) ==> (x.2 <= y.2)).
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le
ltx y := (x.1 <= y.1) && ((x.1 >= y.1) ==> (x.2 < y.2)). #[export] HB.instance Definition _ := @isDuallyPreorder.Build disp3 (T1 * T2) le lt (@lt_le_def _ _ T1' T2') (@lt_le_def _ _ T1^d T2^d) (@refl _ _ T1' T2') (@refl _ _ T1^d T2^d) (@trans _ _ T1' T2') (@trans _ _ T1^d T2^d).
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt
leEprodlexix y : (x <= y) = (x.1 <= y.1) && ((x.1 >= y.1) ==> (x.2 <= y.2)). Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
leEprodlexi
ltEprodlexix y : (x < y) = (x.1 <= y.1) && ((x.1 >= y.1) ==> (x.2 < y.2)). Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltEprodlexi
lexi_pair(x1 y1 : T1) (x2 y2 : T2) : (x1, x2) <= (y1, y2) :> T1 * T2 = (x1 <= y1) && ((x1 >= y1) ==> (x2 <= y2)). Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lexi_pair
ltxi_pair(x1 y1 : T1) (x2 y2 : T2) : (x1, x2) < (y1, y2) :> T1 * T2 = (x1 <= y1) && ((x1 >= y1) ==> (x2 < y2)). Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltxi_pair
Definition_ := BPreorder.on T1'. Let T2' : Type := T2. HB.instance Definition _ := BPreorder.on T2'. #[export] HB.instance Definition _ := @hasBottom.Build disp3 (T1 * T2) (\bot, \bot) (@le0x _ _ T1' T2').
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Definition
botEprodlexi: \bot = (\bot, \bot) :> T1 * T2. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
botEprodlexi
Definition_ := @hasTop.Build disp3 (T1 * T2) (\top, \top) (@le0x _ _ T1^d T2^d).
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Definition
topEprodlexi: \top = (\top, \top) :> T1 * T2. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
topEprodlexi
Definition_ (disp1 disp2 disp3 : disp_t) (T1 : tbPreorderType disp1) (T2 : tbPreorderType disp2) := Preorder.on (type disp3 T1 T2).
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Definition
sub_prod_lexi(disp1 disp2 disp3 disp4 : disp_t) (T1 : preorderType disp1) (T2 : preorderType disp2) : subrel (<=%O : rel (T1 *prod[disp3] T2)) (<=%O : rel (type disp4 T1 T2)). Proof. case=> [x1 x2] [y1 y2]; rewrite leEprod leEprodlexi /= => /andP[] -> ->. exact: implybT. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
sub_prod_lexi
Definition_ (T1 : bPreorderType disp1) (T2 : bPreorderType disp2) := Preorder.on (type disp3 T1 T2). #[export, warning="-HB.no-new-instance"] HB.instance Definition _ (T1 : tPreorderType disp1) (T2 : tPreorderType disp2) := Preorder.on (type disp3 T1 T2). #[export, warning="-HB.no-new-instance"] HB.instance Definition _ (T1 : tbPreorderType disp1) (T2 : tbPreorderType disp2) := Preorder.on (type disp3 T1 T2). #[export] HB.instance Definition _ (T1 : finPreorderType disp1) (T2 : finPreorderType disp2) := Preorder.on (type disp3 T1 T2). #[export] HB.instance Definition _ (T1 : finBPreorderType disp1) (T2 : finBPreorderType disp2) := Preorder.on (type disp3 T1 T2). #[export] HB.instance Definition _ (T1 : finTPreorderType disp1) (T2 : finTPreorderType disp2) := Preorder.on (type disp3 T1 T2). #[export] HB.instance Definition _ (T1 : finTBPreorderType disp1) (T2 : finTBPreorderType disp2) := Preorder.on (type disp3 T1 T2).
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Definition
leEprodlexi:= @leEprodlexi.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
leEprodlexi
ltEprodlexi:= @ltEprodlexi.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltEprodlexi
lexi_pair:= @lexi_pair.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lexi_pair
ltxi_pair:= @ltxi_pair.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltxi_pair
topEprodlexi:= @topEprodlexi.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
topEprodlexi
botEprodlexi:= @botEprodlexi.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
botEprodlexi
sub_prod_lexi:= @sub_prod_lexi.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
sub_prod_lexi
Definition_ (T1 : preorderType disp1) (T2 : preorderType disp2) := Preorder.copy (T1 * T2)%type (prodlexi T1 T2). HB.instance Definition _ (T1 : bPreorderType disp1) (T2 : bPreorderType disp2) := BPreorder.copy (T1 * T2)%type (prodlexi T1 T2). HB.instance Definition _ (T1 : tPreorderType disp1) (T2 : tPreorderType disp2) := TPreorder.copy (T1 * T2)%type (prodlexi T1 T2). HB.instance Definition _ (T1 : tbPreorderType disp1) (T2 : tbPreorderType disp2) := TBPreorder.copy (T1 * T2)%type (prodlexi T1 T2). HB.instance Definition _ (T1 : finPreorderType disp1) (T2 : finPreorderType disp2) := FinPreorder.copy (T1 * T2)%type (prodlexi T1 T2). HB.instance Definition _ (T1 : finBPreorderType disp1) (T2 : finBPreorderType disp2) := FinBPreorder.copy (T1 * T2)%type (prodlexi T1 T2). HB.instance Definition _ (T1 : finTPreorderType disp1) (T2 : finTPreorderType disp2) := FinTPreorder.copy (T1 * T2)%type (prodlexi T1 T2). HB.instance Definition _ (T1 : finTBPreorderType disp1) (T2 : finTBPreorderType disp2) := FinTBPreorder.copy (T1 * T2)%type (prodlexi T1 T2).
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Definition
type(disp : disp_t) T := seq T.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
type
type_(disp : disp_t) (T : preorderType disp) := type (seqprod_display disp) T. Context {disp disp' : disp_t}. Local Notation seq := (type disp'). #[export] HB.instance Definition _ (T : eqType) := Equality.on (seq T). #[export] HB.instance Definition _ (T : choiceType) := Choice.on (seq T). #[export] HB.instance Definition _ (T : countType) := Countable.on (seq T).
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
type_
les1 s2 := if s1 isn't x1 :: s1' then true else if s2 isn't x2 :: s2' then false else (x1 <= x2) && le s1' s2'. Fact refl : reflexive le. Proof. by elim=> //= ? ? ?; rewrite !lexx. Qed. Fact trans : transitive le. Proof. elim=> [|y ys ihs] [|x xs] [|z zs] //= /andP[xy xys] /andP[yz yzs]. by rewrite (le_trans xy)// ihs. Qed. #[export] HB.instance Definition _ := isPreorder.Build disp' (seq T) (rrefl _) refl trans.
Fixpoint
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le
leEseqs1 s2 : s1 <= s2 = if s1 isn't x1 :: s1' then true else if s2 isn't x2 :: s2' then false else (x1 <= x2) && (s1' <= s2' :> seq _). Proof. by case: s1. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
leEseq
le0ss : [::] <= s :> seq _. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le0s
les0s : s <= [::] = (s == [::]). Proof. by rewrite leEseq. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
les0
le_consx1 s1 x2 s2 : x1 :: s1 <= x2 :: s2 :> seq _ = (x1 <= x2) && (s1 <= s2). Proof. by []. Qed. #[export] HB.instance Definition _ := hasBottom.Build _ (seq T) le0s.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le_cons
botEseq: \bot = [::] :> seq T. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
botEseq
seqprod_with:= type.
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
seqprod_with
seqprod:= type_.
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
seqprod
leEseq:= @leEseq.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
leEseq
le0s:= @le0s.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le0s
les0:= @les0.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
les0
le_cons:= @le_cons.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le_cons
botEseq:= @botEseq.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
botEseq
seqprod:= (seqprod_with (seqprod_display disp)). HB.instance Definition _ (T : preorderType disp) := Preorder.copy (seq T) (seqprod T). HB.instance Definition _ (T : preorderType disp) := BPreorder.copy (seq T) (seqprod T).
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
seqprod
type(disp : disp_t) T := seq T.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
type
type_(disp : disp_t) (T : preorderType disp) := type (seqlexi_display disp) T. Context {disp disp' : disp_t}. Local Notation seq := (type disp'). #[export] HB.instance Definition _ (T : eqType) := Equality.on (seq T). #[export] HB.instance Definition _ (T : choiceType) := Choice.on (seq T). #[export] HB.instance Definition _ (T : countType) := Countable.on (seq T).
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
type_
les1 s2 := if s1 isn't x1 :: s1' then true else if s2 isn't x2 :: s2' then false else (x1 <= x2) && ((x1 >= x2) ==> le s1' s2').
Fixpoint
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le
lts1 s2 := if s2 isn't x2 :: s2' then false else if s1 isn't x1 :: s1' then true else (x1 <= x2) && ((x1 >= x2) ==> lt s1' s2'). Fact refl: reflexive le. Proof. by elim => [|x s ih] //=; rewrite lexx. Qed. Fact trans: transitive le. Proof. elim=> [|y sy ihs] [|x sx] [|z sz] //= /andP[] xy /implyP yx /andP[] yz /implyP zy /=. rewrite (le_trans xy yz)/=; apply/implyP => zx. apply/ihs; first exact/yx/(le_trans yz zx). exact/zy/(le_trans zx xy). Qed.
Fixpoint
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt
lt_le_defs1 s2 : lt s1 s2 = le s1 s2 && ~~ le s2 s1. Proof. elim: s1 s2 => [|x s1 ihs1] [|y s2]//=; rewrite ihs1. by case: (x <= y); case (y <= x). Qed. #[export] HB.instance Definition _ := isPreorder.Build disp' (seq T) lt_le_def refl trans.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_le_def
leEseqlexis1 s2 : s1 <= s2 = if s1 isn't x1 :: s1' then true else if s2 isn't x2 :: s2' then false else (x1 <= x2) && ((x1 >= x2) ==> (s1' <= s2' :> seq T)). Proof. by case: s1. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
leEseqlexi