fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
lteif_andbx y : {morph lteif x y : p q / p && q}. Proof. case=> [][] /=. - by rewrite andbb. - by rewrite lt_le_def andbA andbb. - by rewrite andbC lt_le_def andbA andbb. - by rewrite andbb. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lteif_andb
lteif_implyC1 C2 x y : C1 ==> C2 -> x < y ?<= if C1 -> x < y ?<= if C2. Proof. by case: C1 C2 => [][] //= _ /ltW. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lteif_imply
lteifWC x y : x < y ?<= if C -> x <= y. Proof. by case: C => // /ltW. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lteifW
ltrW_lteifC x y : x < y -> x < y ?<= if C. Proof. by case: C => // /ltW. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltrW_lteif
minEltx y : min x y = if x < y then x else y. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
minElt
maxEltx y : max x y = if x < y then y else x. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
maxElt
minxx: idempotent_op (min : T -> T -> T). Proof. by rewrite /min => x; rewrite ltxx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
minxx
maxxx: idempotent_op (max : T -> T -> T). Proof. by rewrite /max => x; rewrite ltxx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
maxxx
min_minKxx y : min (min x y) y = min x y. Proof. by rewrite !(fun_if, if_arg) ltxx/=; case: (x < y). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
min_minKx
min_minxKx y : min x (min x y) = min x y. Proof. by rewrite !(fun_if, if_arg) ltxx/=; case: (x < y). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
min_minxK
max_maxKxx y : max (max x y) y = max x y. Proof. by rewrite !(fun_if, if_arg) ltxx/=; case: (x < y). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
max_maxKx
max_maxxKx y : max x (max x y) = max x y. Proof. by rewrite !(fun_if, if_arg) ltxx/=; case: (x < y). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
max_maxxK
comparable_minlz : {in >=< z &, forall x y, min x y >=< z}. Proof. by move=> x y cmp_xz cmp_yz; rewrite /min; case: ifP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_minl
comparable_minrz : {in >=<%O z &, forall x y, z >=< min x y}. Proof. by move=> x y cmp_xz cmp_yz; rewrite /min; case: ifP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_minr
comparable_maxlz : {in >=< z &, forall x y, max x y >=< z}. Proof. by move=> x y cmp_xz cmp_yz; rewrite /max; case: ifP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_maxl
comparable_maxrz : {in >=<%O z &, forall x y, z >=< max x y}. Proof. by move=> x y cmp_xz cmp_yz; rewrite /max; case: ifP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_maxr
comparable_le_min: (z <= min x y) = (z <= x) && (z <= y). Proof. move: cmp_xy; rewrite /min /comparable lt_le_def. case/boolP: (x <= y) => xy/=; case/boolP: (y <= x) => yx//= _. - by rewrite andbC; case/boolP: (z <= y) => zy //=; apply/esym/(le_trans zy). - by case/boolP: (z <= x) => zx //=; apply/esym/(le_trans zx). - by rewrite andbC; case/boolP: (z <= y) => zy //=; apply/esym/(le_trans zy). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_le_min
comparable_ge_min: (min x y <= z) = (x <= z) || (y <= z). Proof. move: cmp_xy; rewrite /min /comparable lt_le_def. case/boolP: (x <= y) => xy/=; case/boolP: (y <= x) => yx//= _. - rewrite orbC; case/boolP: (y <= z) => //= /negP yz. by apply/esym/negP => /(le_trans yx). - by case/boolP: (x <= z) => //= /negP xz; apply/esym/negP => /(le_trans xy). - rewrite orbC; case/boolP: (y <= z) => //= /negP yz. by apply/esym/negP => /(le_trans yx). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_ge_min
comparable_lt_min: (z < min x y) = (z < x) && (z < y). Proof. move: cmp_xy; rewrite /min /comparable !lt_le_def. case/boolP: (x <= y) => xy/=; case/boolP: (y <= x) => yx//= _. - rewrite -!lt_le_def; case/boolP: (z < x) => //= /negP zx. by apply/negP => zy; apply/zx/(lt_le_trans zy). - rewrite -!lt_le_def; case/boolP: (z < x) => //= zx; apply/esym/(lt_trans zx). by rewrite lt_le_def xy yx. - rewrite -!lt_le_def andbC; case/boolP: (z < y) => //= zy; apply/esym/(lt_trans zy). by rewrite lt_le_def xy yx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_lt_min
comparable_gt_min: (min x y < z) = (x < z) || (y < z). Proof. move: cmp_xy; rewrite /min /comparable !lt_le_def. case/boolP: (x <= y) => xy/=; case/boolP: (y <= x) => yx//= _. - rewrite -!lt_le_def orbC; case/boolP: (y < z) => //= /negP yz. by apply/esym/negP => xz; apply/yz/(le_lt_trans yx). - rewrite -!lt_le_def; case/boolP: (x < z) => //= /negP xz. by apply/esym/negP => yz; apply/xz/(le_lt_trans xy). - rewrite -!lt_le_def orbC; case/boolP: (y < z) => //= /negP yz. by apply/esym/negP => xz; apply/yz/(le_lt_trans yx). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_gt_min
comparable_le_max: (z <= max x y) = (z <= x) || (z <= y). Proof. move: cmp_xy; rewrite /max /comparable lt_le_def. case/boolP: (x <= y) => xy/=; case/boolP: (y <= x) => yx//= _. - case/boolP: (z <= x) => //= /negP zx. by apply/esym/negP => zy; apply/zx/(le_trans zy). - rewrite orbC; case/boolP: (z <= y) => //= /negP zy. by apply/esym/negP => zx; apply/zy/(le_trans zx). - case/boolP: (z <= x) => //= /negP zx. by apply/esym/negP => zy; apply/zx/(le_trans zy). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_le_max
comparable_ge_max: (max x y <= z) = (x <= z) && (y <= z). Proof. move: cmp_xy; rewrite /max /comparable lt_le_def. case/boolP: (x <= y) => xy/=; case/boolP: (y <= x) => yx//= _. - case/boolP: (x <= z) => //= xz. by apply/esym/(le_trans yx). - rewrite andbC; case/boolP: (y <= z) => //= yz. by apply/esym/(le_trans xy). - case/boolP: (x <= z) => //= xz. by apply/esym/(le_trans yx). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_ge_max
comparable_lt_max: (z < max x y) = (z < x) || (z < y). Proof. move: cmp_xy; rewrite /max /comparable !lt_le_def. case/boolP: (x <= y) => xy/=; case/boolP: (y <= x) => yx//= _. - rewrite -!lt_le_def; case/boolP: (z < x) => //= /negP zx. by apply/esym/negP => zy; apply/zx/(lt_le_trans zy). - rewrite -!lt_le_def orbC; case/boolP: (z < y) => //= /negP zy. by apply/esym/negP => zx; apply/zy/(lt_le_trans zx). - rewrite -!lt_le_def; case/boolP: (z < x) => //= /negP zx. by apply/esym/negP => zy; apply/zx/(lt_le_trans zy). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_lt_max
comparable_gt_max: (max x y < z) = (x < z) && (y < z). Proof. move: cmp_xy; rewrite /max /comparable !lt_le_def. case/boolP: (x <= y) => xy/=; case/boolP: (y <= x) => yx//= _. - rewrite -!lt_le_def; case/boolP: (x < z) => //= xz. by apply/esym/(le_lt_trans yx). - rewrite -!lt_le_def andbC; case/boolP: (y < z) => //= yz. by apply/esym/(le_lt_trans xy). - rewrite -!lt_le_def; case/boolP: (x < z) => //= xz. by apply/esym/(le_lt_trans yx). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_gt_max
comparable_minxK: max (min x y) y = y. Proof. by rewrite !(fun_if, if_arg) ltxx/=; case: (x < y). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_minxK
comparable_minKx: max x (min x y) = x. Proof. by rewrite !(fun_if, if_arg) ltxx/=; case: (x < y). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_minKx
comparable_maxxK: min (max x y) y = y. Proof. by rewrite !(fun_if, if_arg) ltxx/=; case: (x < y). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_maxxK
comparable_maxKx: min x (max x y) = x. Proof. by rewrite !(fun_if, if_arg) ltxx/=; case: (x < y). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_maxKx
comparable_lteif_minrC : (z < min x y ?<= if C) = (z < x ?<= if C) && (z < y ?<= if C). Proof. by case: C; rewrite /= (comparable_le_min, comparable_lt_min). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_lteif_minr
comparable_lteif_minlC : (min x y < z ?<= if C) = (x < z ?<= if C) || (y < z ?<= if C). Proof. by case: C; rewrite /= (comparable_ge_min, comparable_gt_min). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_lteif_minl
comparable_lteif_maxrC : (z < max x y ?<= if C) = (z < x ?<= if C) || (z < y ?<= if C). Proof. by case: C; rewrite /= (comparable_le_max, comparable_lt_max). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_lteif_maxr
comparable_lteif_maxlC : (max x y < z ?<= if C) = (x < z ?<= if C) && (y < z ?<= if C). Proof. by case: C; rewrite /= (comparable_ge_max, comparable_gt_max). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_lteif_maxl
comparable_minA: min x (min y z) = min (min x y) z. Proof. move: cmp_xy cmp_xz cmp_yz; rewrite !(fun_if, if_arg)/= !lt_le_def. case/boolP: (x <= y) => xy; case/boolP: (y <= x) => yx; case/boolP: (x <= z) => xz; case/boolP: (z <= x) => zx; case/boolP: (y <= z) => yz; case/boolP: (z <= y) => zy //= _ _ _. - by move: zx; rewrite (le_trans zy yx). - by move: zx; rewrite (le_trans zy yx). - by move: zy; rewrite (le_trans zx xy). - by move: zy; rewrite (le_trans zx xy). - by move: zx; rewrite (le_trans zy yx). - by move: zx; rewrite (le_trans zy yx). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_minA
comparable_maxA: max x (max y z) = max (max x y) z. Proof. move: cmp_xy cmp_xz cmp_yz; rewrite !(fun_if, if_arg)/= !lt_le_def. case/boolP: (x <= y) => xy; case/boolP: (y <= x) => yx; case/boolP: (x <= z) => xz; case/boolP: (z <= x) => zx; case/boolP: (y <= z) => yz; case/boolP: (z <= y) => zy //= _ _ _. - by move: zx; rewrite (le_trans zy yx). - by move: zx; rewrite (le_trans zy yx). - by move: zy; rewrite (le_trans zx xy). - by move: zy; rewrite (le_trans zx xy). - by move: zx; rewrite (le_trans zy yx). - by move: zx; rewrite (le_trans zy yx). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_maxA
comparable_min_maxl: min (max x y) z = max (min x z) (min y z). Proof. move: cmp_xy cmp_xz cmp_yz; rewrite !(fun_if, if_arg)/= !lt_le_def. case/boolP: (x <= y) => xy; case/boolP: (y <= x) => yx; case/boolP: (x <= z) => xz; case/boolP: (z <= x) => zx; case/boolP: (y <= z) => yz; case/boolP: (z <= y) => zy; rewrite ?lexx => //= _ _ _. - by move: zx; rewrite (le_trans zy yx). - by move: zx; rewrite (le_trans zy yx). - by move: zy; rewrite (le_trans zx xy). - by move: zy; rewrite (le_trans zx xy). - by move: zx; rewrite (le_trans zy yx). - by move: zx; rewrite (le_trans zy yx). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_min_maxl
comparable_max_minr: max x (min y z) = min (max x y) (max x z). Proof. move: cmp_xy cmp_xz cmp_yz; rewrite !(fun_if, if_arg)/= !lt_le_def. case/boolP: (x <= y) => xy; case/boolP: (y <= x) => yx; case/boolP: (x <= z) => xz; case/boolP: (z <= x) => zx; case/boolP: (y <= z) => yz; case/boolP: (z <= y) => zy; rewrite ?lexx => //= _ _ _. - by move: zx; rewrite (le_trans zy yx). - by move: zx; rewrite (le_trans zy yx). - by move: zy; rewrite (le_trans zx xy). - by move: zy; rewrite (le_trans zx xy). - by move: zx; rewrite (le_trans zy yx). - by move: zx; rewrite (le_trans zy yx). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_max_minr
comparable_arg_minP: extremum_spec <=%O P F (arg_min i0 P F). Proof. by apply: extremum_inP => // [x _|y x z _ _ _]; [apply: lexx|apply: le_trans]. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_arg_minP
comparable_arg_maxP: extremum_spec >=%O P F (arg_max i0 P F). Proof. apply: extremum_inP => // [x _|y x z _ _ _|]; [exact: lexx|exact: ge_trans|]. by move=> x y xP yP; rewrite orbC [_ || _]F_comparable. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_arg_maxP
comparable_biglx x0 op I (P : pred I) F (s : seq I) : {in >=< x &, forall y z, op y z >=< x} -> x0 >=< x -> {in P, forall i, F i >=< x} -> \big[op/x0]_(i <- s | P i) F i >=< x. Proof. by move=> *; elim/big_ind : _. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_bigl
comparable_bigrx x0 op I (P : pred I) F (s : seq I) : {in >=<%O x &, forall y z, x >=< op y z} -> x >=< x0 -> {in P, forall i, x >=< F i} -> x >=< \big[op/x0]_(i <- s | P i) F i. Proof. by move=> *; elim/big_ind : _. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_bigr
bigmax_lt: x0 < x -> (forall i, P i -> f i < x) -> \big[max/x0]_(i <- r | P i) f i < x. Proof. by move=> ? ?; elim/big_ind: _ => // *; rewrite maxElt; case: ifPn. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
bigmax_lt
lt_bigmin: x < x0 -> (forall i, P i -> x < f i) -> x < \big[min/x0]_(i <- r | P i) f i. Proof. by move=> ? ?; elim/big_ind: _ => // *; rewrite minElt; case: ifPn. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_bigmin
comparable_contraTleb x y : x >=< y -> (y < x -> ~~ b) -> (b -> x <= y). Proof. by move=> /comparable_leNgt ->; case: (y < x); case: b. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_contraTle
comparable_contraTltb x y : x >=< y -> (y <= x -> ~~ b) -> (b -> x < y). Proof. by move=> /comparable_ltNge ->; case: (y <= x); case: b. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_contraTlt
comparable_contraPleP x y : x >=< y -> (y < x -> ~ P) -> (P -> x <= y). Proof. by move=> /comparable_leNgt -> np p; apply/negP => /np. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_contraPle
comparable_contraPltP x y : x >=< y -> (y <= x -> ~ P) -> (P -> x < y). Proof. by move=> /comparable_ltNge -> np p; apply/negP => /np. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_contraPlt
comparable_contraNleb x y : x >=< y -> (y < x -> b) -> (~~ b -> x <= y). Proof. by move=> /comparable_leNgt ->; case: (y < x); case: b. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_contraNle
comparable_contraNltb x y : x >=< y -> (y <= x -> b) -> (~~ b -> x < y). Proof. by move=> /comparable_ltNge ->; case: (y <= x); case: b. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_contraNlt
comparable_contra_not_leP x y : x >=< y -> (y < x -> P) -> (~ P -> x <= y). Proof. by move=> /comparable_leNgt -> np p; apply/negP => /np. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_contra_not_le
comparable_contra_not_ltP x y : x >=< y -> (y <= x -> P) -> (~ P -> x < y). Proof. by move=> /comparable_ltNge -> np p; apply/negP => /np. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_contra_not_lt
comparable_contraFleb x y : x >=< y -> (y < x -> b) -> (b = false -> x <= y). Proof. by move=> /comparable_leNgt -> np /negP p; apply/negP => /np. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_contraFle
comparable_contraFltb x y : x >=< y -> (y <= x -> b) -> (b = false -> x < y). Proof. by move=> /comparable_ltNge -> np /negP p; apply/negP => /np. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_contraFlt
comparable_contra_leq_lem n x y : x >=< y -> (y < x -> (n < m)%N) -> ((m <= n)%N -> x <= y). Proof. by rewrite ltnNge; apply/comparable_contraTle. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_contra_leq_le
comparable_contra_leq_ltm n x y : x >=< y -> (y <= x -> (n < m)%N) -> ((m <= n)%N -> x < y). Proof. by rewrite ltnNge; apply/comparable_contraTlt. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_contra_leq_lt
comparable_contra_ltn_lem n x y : x >=< y -> (y < x -> (n <= m)%N) -> ((m < n)%N -> x <= y). Proof. by rewrite ltnNge; apply/comparable_contraNle. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_contra_ltn_le
comparable_contra_ltn_ltm n x y : x >=< y -> (y <= x -> (n <= m)%N) -> ((m < n)%N -> x < y). Proof. by rewrite ltnNge; apply/comparable_contraNlt. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_contra_ltn_lt
comparable_contra_lex y z t : z >=< t -> (t < z -> y < x) -> (x <= y -> z <= t). Proof. rewrite /comparable lt_le_def; case: (z <= t) => //= -> /(_ erefl) yx. by move=> /(lt_le_trans yx); rewrite ltxx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_contra_le
comparable_contra_le_ltx y z t : z >=< t -> (t <= z -> y < x) -> (x <= y -> z < t). Proof. rewrite /comparable [z < t]lt_le_def orbC; case: (t <= z) => /= [_|-> //]. by move=> /(_ erefl) yx /(lt_le_trans yx); rewrite ltxx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_contra_le_lt
comparable_contra_lt_lex y z t : z >=< t -> (t < z -> y <= x) -> (x < y -> z <= t). Proof. rewrite /comparable lt_le_def; case: (z <= t) => //= -> /(_ erefl) yx. by move=> /(le_lt_trans yx); rewrite ltxx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_contra_lt_le
comparable_contra_ltx y z t : z >=< t -> (t <= z -> y <= x) -> (x < y -> z < t). Proof. rewrite /comparable [z < t]lt_le_def orbC; case: (t <= z) => /= [_|-> //]. by move=> /(_ erefl) yx /(le_lt_trans yx); rewrite ltxx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_contra_lt
leW_mono: {mono f : x y / x <= y} -> {mono f : x y / x < y}. Proof. by move=> fmono x y; rewrite !lt_le_def !fmono. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
leW_mono
leW_nmono: {mono f : x y /~ x <= y} -> {mono f : x y /~ x < y}. Proof. by move=> fmono x y; rewrite !lt_le_def !fmono. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
leW_nmono
leW_mono_in: {in D &, {mono f : x y / x <= y}} -> {in D &, {mono f : x y / x < y}}. Proof. by move=> fmono x y xD yD; rewrite !lt_le_def !fmono. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
leW_mono_in
leW_nmono_in: {in D &, {mono f : x y /~ x <= y}} -> {in D &, {mono f : x y /~ x < y}}. Proof. by move=> fmono x y xD yD; rewrite !lt_le_def !fmono. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
leW_nmono_in
le0xx : \bot <= x. Proof. exact: le0x. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le0x
ltx0x : (x < \bot) = false. Proof. exact/le_gtF/le0x. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltx0
lex1x : x <= \top. Proof. exact: lex1. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lex1
lt1xx : (\top < x) = false. Proof. exact: (@ltx0 _ T^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt1x
RecordisPreorder (d : disp_t) T of Equality T := { le : rel T; lt : rel T; lt_def : forall x y, lt x y = (le x y) && ~~ (le y x); le_refl : reflexive le; le_trans : transitive le; }. HB.builders Context (d : disp_t) T of isPreorder d T.
HB.factory
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Record
Definition_ := @isDuallyPreorder.Build d T le _ lt_def (fun x y => lt_def y x) le_refl le_refl le_trans ge_trans. HB.end. HB.factory Record Le_isPreorder (d : disp_t) T of Equality T := { le : rel T; le_refl : reflexive le; le_trans : transitive le; }. HB.builders Context (d : disp_t) T of Le_isPreorder d T.
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Definition
Definition_ := @isPreorder.Build d T le _ (fun _ _ => erefl) le_refl le_trans. HB.end. HB.factory Record LtLe_isPreorder (d : disp_t) T of Equality T := { le : rel T; lt : rel T; le_def : forall x y, le x y = (x == y) || lt x y; lt_irr : irreflexive lt; lt_trans : transitive lt; }. HB.builders Context (d : disp_t) T of LtLe_isPreorder d T. Let le_refl : reflexive le. Proof. by move=> x; rewrite le_def eqxx. Qed. Let le_trans : transitive le. Proof. move=> y x z; rewrite !le_def; case: (eqVneq x y) => [->|]//= neq_xy. by case: (eqVneq y z) => /= [<- ->|_ /lt_trans yx /yx ->]; rewrite orbT. Qed. Let lt_le_def x y : lt x y = (le x y) && ~~ (le y x). Proof. rewrite !le_def eq_sym; have [->|_ /=] := eqVneq x y; first by rewrite lt_irr. case/boolP: (lt x y) => //= xy; apply/esym/negP => /(lt_trans xy). by rewrite lt_irr. Qed. #[warning="-HB.no-new-instance"] HB.instance Definition _ := @isPreorder.Build d T le lt lt_le_def le_refl le_trans . HB.end. HB.factory Record Lt_isPreorder (d : disp_t) T of Equality T := { lt : rel T; lt_irr : irreflexive lt; lt_trans : transitive lt; }.
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Definition
le(x y : T) := f x <= f y.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le
lt(x y : T) := f x < f y. Fact refl : reflexive le. Proof. by move=> ?; apply: lexx. Qed. Fact trans : transitive le. Proof. by move=> ? ? ?; apply: le_trans. Qed. Fact ge_trans : transitive (fun x y => le y x). Proof. by move=> ? ? ?; apply: ge_trans. Qed. Fact lt_le_def x y : lt x y = le x y && ~~ le y x. Proof. exact: lt_le_def. Qed.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt
PrePcan:= isPreorder.Build disp T lt_le_def refl trans.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
PrePcan
Definition_ (disp : disp_t) (T : choiceType) (disp' : disp_t) (T' : porderType disp') (f : T -> T') (f_inj : injective f): isPreorder disp (inj_type f_inj) := @PreCancelPartial.PrePcan disp (inj_type f_inj) disp' T' f. *) #[export] HB.instance Definition _ (disp : disp_t) (T : Type) (disp' : disp_t) (T' : preorderType disp') (f : T -> T') (f' : T' -> option T) (f_can : pcancel f f') : isPreorder disp (pcan_type f_can) := @PreCancelPartial.PrePcan disp (pcan_type f_can) disp' T' f. #[export] HB.instance Definition _ (disp : disp_t) (T : Type) (disp' : disp_t) (T' : preorderType disp') (f : T -> T') (f' : T' -> T) (f_can : cancel f f') : isPreorder disp (can_type f_can) := @PreCancelPartial.PrePcan disp (can_type f_can) disp' T' f.
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Definition
order_morphismd (T : preorderType d) d' (T' : preorderType d') (f : T -> T') : Prop := {mono f : x y / x <= y}. HB.mixin Record isOrderMorphism d (T : preorderType d) d' (T' : preorderType d') (apply : T -> T') := { omorph_le_subproof : {homo apply : x y / x <= y} ; }. HB.structure Definition OrderMorphism d (T : preorderType d) d' (T' : preorderType d') := {f of isOrderMorphism d T d' T' f}.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
order_morphism
omorph_le(d : disp_t) (T : preorderType d) (d' : disp_t) (T' : preorderType d') (f : {omorphism T -> T'}) : {homo f : x y / x <= y}. Proof. exact: omorph_le_subproof. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
omorph_le
Definition_ := isOrderMorphism.Build d T d T idfun idfun_is_nondecreasing. Fact comp_is_nondecreasing : nondecreasing (f \o g). Proof. by move=> ? ? ?; do 2 apply: omorph_le. Qed. #[export] HB.instance Definition _ := isOrderMorphism.Build d T d'' T'' (f \o g) comp_is_nondecreasing.
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Definition
RecordisSubPreorder d (T : preorderType d) (S : pred T) d' U of SubType T S U & Preorder d' U := { le_val : {mono (val : U -> T) : x y / x <= y}; }. #[short(type="subPreorder")] HB.structure Definition SubPreorder d (T : preorderType d) S d' := { U of SubEquality T S U & Preorder d' U & isSubPreorder d T S d' U }.
HB.mixin
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Record
leEsubx y : (x <= y) = (val x <= val y). Proof. by rewrite le_val. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
leEsub
lt_val: {mono val : x y / x < y}. Proof. by move=> x y; rewrite !lt_leAnge !le_val. Qed. #[deprecated(since="mathcomp 2.3.0", note="Use lt_val instead.")]
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_val
ltEsubx y : (x < y) = (val x < val y). Proof. by rewrite lt_val. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltEsub
le_wval: {homo val : x y / x <= y}. Proof. exact/mono2W/le_val. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le_wval
lt_wval: {homo val : x y / x < y}. Proof. exact/mono2W/lt_val. Qed. HB.instance Definition _ := isOrderMorphism.Build d' U d T val le_wval.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_wval
RecordSubChoice_isSubPreorder d (T : preorderType d) S (d' : disp_t) U of SubChoice T S U := {}. HB.builders Context d T S d' U of SubChoice_isSubPreorder d T S d' U. HB.instance Definition _ : isPreorder d' U := @PreCancelPartial.PrePcan d' U d T val. Fact valD : order_morphism (val : U -> T). Proof. by []. Qed. HB.instance Definition _ := isSubPreorder.Build d T S d' U valD. HB.end.
HB.factory
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Record
ltn_defx y : (x < y)%N = (x <= y)%N && ~~ (y <= x)%N. Proof. by rewrite -ltnNge andbC; case: (ltnP x y) => //= /ltnW. Qed. #[export] HB.instance Definition _ := isPreorder.Build nat_display nat ltn_def leqnn leq_trans. #[export] HB.instance Definition _ := hasBottom.Build nat_display nat leq0n.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltn_def
leEnat: le = leq. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
leEnat
ltEnat: lt = ltn. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltEnat
minEnat: min = minn. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
minEnat
maxEnat: max = maxn. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
maxEnat
botEnat: \bot = 0%N :> nat. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
botEnat
leEnat:= leEnat.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
leEnat
ltEnat:= ltEnat.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltEnat
minEnat:= minEnat.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
minEnat
maxEnat:= maxEnat.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
maxEnat
botEnat:= botEnat.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
botEnat
homo_ltn_lt_in: {in D, forall i, i.+1 \in D -> f i < f i.+1} -> {in D &, {homo f : i j / i < j}}. Proof. by apply: homo_ltn_in Dconvex; apply: lt_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
homo_ltn_lt_in
nondecn_inP: {in D, forall i, i.+1 \in D -> f i <= f i.+1} -> {in D &, {homo f : i j / i <= j}}. Proof. by apply: homo_leq_in Dconvex => //; apply: le_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
nondecn_inP
nhomo_ltn_lt_in: {in D, forall i, i.+1 \in D -> f i > f i.+1} -> {in D &, {homo f : i j /~ i < j}}. Proof. move=> f_dec; apply: homo_sym_in. by apply: homo_ltn_in Dconvex f_dec => ? ? ? ? /lt_trans->. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
nhomo_ltn_lt_in
nonincn_inP: {in D, forall i, i.+1 \in D -> f i >= f i.+1} -> {in D &, {homo f : i j /~ i <= j}}. Proof. move=> /= f_dec; apply: homo_sym_in. by apply: homo_leq_in Dconvex f_dec => //= ? ? ? ? /le_trans->. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
nonincn_inP