fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
dual_leif:= (@leif (dual_display _) _).
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
dual_leif
dual_lteif:= (@lteif (dual_display _) _).
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
dual_lteif
dual_max:= (@max (dual_display _) _).
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
dual_max
dual_min:= (@min (dual_display _) _).
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
dual_min
dual_bottom:= (@bottom (dual_display _) _).
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
dual_bottom
dual_top:= (@top (dual_display _) _).
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
dual_top
Definition_ (T : eqType) := Equality.on T^d. HB.instance Definition _ (T : choiceType) := Choice.on T^d. HB.instance Definition _ (T : countType) := Countable.on T^d. HB.instance Definition _ (T : finType) := Finite.on T^d. HB.instance Definition _ (d : disp_t) (T : preorderType d) := isDuallyPreorder.Build (dual_display d) T^d gt_def lt_def ge_refl le_refl ge_trans le_trans.
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
Definition
leEdual(d : disp_t) (T : preorderType d) (x y : T) : (x <=^d y :> T^d) = (y <= x). Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
leEdual
ltEdual(d : disp_t) (T : preorderType d) (x y : T) : (x <^d y :> T^d) = (y < x). Proof. by []. Qed. HB.instance Definition _ d (T : tPreorderType d) := hasBottom.Build (dual_display d) T^d lex1.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltEdual
botEduald (T : tPreorderType d) : (dual_bottom : T^d) = \top :> T. Proof. by []. Qed. HB.instance Definition _ d (T : bPreorderType d) := hasTop.Build (dual_display d) T^d le0x.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
botEdual
topEduald (T : bPreorderType d) : (dual_top : T^d) = \bot :> T. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
topEdual
nondecreasingdisp' (T' : preorderType disp') (f : T -> T') : Prop := {homo f : x y / x <= y}.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
nondecreasing
geEx y : ge x y = (y <= x). Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
geE
gtEx y : gt x y = (y < x). Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
gtE
lexx(x : T) : x <= x. Proof. exact: le_refl. Qed. Hint Resolve lexx : core.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lexx
le_refl: reflexive le := lexx.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le_refl
ge_refl: reflexive ge := lexx. Hint Resolve le_refl : core.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ge_refl
le_trans: transitive (<=%O : rel T). Proof. exact: le_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le_trans
ge_trans: transitive (>=%O : rel T). Proof. by move=> ? ? ? ? /le_trans; apply. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ge_trans
le_le_transx y z t : z <= x -> y <= t -> x <= y -> z <= t. Proof. by move=> + /(le_trans _)/[apply]; apply: le_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le_le_trans
lt_le_defx y: (x < y) = (x <= y) && ~~ (y <= x). Proof. exact: lt_def. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_le_def
ltxxx: x < x = false. Proof. by rewrite lt_le_def andbN. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltxx
lt_irreflexive: irreflexive lt := ltxx. Hint Resolve lt_irreflexive : core.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_irreflexive
ltexx:= (lexx, ltxx).
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltexx
lt_eqFx y: x < y -> x == y = false. Proof. by apply: contraTF => /eqP ->; rewrite ltxx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_eqF
gt_eqFx y : y < x -> x == y = false. Proof. by move=> /lt_eqF; rewrite eq_sym. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
gt_eqF
ltWx y: x < y -> x <= y. Proof. by rewrite lt_le_def => /andP[]. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ltW
lt_le_transy x z: x < y -> y <= z -> x < z. Proof. rewrite !lt_le_def => /andP[] xy /negP yx yz. apply/andP; split; first exact/(le_trans xy). by apply/negP => /(le_trans yz). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_le_trans
lt_trans: transitive (<%O : rel T). Proof. by move=> y x z le1 /ltW le2; apply/(@lt_le_trans y). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_trans
le_lt_transy x z: x <= y -> y < z -> x < z. Proof. rewrite !lt_le_def => xy /andP[] yz /negP zy. apply/andP; split; first exact/(le_trans xy). by apply/negP => /(fun zx => le_trans zx xy). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le_lt_trans
lt_nsymx y : x < y -> y < x -> False. Proof. by move=> xy /(lt_trans xy); rewrite ltxx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_nsym
lt_asymx y : x < y < x = false. Proof. by apply/negP => /andP []; apply: lt_nsym. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_asym
le_gtFx y: x <= y -> y < x = false. Proof. by move=> le_xy; apply/negP => /lt_le_trans /(_ le_xy); rewrite ltxx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le_gtF
lt_geFx y : x < y -> y <= x = false. Proof. by apply: contraTF => /le_gtF ->. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_geF
lt_gtFx y hxy := le_gtF (@ltW x y hxy).
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_gtF
lt_leAngex y : (x < y) = (x <= y) && ~~ (y <= x). Proof. exact: lt_le_def. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_leAnge
lt_le_asymx y : x < y <= x = false. Proof. by apply/negP; move=> /andP[] xy /(lt_le_trans xy); rewrite ltxx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_le_asym
le_lt_asymx y : x <= y < x = false. Proof. by rewrite andbC lt_le_asym. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le_lt_asym
le_leP{x y} : reflect (forall z, y <= z -> x <= z) (x <= y). Proof. by apply: (iffP idP) => [xy z /(le_trans _)->//|]; apply. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le_leP
le_geP{x y} : reflect (forall z, z <= x -> z <= y) (x <= y). Proof. by apply: (iffP idP) => [xy z /le_trans|]; apply. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le_geP
lt_ltP{x y} : reflect (forall z, y <= z -> x < z) (x < y). Proof. by apply: (iffP idP) => [xy z /(lt_le_trans _)|]; apply. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_ltP
lt_gtP{x y} : reflect (forall z, z <= x -> z < y) (x < y). Proof. by apply: (iffP idP) => [xy z /le_lt_trans->//|]; apply. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_gtP
le_path_minx s : path <=%O x s -> all (>= x) s. Proof. exact/order_path_min/le_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le_path_min
lt_path_minx s : path <%O x s -> all (> x) s. Proof. exact/order_path_min/lt_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_path_min
le_path_sortedEx s : path <=%O x s = all (>= x) s && sorted <=%O s. Proof. exact/path_sortedE/le_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le_path_sortedE
lt_path_sortedEx s : path <%O x s = all (> x) s && sorted <%O s. Proof. exact/path_sortedE/lt_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_path_sortedE
le_sorted_pairwises : sorted <=%O s = pairwise <=%O s. Proof. exact/sorted_pairwise/le_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le_sorted_pairwise
lt_sorted_pairwises : sorted <%O s = pairwise <%O s. Proof. exact/sorted_pairwise/lt_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_sorted_pairwise
le_path_pairwisex s : path <=%O x s = pairwise <=%O (x :: s). Proof. exact/path_pairwise/le_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le_path_pairwise
lt_path_pairwisex s : path <%O x s = pairwise <%O (x :: s). Proof. exact/path_pairwise/lt_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_path_pairwise
lt_sorted_is_uniq_les : sorted <%O s -> uniq s && sorted <=%O s. Proof. rewrite le_sorted_pairwise lt_sorted_pairwise uniq_pairwise -pairwise_relI. apply/sub_pairwise => x y/= /[dup] + /ltW ->. by case: eqVneq => // ->; rewrite ltxx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_sorted_is_uniq_le
le_sorted_maskm s : sorted <=%O s -> sorted <=%O (mask m s). Proof. exact/sorted_mask/le_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le_sorted_mask
lt_sorted_maskm s : sorted <%O s -> sorted <%O (mask m s). Proof. exact/sorted_mask/lt_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_sorted_mask
le_sorted_filtera s : sorted <=%O s -> sorted <=%O (filter a s). Proof. exact/sorted_filter/le_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le_sorted_filter
lt_sorted_filtera s : sorted <%O s -> sorted <%O (filter a s). Proof. exact/sorted_filter/lt_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_sorted_filter
le_path_maskx m s : path <=%O x s -> path <=%O x (mask m s). Proof. exact/path_mask/le_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le_path_mask
lt_path_maskx m s : path <%O x s -> path <%O x (mask m s). Proof. exact/path_mask/lt_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_path_mask
le_path_filterx a s : path <=%O x s -> path <=%O x (filter a s). Proof. exact/path_filter/le_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le_path_filter
lt_path_filterx a s : path <%O x s -> path <%O x (filter a s). Proof. exact/path_filter/lt_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_path_filter
le_sorted_ltn_nth(x0 : T) (s : seq T) : sorted <=%O s -> {in [pred n | (n < size s)%N] &, {homo nth x0 s : i j / (i < j)%N >-> i <= j}}. Proof. exact/sorted_ltn_nth/le_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le_sorted_ltn_nth
le_sorted_leq_nth(x0 : T) (s : seq T) : sorted <=%O s -> {in [pred n | (n < size s)%N] &, {homo nth x0 s : i j / (i <= j)%N >-> i <= j}}. Proof. exact/sorted_leq_nth/le_refl/le_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le_sorted_leq_nth
lt_sorted_leq_nth(x0 : T) (s : seq T) : sorted <%O s -> {in [pred n | (n < size s)%N] &, {mono nth x0 s : i j / (i <= j)%N >-> i <= j}}. Proof. move=> /[dup] lt_s /lt_sorted_is_uniq_le /andP[s_uniq le_s] i j ilt jlt. case/boolP: (i <= j)%N; first exact/le_sorted_leq_nth. rewrite -ltnNge => /(sorted_ltn_nth lt_trans x0 lt_s j i jlt ilt). by rewrite lt_le_def => /andP[_] /negPf. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_sorted_leq_nth
lt_sorted_ltn_nth(x0 : T) (s : seq T) : sorted <%O s -> {in [pred n | (n < size s)%N] &, {mono nth x0 s : i j / (i < j)%N >-> i < j}}. Proof. move=> ss i j ilt jlt. rewrite lt_le_def (lt_sorted_leq_nth x0 ss)// (lt_sorted_leq_nth x0 ss)//. by rewrite -ltnNge andbC ltn_neqAle -andbA andbb. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_sorted_ltn_nth
subseq_le_pathx s1 s2 : subseq s1 s2 -> path <=%O x s2 -> path <=%O x s1. Proof. exact/subseq_path/le_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
subseq_le_path
subseq_lt_pathx s1 s2 : subseq s1 s2 -> path <%O x s2 -> path <%O x s1. Proof. exact/subseq_path/lt_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
subseq_lt_path
subseq_le_sorteds1 s2 : subseq s1 s2 -> sorted <=%O s2 -> sorted <=%O s1. Proof. exact/subseq_sorted/le_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
subseq_le_sorted
subseq_lt_sorteds1 s2 : subseq s1 s2 -> sorted <%O s2 -> sorted <%O s1. Proof. exact/subseq_sorted/lt_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
subseq_lt_sorted
lt_sorted_uniqs : sorted <%O s -> uniq s. Proof. exact/sorted_uniq/ltxx/lt_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_sorted_uniq
lt_sorted_eqs1 s2 : sorted <%O s1 -> sorted <%O s2 -> s1 =i s2 -> s1 = s2. Proof. exact/irr_sorted_eq/ltxx/lt_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_sorted_eq
filter_lt_nthx0 s i : sorted <%O s -> (i < size s)%N -> [seq x <- s | x < nth x0 s i] = take i s. Proof. move=> ss i_lt/=; rewrite -[X in filter _ X](mkseq_nth x0) filter_map. under eq_in_filter => j do [rewrite ?mem_iota => j_s /=; rewrite lt_sorted_ltn_nth//]. by rewrite (filter_iota_ltn 0) ?map_nth_iota0 // ltnW. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
filter_lt_nth
count_lt_nthx0 s i : sorted <%O s -> (i < size s)%N -> count (< nth x0 s i) s = i. Proof. by move=> ss i_lt; rewrite -size_filter/= filter_lt_nth// size_take i_lt. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
count_lt_nth
filter_le_nthx0 s i : sorted <%O s -> (i < size s)%N -> [seq x <- s | x <= nth x0 s i] = take i.+1 s. Proof. move=> ss i_lt/=; rewrite -[X in filter _ X](mkseq_nth x0) filter_map. under eq_in_filter => j do [rewrite ?mem_iota => j_s /=; rewrite lt_sorted_leq_nth//]. by rewrite (filter_iota_leq 0)// map_nth_iota0. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
filter_le_nth
count_le_nthx0 s i : sorted <%O s -> (i < size s)%N -> count (<= nth x0 s i) s = i.+1. Proof. by move=> ss i_lt; rewrite -size_filter/= filter_le_nth// size_takel. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
count_le_nth
sorted_filter_ltx s : sorted <=%O s -> [seq y <- s | y < x] = take (count (< x) s) s. Proof. elim: s => [//|y s IHs]/=; rewrite (path_sortedE le_trans) => /andP[le_y_s ss]. case: ifP => [|ltyxF]; rewrite IHs//. rewrite (@eq_in_count _ _ pred0) ?count_pred0/= ?take0// => z. by move=> /(allP le_y_s) yz; apply: contraFF ltyxF; apply: le_lt_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
sorted_filter_lt
sorted_filter_lex s : sorted <=%O s -> [seq y <- s | y <= x] = take (count (<= x) s) s. Proof. elim: s => [//|y s IHs]/=; rewrite (path_sortedE le_trans) => /andP[le_y_s ss]. case: ifP => [|leyxF]; rewrite IHs//. rewrite (@eq_in_count _ _ pred0) ?count_pred0/= ?take0// => z. by move=> /(allP le_y_s) yz; apply: contraFF leyxF; apply: le_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
sorted_filter_le
nth_count_lex x0 s i : sorted <=%O s -> (i < count (<= x) s)%N -> nth x0 s i <= x. Proof. move=> ss iltc; rewrite -(nth_take _ iltc) -sorted_filter_le //. by apply/(all_nthP _ (filter_all (<= x) _)); rewrite size_filter. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
nth_count_le
nth_count_ltx x0 s i : sorted <=%O s -> (i < count (< x) s)%N -> nth x0 s i < x. Proof. move=> ss iltc; rewrite -(nth_take _ iltc) -sorted_filter_lt //. by apply/(all_nthP _ (filter_all (< x) _)); rewrite size_filter. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
nth_count_lt
sort_le_ids : sorted <=%O s -> sort <=%O s = s. Proof. exact/sorted_sort/le_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
sort_le_id
sort_lt_ids : sorted <%O s -> sort <%O s = s. Proof. exact/sorted_sort/lt_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
sort_lt_id
comparable_leNgtx y : x >=< y -> (x <= y) = ~~ (y < x). Proof. rewrite /comparable lt_le_def. by case: (x <= y) => //=; case: (y <= x). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_leNgt
comparable_ltNgex y : x >=< y -> (x < y) = ~~ (y <= x). Proof. rewrite /comparable lt_le_def. by case: (x <= y) => //=; case: (y <= x). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_ltNge
comparable_symx y : (y >=< x) = (x >=< y). Proof. by rewrite /comparable orbC. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparable_sym
comparablexxx : x >=< x. Proof. by rewrite /comparable lexx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
comparablexx
incomparable_eqFx y : (x >< y) -> (x == y) = false. Proof. by apply: contraNF => /eqP ->; rewrite comparablexx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
incomparable_eqF
incomparable_leFx y : (x >< y) -> (x <= y) = false. Proof. by apply: contraNF; rewrite /comparable => ->. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
incomparable_leF
incomparable_ltFx y : (x >< y) -> (x < y) = false. Proof. by rewrite lt_le_def => /incomparable_leF ->. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
incomparable_ltF
le_comparable(x y : T) : x <= y -> x >=< y. Proof. by rewrite /comparable => ->. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
le_comparable
lt_comparable(x y : T) : x < y -> x >=< y. Proof. by rewrite /comparable => /ltW ->. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lt_comparable
ge_comparable(x y : T) : y <= x -> x >=< y. Proof. by rewrite /comparable orbC => ->. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
ge_comparable
gt_comparable(x y : T) : y < x -> x >=< y. Proof. by rewrite /comparable orbC => /ltW ->. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
gt_comparable
leif_reflx C : reflect (x <= x ?= iff C) C. Proof. by apply: (iffP idP) => [-> | <-] //; split; rewrite ?eqxx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
leif_refl
eq_leifx y C : x <= y ?= iff C -> (x == y) = C. Proof. by move=> []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
eq_leif
eqTleifx y C : x <= y ?= iff C -> C -> x = y. Proof. by move=> [] _ <- /eqP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
eqTleif
lteif_transx y z C1 C2 : x < y ?<= if C1 -> y < z ?<= if C2 -> x < z ?<= if C1 && C2. Proof. case: C1 C2 => [][]; [exact: le_trans | exact: le_lt_trans | exact: lt_le_trans | exact: lt_trans]. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lteif_trans
lteifxxx C : (x < x ?<= if C) = C. Proof. by case: C; rewrite /= ltexx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lteifxx
lteifNFx y C : y < x ?<= if ~~ C -> x < y ?<= if C = false. Proof. by case: C => [/lt_geF|/le_gtF]. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lteifNF
lteifSx y C : x < y -> x < y ?<= if C. Proof. by case: C => //= /ltW. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lteifS
lteifTx y : x < y ?<= if true = (x <= y). Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lteifT
lteifFx y : x < y ?<= if false = (x < y). Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lteifF
lteif_orbx y : {morph lteif x y : p q / p || q}. Proof. case=> [][] /=. - by rewrite orbb. - by case/boolP: (x < y) => [/ltW -> //|_]; rewrite orbF. - by case/boolP: (x < y) => [/ltW ->|]. - by rewrite orbb. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
lteif_orb