fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
rcomplEprodx y z : rcompl x y z = (Order.rcompl x.1 y.1 z.1, Order.rcompl x.2 y.2 z.2). Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
rcomplEprod
Definition_ := CBDistrLattice.on T1'. Let T2' : Type := T2. HB.instance Definition _ := CBDistrLattice.on T2'.
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
diffx y := (diff x.1 y.1, diff x.2 y.2). #[export] HB.instance Definition _ := @CDistrLattice_hasSectionalComplement.Build disp3 (T1 * T2) diff (@diffErcompl _ _ T1' T2').
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
diff
diffEprodx y : x `\` y = (x.1 `\` y.1, x.2 `\` y.2). Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
diffEprod
codiffx y := (codiff x.1 y.1, codiff x.2 y.2). #[export] HB.instance Definition _ := @CDistrLattice_hasDualSectionalComplement.Build disp3 (T1 * T2) codiff (@diffErcompl _ _ T1^d T2^d).
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
codiff
codiffEprodx y : codiff x y = (Order.codiff x.1 y.1, Order.codiff x.2 y.2). Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
codiffEprod
Definition_ := CTBDistrLattice.on T1'. Let T2' : Type := T2. HB.instance Definition _ := CTBDistrLattice.on T2'.
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
complx := (~` x.1, ~` x.2). #[export] HB.instance Definition _ := @CDistrLattice_hasComplement.Build _ (T1 * T2) compl (@complEdiff _ _ T1' T2') (@complEdiff _ _ T1^d T2^d).
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
compl
complEprodx : ~` x = (~` x.1, ~` x.2). Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
complEprod
Definition_ (T1 : finPOrderType disp1) (T2 : finPOrderType disp2) := POrder.on (type disp3 T1 T2). #[export] HB.instance Definition _ (T1 : finBPOrderType disp1) (T2 : finBPOrderType disp2) := POrder.on (type disp3 T1 T2). #[export] HB.instance Definition _ (T1 : finTPOrderType disp1) (T2 : finTPOrderType disp2) := POrder.on (type disp3 T1 T2). #[export] HB.instance Definition _ (T1 : finTBPOrderType disp1) (T2 : finTBPOrderType disp2) := POrder.on (type disp3 T1 T2). #[export] HB.instance Definition _ (T1 : finMeetSemilatticeType disp1) (T2 : finMeetSemilatticeType disp2) := POrder.on (type disp3 T1 T2). #[export] HB.instance Definition _ (T1 : finBMeetSemilatticeType disp1) (T2 : finBMeetSemilatticeType disp2) := POrder.on (type disp3 T1 T2). #[export] HB.instance Definition _ (T1 : finJoinSemilatticeType disp1) (T2 : finJoinSemilatticeType disp2) := POrder.on (type disp3 T1 T2). #[export] HB.instance Definition _ (T1 : finTJoinSemilatticeType disp1) (T2 : finTJoinSemilatticeType disp2) := POrder.on (type disp3 T1 T2). #[export] HB.instance Definition _ (T1 : finLatticeType disp1) (T2 : finLatticeType disp2) := POrder.on (type disp3 T1 T2). #[export] HB.instance Definition _ (T1 : finTBLatticeType disp1) (T2 : finTBLatticeType disp2) := POrder.on (type disp3 T1 T2). #[export] HB.instance Definition _ (T1 : finDistrLatticeType disp1) (T2 : finDistrLatticeType disp2) := POrder.on (type disp3 T1 T2). #[export] HB.instance Definition _ (T1 : finTBDistrLatticeType di ...
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
ltEprod:= @ltEprod.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
ltEprod
lt_pair:= @lt_pair.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lt_pair
meetEprod:= @meetEprod.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meetEprod
joinEprod:= @joinEprod.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joinEprod
rcomplEprod:= @rcomplEprod.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
rcomplEprod
diffEprod:= @diffEprod.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
diffEprod
codiffEprod:= @codiffEprod.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
codiffEprod
complEprod:= @complEprod.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
complEprod
Definition_ (T1 : porderType disp1) (T2 : porderType disp2) := POrder.copy (T1 * T2)%type (prod T1 T2). HB.instance Definition _ (T1 : bPOrderType disp1) (T2 : bPOrderType disp2) := BPOrder.copy (T1 * T2)%type (prod T1 T2). HB.instance Definition _ (T1 : tPOrderType disp1) (T2 : tPOrderType disp2) := TPOrder.copy (T1 * T2)%type (prod T1 T2). HB.instance Definition _ (T1 : tbPOrderType disp1) (T2 : tbPOrderType disp2) := TBPOrder.copy (T1 * T2)%type (prod T1 T2). HB.instance Definition _ (T1 : meetSemilatticeType disp1) (T2 : meetSemilatticeType disp2) := MeetSemilattice.copy (T1 * T2)%type (prod T1 T2). HB.instance Definition _ (T1 : bMeetSemilatticeType disp1) (T2 : bMeetSemilatticeType disp2) := BMeetSemilattice.copy (T1 * T2)%type (prod T1 T2). HB.instance Definition _ (T1 : tMeetSemilatticeType disp1) (T2 : tMeetSemilatticeType disp2) := TMeetSemilattice.copy (T1 * T2)%type (prod T1 T2). HB.instance Definition _ (T1 : tbMeetSemilatticeType disp1) (T2 : tbMeetSemilatticeType disp2) := TBMeetSemilattice.copy (T1 * T2)%type (prod T1 T2). HB.instance Definition _ (T1 : joinSemilatticeType disp1) (T2 : joinSemilatticeType disp2) := JoinSemilattice.copy (T1 * T2)%type (prod T1 T2). HB.instance Definition _ (T1 : bJoinSemilatticeType disp1) (T2 : bJoinSemilatticeType disp2) := BJoinSemilattice.copy (T1 * T2)%type (prod T1 T2). HB.instance Definition _ (T1 : tJoinSemilatticeType disp1) (T2 : tJoinSemilatticeType disp2) := TJoinSemilattice.copy (T1 * T2)% ...
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
lex y := (tag x <= tag y) && ((tag x >= tag y) ==> (tagged x <= tagged_as x y)).
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le
ltx y := (tag x <= tag y) && ((tag x >= tag y) ==> (tagged x < tagged_as x y)). Fact refl : reflexive le. Proof. by move=> [x x']; rewrite /le tagged_asE/= !lexx. Qed. Fact anti : antisymmetric le. Proof. rewrite /le => -[x x'] [y y']/=; case: comparableP => //= eq_xy. by case: _ / eq_xy in y' *; rewrite !tagged_asE => /le_anti ->. Qed. Fact trans : transitive le. Proof. move=> [y y'] [x x'] [z z'] /andP[/= lexy lexy'] /andP[/= leyz leyz']. rewrite /= /le (le_trans lexy) //=; apply/implyP => lezx. elim: _ / (@le_anti _ _ x y) in y' z' lexy' leyz' *; last first. by rewrite lexy (le_trans leyz). elim: _ / (@le_anti _ _ x z) in z' leyz' *; last by rewrite (le_trans lexy). by rewrite lexx !tagged_asE/= in lexy' leyz' *; rewrite (le_trans lexy'). Qed. Fact lt_le_def x y : lt x y = le x y && ~~ le y x. Proof. rewrite /lt /le; case: x y => [x x'] [y y']//=. case: (comparableP x y) => //= xy. by subst y; rewrite !tagged_asE lt_le_def. Qed. #[export] HB.instance Definition _ := isPreorder.Build disp2 {t : T & T' t} lt_le_def refl trans. #[export] HB.instance Definition _ := Preorder_isPOrder.Build disp2 {t : T & T' t} anti.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lt
leEsigx y : x <= y = (tag x <= tag y) && ((tag x >= tag y) ==> (tagged x <= tagged_as x y)). Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leEsig
ltEsigx y : x < y = (tag x <= tag y) && ((tag x >= tag y) ==> (tagged x < tagged_as x y)). Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
ltEsig
le_Taggedlx (u : T' (tag x)) : (Tagged T' u <= x) = (u <= tagged x). Proof. by case: x => [t v]/= in u *; rewrite leEsig/= lexx/= tagged_asE. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_Taggedl
le_Taggedrx (u : T' (tag x)) : (x <= Tagged T' u) = (tagged x <= u). Proof. by case: x => [t v]/= in u *; rewrite leEsig/= lexx/= tagged_asE. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_Taggedr
lt_Taggedlx (u : T' (tag x)) : (Tagged T' u < x) = (u < tagged x). Proof. by case: x => [t v]/= in u *; rewrite ltEsig/= lexx/= tagged_asE. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lt_Taggedl
lt_Taggedrx (u : T' (tag x)) : (x < Tagged T' u) = (tagged x < u). Proof. by case: x => [t v]/= in u *; rewrite ltEsig/= lexx/= tagged_asE. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lt_Taggedr
Definition_ := hasBottom.Build _ {t : T & T' t} le0x.
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
botEsig: \bot = Tagged T' (\bot : T' \bot). Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
botEsig
Definition_ := hasTop.Build _ {t : T & T' t} lex1.
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
topEsig: \top = Tagged T' (\top : T' \top). Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
topEsig
Definition_ := POrder_isTotal.Build _ {t : T & T' t} total.
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
Definition_ (T : bOrderType disp1) (T' : T -> bOrderType disp2) := POrder.on {t : T & T' t}. #[export] HB.instance Definition _ (T : tOrderType disp1) (T' : T -> tOrderType disp2) := POrder.on {t : T & T' t}. #[export] HB.instance Definition _ (T : tbOrderType disp1) (T' : T -> tbOrderType disp2) := POrder.on {t : T & T' t}. #[export] HB.instance Definition _ (T : finPOrderType disp1) (T' : T -> finPOrderType disp2) := POrder.on {t : T & T' t}. #[export] HB.instance Definition _ (T : finBPOrderType disp1) (T' : T -> finBPOrderType disp2) := POrder.on {t : T & T' t}. #[export] HB.instance Definition _ (T : finTPOrderType disp1) (T' : T -> finTPOrderType disp2) := POrder.on {t : T & T' t}. #[export] HB.instance Definition _ (T : finTBPOrderType disp1) (T' : T -> finTBPOrderType disp2) := POrder.on {t : T & T' t}. #[export] HB.instance Definition _ (T : finOrderType disp1) (T' : T -> finOrderType disp2) := POrder.on {t : T & T' t}. #[export] HB.instance Definition _ (T : finTBOrderType disp1) (T' : T -> finTBOrderType disp2) := POrder.on {t : T & T' t}.
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
leEsig:= @leEsig.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leEsig
ltEsig:= @ltEsig.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
ltEsig
le_Taggedl:= @le_Taggedl.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_Taggedl
lt_Taggedl:= @lt_Taggedl.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lt_Taggedl
le_Taggedr:= @le_Taggedr.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_Taggedr
lt_Taggedr:= @lt_Taggedr.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lt_Taggedr
topEsig:= @topEsig.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
topEsig
botEsig:= @botEsig.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
botEsig
Definition_ := POrder.on T1'. Let T2' : Type := T2. HB.instance Definition _ := POrder.on T2'. #[export] HB.instance Definition _ := Preorder_isDuallyPOrder.Build disp3 (T1 * T2) (@anti _ _ T1' T2') (@anti _ _ T1^d T2^d).
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
Definition_ := POrder_isTotal.Build _ (T1 * T2) total.
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
Definition_ (T1 : finPOrderType disp1) (T2 : finPOrderType disp2) := POrder.on (type disp3 T1 T2). #[export] HB.instance Definition _ (T1 : finBPOrderType disp1) (T2 : finBPOrderType disp2) := POrder.on (type disp3 T1 T2). #[export] HB.instance Definition _ (T1 : finTPOrderType disp1) (T2 : finTPOrderType disp2) := POrder.on (type disp3 T1 T2). #[export] HB.instance Definition _ (T1 : finTBPOrderType disp1) (T2 : finTBPOrderType disp2) := POrder.on (type disp3 T1 T2). #[export] HB.instance Definition _ (T1 : finOrderType disp1) (T2 : finOrderType disp2) := POrder.on (type disp3 T1 T2). #[export] HB.instance Definition _ (T1 : finTBOrderType disp1) (T2 : finTBOrderType disp2) := POrder.on (type disp3 T1 T2).
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
Definition_ (T1 : porderType disp1) (T2 : porderType disp2) := POrder.copy (T1 * T2)%type (prodlexi T1 T2). HB.instance Definition _ (T1 : orderType disp1) (T2 : orderType disp2) := Total.copy (T1 * T2)%type (prodlexi T1 T2). HB.instance Definition _ (T1 : finPOrderType disp1) (T2 : finPOrderType disp2) := FinPOrder.copy (T1 * T2)%type (prodlexi T1 T2). HB.instance Definition _ (T1 : finBPOrderType disp1) (T2 : finBPOrderType disp2) := FinBPOrder.copy (T1 * T2)%type (prodlexi T1 T2). HB.instance Definition _ (T1 : finTPOrderType disp1) (T2 : finTPOrderType disp2) := FinTPOrder.copy (T1 * T2)%type (prodlexi T1 T2). HB.instance Definition _ (T1 : finTBPOrderType disp1) (T2 : finTBPOrderType disp2) := FinTBPOrder.copy (T1 * T2)%type (prodlexi T1 T2). HB.instance Definition _ (T1 : finOrderType disp1) (T2 : finOrderType disp2) := FinTotal.copy (T1 * T2)%type (prodlexi T1 T2). HB.instance Definition _ (T1 : finTBOrderType disp1) (T2 : finTBOrderType disp2) := FinTBTotal.copy (T1 * T2)%type (prodlexi T1 T2).
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
Definition_ := Preorder_isPOrder.Build disp' (seq T) anti.
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
meets1 s2 := match s1, s2 with | x1 :: s1', x2 :: s2' => (x1 `&` x2) :: meet s1' s2' | _, _ => [::] end. Fact lexI s1 s2 s3 : (s1 <= meet s2 s3) = (s1 <= s2) && (s1 <= s3). Proof. elim: s1 s2 s3 => [|x s1 IHs1] [|y s2] [|z s3] //=; first by rewrite andbF. by rewrite leEseq lexI IHs1 andbACA. Qed. #[export] HB.instance Definition _ := @POrder_isMeetSemilattice.Build _ (seq T) meet lexI.
Fixpoint
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meet
meetEseqs1 s2 : s1 `&` s2 = [seq x.1 `&` x.2 | x <- zip s1 s2]. Proof. by elim: s1 s2 => [|x s1 ihs1] [|y s2]//=; rewrite -ihs1. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meetEseq
meet_consx1 s1 x2 s2 : (x1 :: s1 : seq T) `&` (x2 :: s2) = (x1 `&` x2) :: s1 `&` s2. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meet_cons
joins1 s2 := match s1, s2 with | [::], _ => s2 | _, [::] => s1 | x1 :: s1', x2 :: s2' => (x1 `|` x2) :: join s1' s2' end. Fact leUx s1 s2 s3 : (join s1 s2 <= s3) = (s1 <= s3) && (s2 <= s3). Proof. elim : s1 s2 s3 => [|x s1 IHs1] [|y s2] [|z s3] //=; first by rewrite andbT. by rewrite leEseq leUx IHs1 andbACA. Qed. #[export] HB.instance Definition _ := @POrder_isJoinSemilattice.Build _ (seq T) join leUx.
Fixpoint
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
join
joinEseqs1 s2 : s1 `|` s2 = match s1, s2 with | [::], _ => s2 | _, [::] => s1 | x1 :: s1', x2 :: s2' => (x1 `|` x2) :: ((s1' : seq _) `|` s2') end. Proof. by case: s1. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joinEseq
join_consx1 s1 x2 s2 : (x1 :: s1 : seq T) `|` (x2 :: s2) = (x1 `|` x2) :: s1 `|` s2. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
join_cons
Definition_ (T : latticeType disp) := POrder.on (seq T).
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
Definition_ := Lattice_Meet_isDistrLattice.Build _ (seq T) meetUl.
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
meetEseq:= @meetEseq.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meetEseq
meet_cons:= @meet_cons.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meet_cons
joinEseq:= @joinEseq.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joinEseq
Definition_ (T : porderType disp) := POrder.copy (seq T) (seqprod T). HB.instance Definition _ (T : meetSemilatticeType disp) := BMeetSemilattice.copy (seq T) (seqprod T). HB.instance Definition _ (T : joinSemilatticeType disp) := BJoinSemilattice.copy (seq T) (seqprod T). HB.instance Definition _ (T : latticeType disp) := BLattice.copy (seq T) (seqprod T). HB.instance Definition _ (T : distrLatticeType disp) := BDistrLattice.copy (seq T) (seqprod T).
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
Definition_ := Preorder_isPOrder.Build disp' (seq T) anti.
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
neqhead_lexiE(x y : T) s1 s2 : x != y -> (x :: s1 <= y :: s2 :> seq _) = (x < y). Proof. by rewrite lexi_cons; case: comparableP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
neqhead_lexiE
neqhead_ltxiE(x y : T) s1 s2 : x != y -> (x :: s1 < y :: s2 :> seq _) = (x < y). Proof. by rewrite ltxi_cons; case: (comparableP x y). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
neqhead_ltxiE
Definition_ := POrder_isTotal.Build _ (seq T) total.
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
neqhead_lexiE:= @neqhead_lexiE.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
neqhead_lexiE
neqhead_ltxiE:= @neqhead_ltxiE.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
neqhead_ltxiE
Definition_ (T : porderType disp) := POrder.copy (seq T) (seqlexi T). HB.instance Definition _ (T : orderType disp) := BTotal.copy (seq T) (seqlexi T).
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
Definition_ n T := SubChoice.on (n.-tuple T). #[export] HB.instance Definition _ n T := [SubChoice_isSubPOrder of n.-tuple T by <: with disp'].
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
Definition_ (n : nat) (T : bPOrderType disp) := POrder.on (n.-tuple T).
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
Definition_ (n : nat) (T : tPOrderType disp) := POrder.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : tbPOrderType disp) := POrder.on (n.-tuple T).
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
meett1 t2 : n.-tuple T := [tuple tnth t1 i `&` tnth t2 i | i < n]. Fact lexI t1 t2 t3 : (t1 <= meet t2 t3) = (t1 <= t2) && (t1 <= t3). Proof. rewrite !leEtprod; apply/forallP/andP => [H|[Ht12 Ht13] i]; last first. by rewrite tnth_mktuple lexI (forallP Ht12) (forallP Ht13). by split; apply/forallP => i; move: (H i); rewrite tnth_mktuple lexI => /andP[]. Qed. #[export] HB.instance Definition _ := @POrder_isMeetSemilattice.Build _ (n.-tuple T) meet lexI.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meet
tnth_meett1 t2 i : tnth (t1 `&` t2) i = tnth t1 i `&` tnth t2 i. Proof. exact: tnth_mktuple. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
tnth_meet
meetEtprodt1 t2 : t1 `&` t2 = [tuple tnth t1 i `&` tnth t2 i | i < n]. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meetEtprod
joint1 t2 : n.-tuple T := [tuple tnth t1 i `|` tnth t2 i | i < n]. Fact leUx t1 t2 t3 : (join t1 t2 <= t3) = (t1 <= t3) && (t2 <= t3). Proof. rewrite !leEtprod; apply/forallP/andP => [H|[Ht13 Ht23] i]; last first. by rewrite tnth_mktuple leUx (forallP Ht13) (forallP Ht23). by split; apply/forallP => i; move: (H i); rewrite tnth_mktuple leUx => /andP[]. Qed. #[export] HB.instance Definition _ := @POrder_isJoinSemilattice.Build _ (n.-tuple T) join leUx.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
join
tnth_joint1 t2 i : tnth (t1 `|` t2) i = tnth t1 i `|` tnth t2 i. Proof. exact: tnth_mktuple. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
tnth_join
joinEtprodt1 t2 : t1 `|` t2 = [tuple tnth t1 i `|` tnth t2 i | i < n]. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joinEtprod
Definition_ (n : nat) (T : bMeetSemilatticeType disp) := POrder.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : tMeetSemilatticeType disp) := POrder.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : tbMeetSemilatticeType disp) := POrder.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : bJoinSemilatticeType disp) := POrder.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : tJoinSemilatticeType disp) := POrder.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : tbJoinSemilatticeType disp) := POrder.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : latticeType disp) := POrder.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : bLatticeType disp) := POrder.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : tLatticeType disp) := POrder.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : tbLatticeType disp) := POrder.on (n.-tuple T).
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
Definition_ := Lattice_Meet_isDistrLattice.Build _ (n.-tuple T) meetUl.
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
Definition_ (n : nat) (T : bDistrLatticeType disp) := DistrLattice.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : tDistrLatticeType disp) := DistrLattice.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : tbDistrLatticeType disp) := DistrLattice.on (n.-tuple T).
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
rcomplt1 t2 t3 := [tuple rcompl (tnth t1 i) (tnth t2 i) (tnth t3 i) | i < n]. Fact rcomplPmeet x y z : ((x `&` y) `|` z) `&` rcompl x y z = x `&` y. Proof. by apply: eq_from_tnth => i; rewrite !tnth_mktuple rcomplPmeet. Qed. Fact rcomplPjoin x y z : ((y `|` x) `&` z) `|` rcompl x y z = y `|` x. Proof. by apply: eq_from_tnth => i; rewrite !tnth_mktuple rcomplPjoin. Qed. #[export] HB.instance Definition _ := @DistrLattice_hasRelativeComplement.Build _ (n.-tuple T) rcompl rcomplPmeet rcomplPjoin.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
rcompl
tnth_rcomplt1 t2 t3 i : tnth (Order.rcompl t1 t2 t3) i = Order.rcompl (tnth t1 i) (tnth t2 i) (tnth t3 i). Proof. exact: tnth_mktuple. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
tnth_rcompl
rcomplEtprodt1 t2 t3 : Order.rcompl t1 t2 t3 = [tuple Order.rcompl (tnth t1 i) (tnth t2 i) (tnth t3 i) | i < n]. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
rcomplEtprod
difft1 t2 : n.-tuple T := [tuple tnth t1 i `\` tnth t2 i | i < n]. Fact diffErcompl t1 t2 : diff t1 t2 = rcompl \bot t1 t2. Proof. by apply: eq_from_tnth => i; rewrite !tnth_mktuple diffErcompl. Qed. #[export] HB.instance Definition _ := @CDistrLattice_hasSectionalComplement.Build _ (n.-tuple T) diff diffErcompl.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
diff
tnth_difft1 t2 i : tnth (diff t1 t2) i = tnth t1 i `\` tnth t2 i. Proof. exact: tnth_mktuple. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
tnth_diff
diffEtprodt1 t2 : t1 `\` t2 = [tuple tnth t1 i `\` tnth t2 i | i < n]. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
diffEtprod
codifft1 t2 : n.-tuple T := [tuple Order.codiff (tnth t1 i) (tnth t2 i) | i < n]. Fact codiffErcompl t1 t2 : codiff t1 t2 = rcompl t1 \top t2. Proof. by apply: eq_from_tnth => i; rewrite !tnth_mktuple codiffErcompl. Qed. #[export] HB.instance Definition _ := @CDistrLattice_hasDualSectionalComplement.Build _ (n.-tuple T) codiff codiffErcompl.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
codiff
tnth_codifft1 t2 i : tnth (Order.codiff t1 t2) i = Order.codiff (tnth t1 i) (tnth t2 i). Proof. exact: tnth_mktuple. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
tnth_codiff
codiffEtprodt1 t2 : Order.codiff t1 t2 = [tuple Order.codiff (tnth t1 i) (tnth t2 i) | i < n]. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
codiffEtprod
complt : n.-tuple T := map_tuple compl t. Fact complEdiff t : compl t = (\top : n.-tuple T) `\` t. Proof. by apply: eq_from_tnth => i; rewrite tnth_map !tnth_mktuple complEdiff. Qed. Fact complEcodiff t : compl t = codiff (\bot : n.-tuple T) t. Proof. by apply: eq_from_tnth => i; rewrite tnth_map !tnth_mktuple complEcodiff. Qed. #[export] HB.instance Definition _ := @CDistrLattice_hasComplement.Build _ (n.-tuple T) compl complEdiff complEcodiff.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
compl
tnth_complt i : tnth (~` t) i = ~` tnth t i. Proof. by rewrite tnth_map. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
tnth_compl
complEtprodt : ~` t = map_tuple Order.compl t. Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
complEtprod
Definition_ (n : nat) (T : finPOrderType disp) := POrder.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : finBPOrderType disp) := POrder.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : finTPOrderType disp) := POrder.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : finTBPOrderType disp) := POrder.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : finMeetSemilatticeType disp) := POrder.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : finBMeetSemilatticeType disp) := POrder.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : finJoinSemilatticeType disp) := POrder.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : finTJoinSemilatticeType disp) := POrder.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : finLatticeType disp) := POrder.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : finTBLatticeType disp) := POrder.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : finDistrLatticeType disp) := POrder.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : finTBDistrLatticeType disp) := POrder.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : finCDistrLatticeType disp) := POrder.on (n.-tuple T). #[export] HB.instance Definition _ (n : nat) (T : finCTBDistrLatticeType disp) :=
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
tnth_meet:= @tnth_meet.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
tnth_meet
meetEtprod:= @meetEtprod.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meetEtprod
tnth_join:= @tnth_join.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
tnth_join
joinEtprod:= @joinEtprod.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joinEtprod
tnth_rcompl:= @tnth_rcompl.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
tnth_rcompl
rcomplEtprod:= @rcomplEtprod.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
rcomplEtprod
tnth_diff:= @tnth_diff.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
tnth_diff
diffEtprod:= @diffEtprod.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
diffEtprod
tnth_codiff:= @tnth_codiff.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
tnth_codiff
codiffEtprod:= @codiffEtprod.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
codiffEtprod