fact
stringlengths 8
1.54k
| type
stringclasses 19
values | library
stringclasses 8
values | imports
listlengths 1
10
| filename
stringclasses 98
values | symbolic_name
stringlengths 1
42
| docstring
stringclasses 1
value |
|---|---|---|---|---|---|---|
sorted_filter_gex s :
sorted <=%O s -> [seq y <- s | x <= y] = drop (count (< x) s) s.
Proof.
move=> s_sorted; rewrite count_lt_ge -[LHS]revK -filter_rev.
rewrite (@sorted_filter_le _ T^d); first by rewrite take_rev revK count_rev.
by rewrite rev_sorted.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
sorted_filter_ge
| |
nth_count_gex x0 s i : sorted <=%O s ->
(count (< x) s <= i < size s)%N -> x <= nth x0 s i.
Proof.
move=> ss /andP[ige ilt]; rewrite -(subnKC ige) -nth_drop -sorted_filter_ge //.
apply/(all_nthP _ (filter_all _ _)).
by rewrite size_filter ltn_subLR // count_lt_ge subnK // count_size.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
nth_count_ge
| |
nth_count_gtx x0 s i : sorted <=%O s ->
(count (<= x) s <= i < size s)%N -> x < nth x0 s i.
Proof.
move=> ss /andP[ige ilt]; rewrite -(subnKC ige) -nth_drop -sorted_filter_gt //.
apply/(all_nthP _ (filter_all _ _)).
by rewrite size_filter ltn_subLR // count_le_gt subnK // count_size.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
nth_count_gt
| |
nth_count_eqx x0 s i : sorted <=%O s ->
(count (< x) s <= i < count (<= x) s)%N -> nth x0 s i = x.
Proof.
move=> ss /andP[ige ilt]; apply/le_anti.
by rewrite nth_count_le// nth_count_ge// ige (leq_trans ilt (count_size _ _)).
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
nth_count_eq
| |
contraTleb z t : (t < z -> ~~ b) -> (b -> z <= t).
Proof. exact: comparable_contraTle. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contraTle
| |
contraTltb z t : (t <= z -> ~~ b) -> (b -> z < t).
Proof. exact: comparable_contraTlt. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contraTlt
| |
contraPleP z t : (t < z -> ~ P) -> (P -> z <= t).
Proof. exact: comparable_contraPle. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contraPle
| |
contraPltP z t : (t <= z -> ~ P) -> (P -> z < t).
Proof. exact: comparable_contraPlt. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contraPlt
| |
contraNleb z t : (t < z -> b) -> (~~ b -> z <= t).
Proof. exact: comparable_contraNle. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contraNle
| |
contraNltb z t : (t <= z -> b) -> (~~ b -> z < t).
Proof. exact: comparable_contraNlt. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contraNlt
| |
contra_not_leP z t : (t < z -> P) -> (~ P -> z <= t).
Proof. exact: comparable_contra_not_le. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contra_not_le
| |
contra_not_ltP z t : (t <= z -> P) -> (~ P -> z < t).
Proof. exact: comparable_contra_not_lt. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contra_not_lt
| |
contraFleb z t : (t < z -> b) -> (b = false -> z <= t).
Proof. exact: comparable_contraFle. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contraFle
| |
contraFltb z t : (t <= z -> b) -> (b = false -> z < t).
Proof. exact: comparable_contraFlt. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contraFlt
| |
contra_leq_lem n z t : (t < z -> (n < m)%N) -> ((m <= n)%N -> z <= t).
Proof. exact: comparable_contra_leq_le. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contra_leq_le
| |
contra_leq_ltm n z t : (t <= z -> (n < m)%N) -> ((m <= n)%N -> z < t).
Proof. exact: comparable_contra_leq_lt. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contra_leq_lt
| |
contra_ltn_lem n z t : (t < z -> (n <= m)%N) -> ((m < n)%N -> z <= t).
Proof. exact: comparable_contra_ltn_le. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contra_ltn_le
| |
contra_ltn_ltm n z t : (t <= z -> (n <= m)%N) -> ((m < n)%N -> z < t).
Proof. exact: comparable_contra_ltn_lt. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contra_ltn_lt
| |
contra_lex y z t : (t < z -> y < x) -> (x <= y -> z <= t).
Proof. exact: comparable_contra_le. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contra_le
| |
contra_le_ltx y z t : (t <= z -> y < x) -> (x <= y -> z < t).
Proof. exact: comparable_contra_le_lt. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contra_le_lt
| |
contra_lt_lex y z t : (t < z -> y <= x) -> (x < y -> z <= t).
Proof. exact: comparable_contra_lt_le. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contra_lt_le
| |
contra_ltx y z t : (t <= z -> y <= x) -> (x < y -> z < t).
Proof. exact: comparable_contra_lt. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contra_lt
| |
le_mono: {homo f : x y / x < y} -> {mono f : x y / x <= y}.
Proof. exact: total_homo_mono. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
le_mono
| |
le_nmono: {homo f : x y /~ x < y} -> {mono f : x y /~ x <= y}.
Proof. by apply: total_homo_mono => // x y; rewrite eq_sym. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
le_nmono
| |
le_mono_in:
{in D &, {homo f : x y / x < y}} -> {in D &, {mono f : x y / x <= y}}.
Proof. exact: total_homo_mono_in. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
le_mono_in
| |
le_nmono_in:
{in D &, {homo f : x y /~ x < y}} -> {in D &, {mono f : x y /~ x <= y}}.
Proof. by apply: total_homo_mono_in => // x y; rewrite eq_sym. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
le_nmono_in
| |
rcomplPmeetx y z : ((x `&` y) `|` z) `&` rcompl x y z = x `&` y.
Proof. exact: rcomplPmeet. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
rcomplPmeet
| |
rcomplPjoinx y z : ((y `|` x) `&` z) `|` rcompl x y z = y `|` x.
Proof. exact: rcomplPjoin. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
rcomplPjoin
| |
rcomplKIx y z : x <= y -> (x `|` z) `&` rcompl x y z = x.
Proof. by move=> lexy; have := rcomplPmeet x y z; rewrite (meet_l lexy). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
rcomplKI
| |
rcomplKUx y z : x <= y -> (y `&` z) `|` rcompl x y z = y.
Proof. by move=> lexy; have := rcomplPjoin x y z; rewrite (join_l lexy). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
rcomplKU
| |
diffErcomplx y : x `\` y = rcompl \bot x y.
Proof. exact: diffErcompl. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
diffErcompl
| |
diffKIx y : y `&` (x `\` y) = \bot.
Proof. by have := rcomplKI y (le0x x); rewrite join0x diffErcompl. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
diffKI
| |
diffIKx y : (x `\` y) `&` y = \bot.
Proof. by rewrite meetC diffKI. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
diffIK
| |
meetIBz x y : (z `&` y) `&` (x `\` y) = \bot.
Proof. by rewrite -meetA diffKI meetx0. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetIB
| |
meetBIz x y : (x `\` y) `&` (z `&` y) = \bot.
Proof. by rewrite meetC meetIB. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetBI
| |
joinIBy x : (x `&` y) `|` (x `\` y) = x.
Proof. by rewrite diffErcompl rcomplKU. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinIB
| |
joinBIy x : (x `\` y) `|` (x `&` y) = x.
Proof. by rewrite joinC joinIB. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinBI
| |
joinIBCy x : (y `&` x) `|` (x `\` y) = x.
Proof. by rewrite meetC joinIB. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinIBC
| |
joinBICy x : (x `\` y) `|` (y `&` x) = x.
Proof. by rewrite meetC joinBI. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinBIC
| |
leBxx y : x `\` y <= x.
Proof. by rewrite -[leRHS](joinIB y) leUr. Qed.
Hint Resolve leBx : core.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leBx
| |
diffxxx : x `\` x = \bot.
Proof. by have := diffKI x x; rewrite meet_r. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
diffxx
| |
leBlz x y : x <= y -> x `\` z <= y `\` z.
Proof.
rewrite -[leLHS](joinIB z) -[leRHS](joinIB z).
by rewrite leU2E ?meetIB ?meetBI // => /andP [].
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leBl
| |
diffKUy x : y `|` (x `\` y) = y `|` x.
Proof.
apply/eqP; rewrite eq_le leU2 //= leUx leUl.
by apply/meet_idPl; have := joinIB y x; rewrite joinIl join_l.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
diffKU
| |
diffUKy x : (x `\` y) `|` y = x `|` y.
Proof. by rewrite joinC diffKU joinC. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
diffUK
| |
leBKUy x : y <= x -> y `|` (x `\` y) = x.
Proof. by move=> /join_r {2}<-; rewrite diffKU. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leBKU
| |
leBUKy x : y <= x -> (x `\` y) `|` y = x.
Proof. by move=> leyx; rewrite joinC leBKU. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leBUK
| |
leBLRx y z : (x `\` y <= z) = (x <= y `|` z).
Proof.
apply/idP/idP; first by move=> /join_r <-; rewrite joinA diffKU joinAC leUr.
by rewrite -{1}[x](joinIB y) => /(leU2r_le (diffIK _ _)).
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leBLR
| |
diffUxx y z : (x `|` y) `\` z = (x `\` z) `|` (y `\` z).
Proof.
apply/eqP; rewrite eq_le leUx !leBl ?leUr ?leUl ?andbT //.
by rewrite leBLR joinA diffKU joinAC diffKU joinAC -joinA leUr.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
diffUx
| |
diff_eq0x y : (x `\` y == \bot) = (x <= y).
Proof. by rewrite -lex0 leBLR joinx0. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
diff_eq0
| |
joinxBx y z : x `|` (y `\` z) = ((x `|` y) `\` z) `|` (x `&` z).
Proof. by rewrite diffUx joinAC joinBI. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinxB
| |
joinBxx y z : (y `\` z) `|` x = ((y `|` x) `\` z) `|` (z `&` x).
Proof. by rewrite ![_ `|` x]joinC ![_ `&` x]meetC joinxB. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinBx
| |
leBrz x y : x <= y -> z `\` y <= z `\` x.
Proof. by move=> lexy; rewrite leBLR joinxB meet_r ?leBUK ?leUr ?lexUl. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leBr
| |
leB2x y z t : x <= z -> t <= y -> x `\` y <= z `\` t.
Proof. by move=> /(@leBl t) ? /(@leBr x) /le_trans ->. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leB2
| |
meet_eq0E_diffz x y : x <= z -> (x `&` y == \bot) = (x <= z `\` y).
Proof.
move=> xz; apply/idP/idP; last by move=> /meet_r <-; rewrite -meetA meetBI.
by move=> /eqP xIy_eq0; rewrite -[x](joinIB y) xIy_eq0 join0x leBl.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meet_eq0E_diff
| |
leBRLx y z : (x <= z `\` y) = (x <= z) && (x `&` y == \bot).
Proof.
apply/idP/idP => [xyz|]; first by rewrite (@meet_eq0E_diff z) // (le_trans xyz).
by move=> /andP [?]; rewrite -meet_eq0E_diff.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leBRL
| |
eq_diffx y z : (x `\` y == z) = (z <= x <= y `|` z) && (z `&` y == \bot).
Proof. by rewrite eq_le leBLR leBRL andbCA andbA. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
eq_diff
| |
diffxUx y z : z `\` (x `|` y) = (z `\` x) `&` (z `\` y).
Proof.
apply/eqP; rewrite eq_le lexI !leBr ?leUl ?leUr //=.
rewrite leBRL leIx2 ?leBx //= meetUr meetAC diffIK -meetA diffIK.
by rewrite meet0x meetx0 joinx0.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
diffxU
| |
diffx0x : x `\` \bot = x.
Proof. by apply/eqP; rewrite eq_diff join0x meetx0 lexx eqxx. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
diffx0
| |
diff0xx : \bot `\` x = \bot.
Proof. by apply/eqP; rewrite eq_diff joinx0 meet0x lexx eqxx le0x. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
diff0x
| |
diffIxx y z : (x `&` y) `\` z = (x `\` z) `&` (y `\` z).
Proof.
apply/eqP; rewrite eq_diff joinIr ?leI2 ?diffKU ?leUr ?leBx //=.
by rewrite -meetA diffIK meetx0.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
diffIx
| |
meetxBx y z : x `&` (y `\` z) = (x `&` y) `\` z.
Proof. by rewrite diffIx -{1}[x](joinBI z) meetUl meetIB joinx0. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetxB
| |
meetBxx y z : (x `\` y) `&` z = (x `&` z) `\` y.
Proof. by rewrite ![_ `&` z]meetC meetxB. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetBx
| |
diffxIx y z : x `\` (y `&` z) = (x `\` y) `|` (x `\` z).
Proof.
apply/eqP; rewrite eq_diff leUx !leBx //= joinIl joinA joinCA !diffKU.
rewrite joinCA -joinA [_ `|` x]joinC ![x `|` _]join_l //.
by rewrite -joinIl leUr /= meetUl {1}[_ `&` z]meetC ?meetBI joinx0.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
diffxI
| |
diffBxx y z : (x `\` y) `\` z = x `\` (y `|` z).
Proof.
apply/eqP; rewrite eq_diff leBr ?leUl //=.
by rewrite diffxU joinIr diffKU -joinIr meet_l ?leUr //= -meetA diffIK meetx0.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
diffBx
| |
diffxBx y z : x `\` (y `\` z) = (x `\` y) `|` (x `&` z).
Proof.
rewrite -[y in RHS](joinIB z) diffxU joinIl diffxI -joinA joinBI join_r //.
by rewrite joinBx meetKU meetA meetAC diffIK meet0x joinx0 meet_r.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
diffxB
| |
joinBKx y : (y `|` x) `\` x = (y `\` x).
Proof. by rewrite diffUx diffxx joinx0. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinBK
| |
joinBKCx y : (x `|` y) `\` x = (y `\` x).
Proof. by rewrite diffUx diffxx join0x. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinBKC
| |
disj_lex y : x `&` y == \bot -> x <= y = (x == \bot).
Proof. by rewrite [x == \bot]eq_sym -eq_meetl => /eqP ->. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
disj_le
| |
disj_leCx y : y `&` x == \bot -> x <= y = (x == \bot).
Proof. by rewrite meetC => /disj_le. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
disj_leC
| |
disj_difflx y : x `&` y == \bot -> x `\` y = x.
Proof. by move=> dxy; apply/eqP; rewrite eq_diff dxy lexx leUr. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
disj_diffl
| |
disj_diffrx y : x `&` y == \bot -> y `\` x = y.
Proof. by rewrite meetC => /disj_diffl. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
disj_diffr
| |
lt0Bx y : x < y -> \bot < y `\` x.
Proof. by move=> ?; rewrite lt_leAnge le0x leBLR joinx0 /= lt_geF. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
lt0B
| |
codiffErcomplx y : codiff x y = rcompl x \top y.
Proof. exact: codiffErcompl. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
codiffErcompl
| |
complEdiffx : ~` x = \top `\` x. Proof. exact: complEdiff. Qed.
#[deprecated(since="mathcomp 2.3.0", note="Use complEdiff instead.")]
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
complEdiff
| |
complE:= complEdiff.
|
Notation
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
complE
| |
complEcodiffx : ~` x = codiff \bot x. Proof. exact: complEcodiff. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
complEcodiff
| |
complErcomplx : ~` x = rcompl \bot \top x.
Proof. by rewrite complEdiff diffErcompl. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
complErcompl
| |
diff1xx : \top `\` x = ~` x.
Proof. exact/esym/complEdiff. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
diff1x
| |
diffEx y : x `\` y = x `&` ~` y.
Proof. by rewrite complEdiff meetxB meetx1. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
diffE
| |
complK: involutive (@compl _ L).
Proof. by move=> x; rewrite !complEdiff diffxB diffxx meet1x join0x. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
complK
| |
compl_inj: injective (@compl _ L).
Proof. exact/inv_inj/complK. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
compl_inj
| |
disj_leCx y : (x `&` y == \bot) = (x <= ~` y).
Proof. by rewrite -diff_eq0 diffE complK. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
disj_leC
| |
leCxx y : (~` x <= y) = (~` y <= x).
Proof. by rewrite !complEdiff !leBLR joinC. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leCx
| |
lexCx y : (x <= ~` y) = (y <= ~` x).
Proof. by rewrite -[x in LHS]complK leCx complK. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
lexC
| |
leCx y : (~` x <= ~` y) = (y <= x).
Proof. by rewrite leCx complK. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leC
| |
complUx y : ~` (x `|` y) = ~` x `&` ~` y.
Proof. by rewrite !complEdiff diffxU. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
complU
| |
complIx y : ~` (x `&` y) = ~` x `|` ~` y.
Proof. by rewrite !complEdiff diffxI. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
complI
| |
joinxCx : x `|` ~` x = \top.
Proof. by rewrite complEdiff diffKU joinx1. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinxC
| |
joinCxx : ~` x `|` x = \top.
Proof. by rewrite joinC joinxC. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinCx
| |
meetxCx : x `&` ~` x = \bot.
Proof. by rewrite complEdiff diffKI. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetxC
| |
meetCxx : ~` x `&` x = \bot.
Proof. by rewrite meetC meetxC. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetCx
| |
compl1: ~` \top = \bot :> L.
Proof. by rewrite complEdiff diffxx. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
compl1
| |
compl0: ~` \bot = \top :> L.
Proof. by rewrite -compl1 complK. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
compl0
| |
complBx y : ~` (x `\` y) = ~` x `|` y.
Proof. by rewrite diffE complI complK. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
complB
| |
leBCx y : x `\` y <= ~` y.
Proof. by rewrite leBLR joinxC lex1. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leBC
| |
compl_joins(J : Type) (r : seq J) (P : {pred J}) (F : J -> L) :
~` (\join_(j <- r | P j) F j) = \meet_(j <- r | P j) ~` F j.
Proof. by elim/big_rec2: _=> [|i x y ? <-]; rewrite ?compl0 ?complU. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
compl_joins
| |
compl_meets(J : Type) (r : seq J) (P : {pred J}) (F : J -> L) :
~` (\meet_(j <- r | P j) F j) = \join_(j <- r | P j) ~` F j.
Proof. by elim/big_rec2: _=> [|i x y ? <-]; rewrite ?compl1 ?complI. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
compl_meets
| |
RecordPreorder_isPOrder (d : disp_t) T of Preorder d T := {
le_anti : antisymmetric (@le d T);
}.
HB.builders Context (d : disp_t) T of Preorder_isPOrder d T.
Let ge_anti : antisymmetric (fun x y => @le d T y x).
Proof. by move=> x y; rewrite andbC; apply: le_anti. Qed.
HB.instance Definition _ := Preorder_isDuallyPOrder.Build d T le_anti ge_anti.
HB.end.
HB.factory Record isPOrder (d : disp_t) T of Choice T := {
le : rel T;
lt : rel T;
lt_def : forall x y, lt x y = (y != x) && (le x y);
le_refl : reflexive le;
le_anti : antisymmetric le;
le_trans : transitive le;
}.
HB.builders Context (d : disp_t) T of isPOrder d T.
Let lt_le_def x y : lt x y = le x y && ~~ le y x.
Proof.
rewrite lt_def andbC; case /boolP: (le x y) => //= xy.
have [->|/negP xyE /=] := eqVneq y x; first by rewrite le_refl.
by apply/esym/negP => yx; apply/xyE/eqP/le_anti; rewrite yx.
Qed.
HB.instance Definition _ := isPreorder.Build d T lt_le_def le_refl le_trans.
HB.instance Definition _ := Preorder_isPOrder.Build d T le_anti.
HB.end.
HB.factory Record Le_isPOrder (d : disp_t) T of Choice T := {
le : rel T;
le_refl : reflexive le;
le_anti : antisymmetric le;
|
HB.factory
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Record
| |
Definition_ := @Le_isPreorder.Build d T le le_refl le_trans.
HB.instance Definition _ := @Preorder_isPOrder.Build d T le_anti.
HB.end.
HB.factory Record LtLe_isPOrder (d : disp_t) T of Choice T := {
le : rel T;
lt : rel T;
le_def : forall x y, le x y = (x == y) || lt x y;
lt_irr : irreflexive lt;
lt_trans : transitive lt;
}.
HB.builders Context (d : disp_t) T of LtLe_isPOrder d T.
HB.instance Definition _ := @LtLe_isPreorder.Build d T le lt le_def lt_irr lt_trans.
Let le_anti : antisymmetric le.
Proof.
move=> x y; rewrite !le_def [y == _]eq_sym.
have [//|neq_xy/=] := eqVneq x y => /andP[xy yx].
by have := lt_trans xy yx; rewrite lt_irr.
Qed.
HB.instance Definition _ := @Preorder_isPOrder.Build d T le_anti.
HB.end.
HB.factory Record Lt_isPOrder (d : disp_t) T of Choice T := {
lt : rel T;
lt_irr : irreflexive lt;
lt_trans : transitive lt;
}.
HB.builders Context d T of Lt_isPOrder d T.
#[warning="-HB.no-new-instance"]
HB.instance Definition _ := @LtLe_isPOrder.Build d T
_ lt (fun _ _ => erefl) lt_irr lt_trans.
HB.end.
|
HB.instance
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Definition
| |
RecordPOrder_Meet_isSemilattice d T of POrder d T := {
meet : T -> T -> T;
meetC : commutative meet;
meetA : associative meet;
leEmeet : forall x y, (x <= y) = (meet x y == x);
}.
HB.builders Context d T of POrder_Meet_isSemilattice d T.
Fact meetxx : idempotent_op meet.
Proof. by move=> x; apply/eqP; rewrite -leEmeet. Qed.
Fact lexI x y z : (x <= meet y z) = (x <= y) && (x <= z).
Proof.
rewrite !leEmeet; apply/eqP/andP => [<-|[/eqP<- /eqP<-]].
split; apply/eqP; last by rewrite meetA -meetA meetxx.
by rewrite -!meetA (meetC z) (meetA y) meetxx.
by rewrite -!meetA (meetC z) -meetA (meetA y) !meetxx.
Qed.
HB.instance Definition _ := @POrder_isMeetSemilattice.Build d T meet lexI.
HB.end.
HB.factory Record POrder_Join_isSemilattice d T of POrder d T := {
join : T -> T -> T;
joinC : commutative join;
joinA : associative join;
leEjoin : forall x y, (y <= x) = (join x y == x);
}.
HB.builders Context d T of POrder_Join_isSemilattice d T.
Fact joinxx : idempotent_op join.
Proof. by move=> x; apply/eqP; rewrite -leEjoin. Qed.
Fact leUx x y z : (join x y <= z) = (x <= z) && (y <= z).
rewrite !leEjoin; apply/eqP/andP => [<-|[/eqP<- /eqP<-]].
split; apply/eqP; last by rewrite joinA -joinA joinxx.
by rewrite -joinA (joinC _ x) (joinA x) joinxx.
|
HB.factory
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Record
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.