fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
joins_minI (j : I) (l : L) (P : {pred I}) (F : I -> L) : P j -> l <= F j -> l <= \join_(i | P i) F i. Proof. exact: (@meets_max _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joins_min
joins_leJ (r : seq J) (P : {pred J}) (F : J -> L) (u : L) : (forall x : J, P x -> F x <= u) -> \join_(x <- r | P x) F x <= u. Proof. exact: (@meets_ge _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joins_le
joinsP_seqT (r : seq T) (P : {pred T}) (F : T -> L) (u : L) : reflect (forall x : T, x \in r -> P x -> F x <= u) (\join_(x <- r | P x) F x <= u). Proof. exact: (@meetsP_seq _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joinsP_seq
joinsPI (u : L) (P : {pred I}) (F : I -> L) : reflect (forall i : I, P i -> F i <= u) (\join_(i | P i) F i <= u). Proof. exact: (@meetsP _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joinsP
le_joinsI (A B : {set I}) (F : I -> L) : A \subset B -> \join_(i in A) F i <= \join_(i in B) F i. Proof. exact: (@le_meets _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_joins
joins_setUI (A B : {set I}) (F : I -> L) : \join_(i in (A :|: B)) F i = \join_(i in A) F i `|` \join_(i in B) F i. Proof. exact: (@meets_setU _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joins_setU
joins_seqI (r : seq I) (F : I -> L) : \join_(i <- r) F i = \join_(i in r) F i. Proof. exact: (@meets_seq _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joins_seq
joinx1: right_zero \top (@join _ L). Proof. exact: (@meetx0 _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joinx1
join1x: left_zero \top (@join _ L). Proof. exact: (@meet0x _ L^d). Qed. HB.instance Definition _ := Monoid.isMulLaw.Build L \top join join1x joinx1.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
join1x
meetUKx y : (x `&` y) `|` y = y. Proof. exact/join_idPr/leIr. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meetUK
meetUKCx y : (y `&` x) `|` y = y. Proof. by rewrite meetC meetUK. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meetUKC
meetKUCy x : x `|` (y `&` x) = x. Proof. by rewrite joinC meetUK. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meetKUC
meetKUy x : x `|` (x `&` y) = x. Proof. by rewrite meetC meetKUC. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meetKU
joinIKx y : (x `|` y) `&` y = y. Proof. exact/meet_idPr/leUr. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joinIK
joinIKCx y : (y `|` x) `&` y = y. Proof. by rewrite joinC joinIK. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joinIKC
joinKICy x : x `&` (y `|` x) = x. Proof. by rewrite meetC joinIK. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joinKIC
joinKIy x : x `&` (x `|` y) = x. Proof. by rewrite joinC joinKIC. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joinKI
lcomparablePx y : incomparel x y (min y x) (min x y) (max y x) (max x y) (y `&` x) (x `&` y) (y `|` x) (x `|` y) (y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y) (y >=< x) (x >=< y). Proof. by case: (comparableP x) => [hxy|hxy|hxy|->]; do 1?have hxy' := ltW hxy; rewrite ?(meetxx, joinxx); rewrite ?(meet_l hxy', meet_r hxy', join_l hxy', join_r hxy'); constructor. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lcomparableP
lcomparable_ltgtPx y : x >=< y -> comparel x y (min y x) (min x y) (max y x) (max x y) (y `&` x) (x `&` y) (y `|` x) (x `|` y) (y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y). Proof. by case: (lcomparableP x) => // *; constructor. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lcomparable_ltgtP
lcomparable_lePx y : x >=< y -> lel_xor_gt x y (min y x) (min x y) (max y x) (max x y) (y `&` x) (x `&` y) (y `|` x) (x `|` y) (x <= y) (y < x). Proof. by move/lcomparable_ltgtP => [/ltW xy|xy|->]; constructor. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lcomparable_leP
lcomparable_ltPx y : x >=< y -> ltl_xor_ge x y (min y x) (min x y) (max y x) (max x y) (y `&` x) (x `&` y) (y `|` x) (x `|` y) (y <= x) (x < y). Proof. by move=> /lcomparable_ltgtP [xy|/ltW xy|->]; constructor. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lcomparable_ltP
meetUl: left_distributive (@meet _ L) (@join _ L). Proof. exact: meetUl. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meetUl
meetUr: right_distributive (@meet _ L) (@join _ L). Proof. by move=> x y z; rewrite ![x `&` _]meetC meetUl. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meetUr
joinIl: left_distributive (@join _ L) (@meet _ L). Proof. exact: joinIl. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joinIl
joinIr: right_distributive (@join _ L) (@meet _ L). Proof. by move=> x y z; rewrite ![x `|` _]joinC joinIl. Qed. #[warning="-HB.no-new-instance"] HB.instance Definition _ := Monoid.isAddLaw.Build L meet join meetUl meetUr. HB.instance Definition _ := Monoid.isAddLaw.Build L join meet joinIl joinIr.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joinIr
leU2l_ley t x z : x `&` t = \bot -> x `|` y <= z `|` t -> x <= z. Proof. by move=> xIt0 /(leI2 (lexx x)); rewrite joinKI meetUr xIt0 joinx0 leIidl. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leU2l_le
leU2r_ley t x z : x `&` t = \bot -> y `|` x <= t `|` z -> x <= z. Proof. by rewrite joinC [_ `|` z]joinC => /leU2l_le H /H. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leU2r_le
disjoint_lexUlz x y : x `&` z = \bot -> (x <= y `|` z) = (x <= y). Proof. move=> xz0; apply/idP/idP=> xy; last by rewrite lexU2 ?xy. by apply: (@leU2l_le x z); rewrite ?joinxx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
disjoint_lexUl
disjoint_lexUrz x y : x `&` z = \bot -> (x <= z `|` y) = (x <= y). Proof. by move=> xz0; rewrite joinC; rewrite disjoint_lexUl. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
disjoint_lexUr
leU2Ex y z t : x `&` t = \bot -> y `&` z = \bot -> (x `|` y <= z `|` t) = (x <= z) && (y <= t). Proof. move=> dxt dyz; apply/idP/andP; last by case=> ? ?; exact: leU2. by move=> lexyzt; rewrite (leU2l_le _ lexyzt) // (leU2r_le _ lexyzt). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leU2E
joins_disjoint(I : finType) (d : L) (P : {pred I}) (F : I -> L) : (forall i : I, P i -> d `&` F i = \bot) -> d `&` \join_(i | P i) F i = \bot. Proof. move=> d_Fi_disj; have : \big[andb/true]_(i | P i) (d `&` F i == \bot). rewrite big_all_cond; apply/allP => i _ /=. by apply/implyP => /d_Fi_disj ->. elim/big_rec2: _ => [|i y]; first by rewrite meetx0. case; rewrite (andbF, andbT) // => Pi /(_ isT) dy /eqP dFi. by rewrite meetUr dy dFi joinxx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joins_disjoint
leI2l_ley t x z : y `|` z = \top -> x `&` y <= z `&` t -> x <= z. Proof. by rewrite joinC; exact: (@leU2l_le _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leI2l_le
leI2r_ley t x z : y `|` z = \top -> y `&` x <= t `&` z -> x <= z. Proof. by rewrite joinC; exact: (@leU2r_le _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leI2r_le
cover_leIxlz x y : z `|` y = \top -> (x `&` z <= y) = (x <= y). Proof. by rewrite joinC; exact: (@disjoint_lexUl _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
cover_leIxl
cover_leIxrz x y : z `|` y = \top -> (z `&` x <= y) = (x <= y). Proof. by rewrite joinC; exact: (@disjoint_lexUr _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
cover_leIxr
leI2Ex y z t : x `|` t = \top -> y `|` z = \top -> (x `&` y <= z `&` t) = (x <= z) && (y <= t). Proof. by move=> ? ?; apply: (@leU2E _ L^d); rewrite meetC. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leI2E
meets_total(I : finType) (d : L) (P : {pred I}) (F : I -> L) : (forall i : I, P i -> d `|` F i = \top) -> d `|` \meet_(i | P i) F i = \top. Proof. exact: (@joins_disjoint _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meets_total
le_total: total (<=%O : rel T) := le_total. Hint Resolve le_total : core.
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_total
ge_total: total (>=%O : rel T). Proof. by move=> ? ?; apply: le_total. Qed. Hint Resolve ge_total : core.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
ge_total
comparableTx y : x >=< y. Proof. exact: le_total. Qed. Hint Extern 0 (is_true (_ >=< _)%O) => solve [apply: comparableT] : core.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
comparableT
sort_le_sorteds : sorted <=%O (sort <=%O s). Proof. exact: sort_sorted. Qed. Hint Resolve sort_le_sorted : core.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
sort_le_sorted
sort_lt_sorteds : sorted <%O (sort <=%O s) = uniq s. Proof. by rewrite lt_sorted_uniq_le sort_uniq sort_le_sorted andbT. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
sort_lt_sorted
perm_sort_lePs1 s2 : reflect (sort <=%O s1 = sort <=%O s2) (perm_eq s1 s2). Proof. exact/perm_sortP/le_anti/le_trans/le_total. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
perm_sort_leP
filter_sort_lep s : filter p (sort <=%O s) = sort <=%O (filter p s). Proof. exact/filter_sort/le_trans/le_total. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
filter_sort_le
mask_sort_les (m : bitseq) : {m_s : bitseq | mask m_s (sort <=%O s) = sort <=%O (mask m s)}. Proof. exact/mask_sort/le_trans/le_total. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
mask_sort_le
sorted_mask_sort_les (m : bitseq) : sorted <=%O (mask m s) -> {m_s : bitseq | mask m_s (sort <=%O s) = mask m s}. Proof. exact/sorted_mask_sort/le_trans/le_total. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
sorted_mask_sort_le
subseq_sort_le: {homo sort <=%O : s1 s2 / @subseq T s1 s2}. Proof. exact/subseq_sort/le_trans/le_total. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
subseq_sort_le
sorted_subseq_sort_les1 s2 : subseq s1 s2 -> sorted <=%O s1 -> subseq s1 (sort <=%O s2). Proof. exact/sorted_subseq_sort/le_trans/le_total. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
sorted_subseq_sort_le
mem2_sort_les x y : x <= y -> mem2 s x y -> mem2 (sort <=%O s) x y. Proof. exact/mem2_sort/le_trans/le_total. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
mem2_sort_le
leNgtx y : (x <= y) = ~~ (y < x). Proof. exact: comparable_leNgt. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leNgt
ltNgex y : (x < y) = ~~ (y <= x). Proof. exact: comparable_ltNge. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
ltNge
ltgtPx y := LatticeTheory.lcomparable_ltgtP (comparableT x y).
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
ltgtP
lePx y := LatticeTheory.lcomparable_leP (comparableT x y).
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leP
ltPx y := LatticeTheory.lcomparable_ltP (comparableT x y).
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
ltP
wlog_leP : (forall x y, P y x -> P x y) -> (forall x y, x <= y -> P x y) -> forall x y, P x y. Proof. by move=> sP hP x y; case: (leP x y) => [| /ltW] /hP // /sP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
wlog_le
wlog_ltP : (forall x, P x x) -> (forall x y, (P y x -> P x y)) -> (forall x y, x < y -> P x y) -> forall x y, P x y. Proof. by move=> rP sP hP x y; case: (ltgtP x y) => [||->] // /hP // /sP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
wlog_lt
neq_ltx y : (x != y) = (x < y) || (y < x). Proof. by case: ltgtP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
neq_lt
lt_totalx y : x != y -> (x < y) || (y < x). Proof. by case: ltgtP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lt_total
eq_leLRx y z t : (x <= y -> z <= t) -> (y < x -> t < z) -> (x <= y) = (z <= t). Proof. by rewrite !ltNge => ? /contraTT ?; apply/idP/idP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
eq_leLR
eq_leRLx y z t : (x <= y -> z <= t) -> (y < x -> t < z) -> (z <= t) = (x <= y). Proof. by move=> *; apply/esym/eq_leLR. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
eq_leRL
eq_ltLRx y z t : (x < y -> z < t) -> (y <= x -> t <= z) -> (x < y) = (z < t). Proof. by rewrite !leNgt => ? /contraTT ?; apply/idP/idP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
eq_ltLR
eq_ltRLx y z t : (x < y -> z < t) -> (y <= x -> t <= z) -> (z < t) = (x < y). Proof. by move=> *; apply/esym/eq_ltLR. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
eq_ltRL
le_gtP{x y} : reflect (forall z, z < x -> z < y) (x <= y). Proof. by apply: (iffP idP) => [xy z /lt_le_trans|/(_ y)/[!ltNge]/contraTT]; apply. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_gtP
le_ltP{x y} : reflect (forall z, y < z -> x < z) (x <= y). Proof. by apply: (iffP idP) => [xy z /(le_lt_trans _)|/(_ x)/[!ltNge]/contraTT]; apply. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_ltP
eq_gtP{x y} : reflect (forall z, (z < x) = (z < y)) (x == y). Proof. by apply: (iffP eq_leP) => + k => /(_ k)/[!ltNge]/(congr1 negb); rewrite ?negbK. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
eq_gtP
eq_ltP{x y} : reflect (forall z, (x < z) = (y < z)) (x == y). Proof. by apply: (iffP eq_geP) => + k => /(_ k)/[!ltNge]/(congr1 negb); rewrite ?negbK. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
eq_ltP
meetEtotalx y : x `&` y = min x y. Proof. by case: leP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meetEtotal
joinEtotalx y : x `|` y = max x y. Proof. by case: leP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joinEtotal
minEgtx y : min x y = if x > y then y else x. Proof. by case: ltP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
minEgt
maxEgtx y : max x y = if x > y then x else y. Proof. by case: ltP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
maxEgt
minEgex y : min x y = if x >= y then y else x. Proof. by case: leP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
minEge
maxEgex y : max x y = if x >= y then x else y. Proof. by case: leP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
maxEge
minC: commutative (min : T -> T -> T). Proof. by move=> x y; apply: comparable_minC. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
minC
maxC: commutative (max : T -> T -> T). Proof. by move=> x y; apply: comparable_maxC. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
maxC
minA: associative (min : T -> T -> T). Proof. by move=> x y z; apply: comparable_minA. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
minA
maxA: associative (max : T -> T -> T). Proof. by move=> x y z; apply: comparable_maxA. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
maxA
minAC: right_commutative (min : T -> T -> T). Proof. by move=> x y z; apply: comparable_minAC. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
minAC
maxAC: right_commutative (max : T -> T -> T). Proof. by move=> x y z; apply: comparable_maxAC. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
maxAC
minCA: left_commutative (min : T -> T -> T). Proof. by move=> x y z; apply: comparable_minCA. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
minCA
maxCA: left_commutative (max : T -> T -> T). Proof. by move=> x y z; apply: comparable_maxCA. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
maxCA
minACA: interchange (min : T -> T -> T) min. Proof. by move=> x y z t; apply: comparable_minACA. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
minACA
maxACA: interchange (max : T -> T -> T) max. Proof. by move=> x y z t; apply: comparable_maxACA. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
maxACA
eq_minrx y : (min x y == y) = (y <= x). Proof. exact: comparable_eq_minr. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
eq_minr
eq_maxlx y : (max x y == x) = (y <= x). Proof. exact: comparable_eq_maxl. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
eq_maxl
min_idPrx y : reflect (min x y = y) (y <= x). Proof. exact: comparable_min_idPr. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
min_idPr
max_idPlx y : reflect (max x y = x) (y <= x). Proof. exact: comparable_max_idPl. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
max_idPl
le_minz x y : (z <= min x y) = (z <= x) && (z <= y). Proof. exact: comparable_le_min. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_min
ge_minz x y : (min x y <= z) = (x <= z) || (y <= z). Proof. exact: comparable_ge_min. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
ge_min
lt_minz x y : (z < min x y) = (z < x) && (z < y). Proof. exact: comparable_lt_min. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lt_min
gt_minz x y : (min x y < z) = (x < z) || (y < z). Proof. exact: comparable_gt_min. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
gt_min
le_maxz x y : (z <= max x y) = (z <= x) || (z <= y). Proof. exact: comparable_le_max. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_max
ge_maxz x y : (max x y <= z) = (x <= z) && (y <= z). Proof. exact: comparable_ge_max. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
ge_max
lt_maxz x y : (z < max x y) = (z < x) || (z < y). Proof. exact: comparable_lt_max. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lt_max
gt_maxz x y : (max x y < z) = (x < z) && (y < z). Proof. exact: comparable_gt_max. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
gt_max
minxKx y : max (min x y) y = y. Proof. exact: comparable_minxK. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
minxK
minKxx y : max x (min x y) = x. Proof. exact: comparable_minKx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
minKx
maxxKx y : min (max x y) y = y. Proof. exact: comparable_maxxK. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
maxxK
maxKxx y : min x (max x y) = x. Proof. exact: comparable_maxKx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
maxKx
max_minl: left_distributive (max : T -> T -> T) min. Proof. by move=> x y z; apply: comparable_max_minl. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
max_minl
min_maxl: left_distributive (min : T -> T -> T) max. Proof. by move=> x y z; apply: comparable_min_maxl. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
min_maxl