fact
stringlengths 8
1.54k
| type
stringclasses 19
values | library
stringclasses 8
values | imports
listlengths 1
10
| filename
stringclasses 98
values | symbolic_name
stringlengths 1
42
| docstring
stringclasses 1
value |
|---|---|---|---|---|---|---|
joins_minI (j : I) (l : L) (P : {pred I}) (F : I -> L) :
P j -> l <= F j -> l <= \join_(i | P i) F i.
Proof. exact: (@meets_max _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joins_min
| |
joins_leJ (r : seq J) (P : {pred J}) (F : J -> L) (u : L) :
(forall x : J, P x -> F x <= u) -> \join_(x <- r | P x) F x <= u.
Proof. exact: (@meets_ge _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joins_le
| |
joinsP_seqT (r : seq T) (P : {pred T}) (F : T -> L) (u : L) :
reflect (forall x : T, x \in r -> P x -> F x <= u)
(\join_(x <- r | P x) F x <= u).
Proof. exact: (@meetsP_seq _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinsP_seq
| |
joinsPI (u : L) (P : {pred I}) (F : I -> L) :
reflect (forall i : I, P i -> F i <= u) (\join_(i | P i) F i <= u).
Proof. exact: (@meetsP _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinsP
| |
le_joinsI (A B : {set I}) (F : I -> L) :
A \subset B -> \join_(i in A) F i <= \join_(i in B) F i.
Proof. exact: (@le_meets _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
le_joins
| |
joins_setUI (A B : {set I}) (F : I -> L) :
\join_(i in (A :|: B)) F i = \join_(i in A) F i `|` \join_(i in B) F i.
Proof. exact: (@meets_setU _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joins_setU
| |
joins_seqI (r : seq I) (F : I -> L) :
\join_(i <- r) F i = \join_(i in r) F i.
Proof. exact: (@meets_seq _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joins_seq
| |
joinx1: right_zero \top (@join _ L). Proof. exact: (@meetx0 _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinx1
| |
join1x: left_zero \top (@join _ L). Proof. exact: (@meet0x _ L^d). Qed.
HB.instance Definition _ := Monoid.isMulLaw.Build L \top join join1x joinx1.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
join1x
| |
meetUKx y : (x `&` y) `|` y = y. Proof. exact/join_idPr/leIr. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetUK
| |
meetUKCx y : (y `&` x) `|` y = y. Proof. by rewrite meetC meetUK. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetUKC
| |
meetKUCy x : x `|` (y `&` x) = x. Proof. by rewrite joinC meetUK. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetKUC
| |
meetKUy x : x `|` (x `&` y) = x. Proof. by rewrite meetC meetKUC. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetKU
| |
joinIKx y : (x `|` y) `&` y = y. Proof. exact/meet_idPr/leUr. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinIK
| |
joinIKCx y : (y `|` x) `&` y = y. Proof. by rewrite joinC joinIK. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinIKC
| |
joinKICy x : x `&` (y `|` x) = x. Proof. by rewrite meetC joinIK. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinKIC
| |
joinKIy x : x `&` (x `|` y) = x. Proof. by rewrite joinC joinKIC. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinKI
| |
lcomparablePx y : incomparel x y
(min y x) (min x y) (max y x) (max x y)
(y `&` x) (x `&` y) (y `|` x) (x `|` y)
(y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y) (y >=< x) (x >=< y).
Proof.
by case: (comparableP x) => [hxy|hxy|hxy|->]; do 1?have hxy' := ltW hxy;
rewrite ?(meetxx, joinxx);
rewrite ?(meet_l hxy', meet_r hxy', join_l hxy', join_r hxy');
constructor.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
lcomparableP
| |
lcomparable_ltgtPx y : x >=< y ->
comparel x y (min y x) (min x y) (max y x) (max x y)
(y `&` x) (x `&` y) (y `|` x) (x `|` y)
(y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y).
Proof. by case: (lcomparableP x) => // *; constructor. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
lcomparable_ltgtP
| |
lcomparable_lePx y : x >=< y ->
lel_xor_gt x y (min y x) (min x y) (max y x) (max x y)
(y `&` x) (x `&` y) (y `|` x) (x `|` y) (x <= y) (y < x).
Proof. by move/lcomparable_ltgtP => [/ltW xy|xy|->]; constructor. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
lcomparable_leP
| |
lcomparable_ltPx y : x >=< y ->
ltl_xor_ge x y (min y x) (min x y) (max y x) (max x y)
(y `&` x) (x `&` y) (y `|` x) (x `|` y) (y <= x) (x < y).
Proof. by move=> /lcomparable_ltgtP [xy|/ltW xy|->]; constructor. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
lcomparable_ltP
| |
meetUl: left_distributive (@meet _ L) (@join _ L).
Proof. exact: meetUl. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetUl
| |
meetUr: right_distributive (@meet _ L) (@join _ L).
Proof. by move=> x y z; rewrite ![x `&` _]meetC meetUl. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetUr
| |
joinIl: left_distributive (@join _ L) (@meet _ L).
Proof. exact: joinIl. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinIl
| |
joinIr: right_distributive (@join _ L) (@meet _ L).
Proof. by move=> x y z; rewrite ![x `|` _]joinC joinIl. Qed.
#[warning="-HB.no-new-instance"]
HB.instance Definition _ := Monoid.isAddLaw.Build L meet join meetUl meetUr.
HB.instance Definition _ := Monoid.isAddLaw.Build L join meet joinIl joinIr.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinIr
| |
leU2l_ley t x z : x `&` t = \bot -> x `|` y <= z `|` t -> x <= z.
Proof.
by move=> xIt0 /(leI2 (lexx x)); rewrite joinKI meetUr xIt0 joinx0 leIidl.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leU2l_le
| |
leU2r_ley t x z : x `&` t = \bot -> y `|` x <= t `|` z -> x <= z.
Proof. by rewrite joinC [_ `|` z]joinC => /leU2l_le H /H. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leU2r_le
| |
disjoint_lexUlz x y : x `&` z = \bot -> (x <= y `|` z) = (x <= y).
Proof.
move=> xz0; apply/idP/idP=> xy; last by rewrite lexU2 ?xy.
by apply: (@leU2l_le x z); rewrite ?joinxx.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
disjoint_lexUl
| |
disjoint_lexUrz x y : x `&` z = \bot -> (x <= z `|` y) = (x <= y).
Proof. by move=> xz0; rewrite joinC; rewrite disjoint_lexUl. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
disjoint_lexUr
| |
leU2Ex y z t : x `&` t = \bot -> y `&` z = \bot ->
(x `|` y <= z `|` t) = (x <= z) && (y <= t).
Proof.
move=> dxt dyz; apply/idP/andP; last by case=> ? ?; exact: leU2.
by move=> lexyzt; rewrite (leU2l_le _ lexyzt) // (leU2r_le _ lexyzt).
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leU2E
| |
joins_disjoint(I : finType) (d : L) (P : {pred I}) (F : I -> L) :
(forall i : I, P i -> d `&` F i = \bot) -> d `&` \join_(i | P i) F i = \bot.
Proof.
move=> d_Fi_disj; have : \big[andb/true]_(i | P i) (d `&` F i == \bot).
rewrite big_all_cond; apply/allP => i _ /=.
by apply/implyP => /d_Fi_disj ->.
elim/big_rec2: _ => [|i y]; first by rewrite meetx0.
case; rewrite (andbF, andbT) // => Pi /(_ isT) dy /eqP dFi.
by rewrite meetUr dy dFi joinxx.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joins_disjoint
| |
leI2l_ley t x z : y `|` z = \top -> x `&` y <= z `&` t -> x <= z.
Proof. by rewrite joinC; exact: (@leU2l_le _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leI2l_le
| |
leI2r_ley t x z : y `|` z = \top -> y `&` x <= t `&` z -> x <= z.
Proof. by rewrite joinC; exact: (@leU2r_le _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leI2r_le
| |
cover_leIxlz x y : z `|` y = \top -> (x `&` z <= y) = (x <= y).
Proof. by rewrite joinC; exact: (@disjoint_lexUl _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
cover_leIxl
| |
cover_leIxrz x y : z `|` y = \top -> (z `&` x <= y) = (x <= y).
Proof. by rewrite joinC; exact: (@disjoint_lexUr _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
cover_leIxr
| |
leI2Ex y z t : x `|` t = \top -> y `|` z = \top ->
(x `&` y <= z `&` t) = (x <= z) && (y <= t).
Proof. by move=> ? ?; apply: (@leU2E _ L^d); rewrite meetC. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leI2E
| |
meets_total(I : finType) (d : L) (P : {pred I}) (F : I -> L) :
(forall i : I, P i -> d `|` F i = \top) -> d `|` \meet_(i | P i) F i = \top.
Proof. exact: (@joins_disjoint _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meets_total
| |
le_total: total (<=%O : rel T) := le_total.
Hint Resolve le_total : core.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
le_total
| |
ge_total: total (>=%O : rel T).
Proof. by move=> ? ?; apply: le_total. Qed.
Hint Resolve ge_total : core.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
ge_total
| |
comparableTx y : x >=< y. Proof. exact: le_total. Qed.
Hint Extern 0 (is_true (_ >=< _)%O) => solve [apply: comparableT] : core.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
comparableT
| |
sort_le_sorteds : sorted <=%O (sort <=%O s).
Proof. exact: sort_sorted. Qed.
Hint Resolve sort_le_sorted : core.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
sort_le_sorted
| |
sort_lt_sorteds : sorted <%O (sort <=%O s) = uniq s.
Proof. by rewrite lt_sorted_uniq_le sort_uniq sort_le_sorted andbT. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
sort_lt_sorted
| |
perm_sort_lePs1 s2 : reflect (sort <=%O s1 = sort <=%O s2) (perm_eq s1 s2).
Proof. exact/perm_sortP/le_anti/le_trans/le_total. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
perm_sort_leP
| |
filter_sort_lep s : filter p (sort <=%O s) = sort <=%O (filter p s).
Proof. exact/filter_sort/le_trans/le_total. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
filter_sort_le
| |
mask_sort_les (m : bitseq) :
{m_s : bitseq | mask m_s (sort <=%O s) = sort <=%O (mask m s)}.
Proof. exact/mask_sort/le_trans/le_total. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
mask_sort_le
| |
sorted_mask_sort_les (m : bitseq) :
sorted <=%O (mask m s) -> {m_s : bitseq | mask m_s (sort <=%O s) = mask m s}.
Proof. exact/sorted_mask_sort/le_trans/le_total. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
sorted_mask_sort_le
| |
subseq_sort_le: {homo sort <=%O : s1 s2 / @subseq T s1 s2}.
Proof. exact/subseq_sort/le_trans/le_total. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
subseq_sort_le
| |
sorted_subseq_sort_les1 s2 :
subseq s1 s2 -> sorted <=%O s1 -> subseq s1 (sort <=%O s2).
Proof. exact/sorted_subseq_sort/le_trans/le_total. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
sorted_subseq_sort_le
| |
mem2_sort_les x y : x <= y -> mem2 s x y -> mem2 (sort <=%O s) x y.
Proof. exact/mem2_sort/le_trans/le_total. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
mem2_sort_le
| |
leNgtx y : (x <= y) = ~~ (y < x). Proof. exact: comparable_leNgt. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leNgt
| |
ltNgex y : (x < y) = ~~ (y <= x). Proof. exact: comparable_ltNge. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
ltNge
| |
ltgtPx y := LatticeTheory.lcomparable_ltgtP (comparableT x y).
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
ltgtP
| |
lePx y := LatticeTheory.lcomparable_leP (comparableT x y).
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leP
| |
ltPx y := LatticeTheory.lcomparable_ltP (comparableT x y).
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
ltP
| |
wlog_leP :
(forall x y, P y x -> P x y) -> (forall x y, x <= y -> P x y) ->
forall x y, P x y.
Proof. by move=> sP hP x y; case: (leP x y) => [| /ltW] /hP // /sP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
wlog_le
| |
wlog_ltP :
(forall x, P x x) ->
(forall x y, (P y x -> P x y)) -> (forall x y, x < y -> P x y) ->
forall x y, P x y.
Proof. by move=> rP sP hP x y; case: (ltgtP x y) => [||->] // /hP // /sP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
wlog_lt
| |
neq_ltx y : (x != y) = (x < y) || (y < x). Proof. by case: ltgtP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
neq_lt
| |
lt_totalx y : x != y -> (x < y) || (y < x). Proof. by case: ltgtP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
lt_total
| |
eq_leLRx y z t :
(x <= y -> z <= t) -> (y < x -> t < z) -> (x <= y) = (z <= t).
Proof. by rewrite !ltNge => ? /contraTT ?; apply/idP/idP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
eq_leLR
| |
eq_leRLx y z t :
(x <= y -> z <= t) -> (y < x -> t < z) -> (z <= t) = (x <= y).
Proof. by move=> *; apply/esym/eq_leLR. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
eq_leRL
| |
eq_ltLRx y z t :
(x < y -> z < t) -> (y <= x -> t <= z) -> (x < y) = (z < t).
Proof. by rewrite !leNgt => ? /contraTT ?; apply/idP/idP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
eq_ltLR
| |
eq_ltRLx y z t :
(x < y -> z < t) -> (y <= x -> t <= z) -> (z < t) = (x < y).
Proof. by move=> *; apply/esym/eq_ltLR. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
eq_ltRL
| |
le_gtP{x y} : reflect (forall z, z < x -> z < y) (x <= y).
Proof.
by apply: (iffP idP) => [xy z /lt_le_trans|/(_ y)/[!ltNge]/contraTT]; apply.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
le_gtP
| |
le_ltP{x y} : reflect (forall z, y < z -> x < z) (x <= y).
Proof.
by apply: (iffP idP) => [xy z /(le_lt_trans _)|/(_ x)/[!ltNge]/contraTT]; apply.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
le_ltP
| |
eq_gtP{x y} : reflect (forall z, (z < x) = (z < y)) (x == y).
Proof.
by apply: (iffP eq_leP) => + k => /(_ k)/[!ltNge]/(congr1 negb); rewrite ?negbK.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
eq_gtP
| |
eq_ltP{x y} : reflect (forall z, (x < z) = (y < z)) (x == y).
Proof.
by apply: (iffP eq_geP) => + k => /(_ k)/[!ltNge]/(congr1 negb); rewrite ?negbK.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
eq_ltP
| |
meetEtotalx y : x `&` y = min x y. Proof. by case: leP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetEtotal
| |
joinEtotalx y : x `|` y = max x y. Proof. by case: leP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinEtotal
| |
minEgtx y : min x y = if x > y then y else x. Proof. by case: ltP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
minEgt
| |
maxEgtx y : max x y = if x > y then x else y. Proof. by case: ltP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
maxEgt
| |
minEgex y : min x y = if x >= y then y else x. Proof. by case: leP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
minEge
| |
maxEgex y : max x y = if x >= y then x else y. Proof. by case: leP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
maxEge
| |
minC: commutative (min : T -> T -> T).
Proof. by move=> x y; apply: comparable_minC. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
minC
| |
maxC: commutative (max : T -> T -> T).
Proof. by move=> x y; apply: comparable_maxC. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
maxC
| |
minA: associative (min : T -> T -> T).
Proof. by move=> x y z; apply: comparable_minA. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
minA
| |
maxA: associative (max : T -> T -> T).
Proof. by move=> x y z; apply: comparable_maxA. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
maxA
| |
minAC: right_commutative (min : T -> T -> T).
Proof. by move=> x y z; apply: comparable_minAC. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
minAC
| |
maxAC: right_commutative (max : T -> T -> T).
Proof. by move=> x y z; apply: comparable_maxAC. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
maxAC
| |
minCA: left_commutative (min : T -> T -> T).
Proof. by move=> x y z; apply: comparable_minCA. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
minCA
| |
maxCA: left_commutative (max : T -> T -> T).
Proof. by move=> x y z; apply: comparable_maxCA. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
maxCA
| |
minACA: interchange (min : T -> T -> T) min.
Proof. by move=> x y z t; apply: comparable_minACA. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
minACA
| |
maxACA: interchange (max : T -> T -> T) max.
Proof. by move=> x y z t; apply: comparable_maxACA. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
maxACA
| |
eq_minrx y : (min x y == y) = (y <= x).
Proof. exact: comparable_eq_minr. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
eq_minr
| |
eq_maxlx y : (max x y == x) = (y <= x).
Proof. exact: comparable_eq_maxl. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
eq_maxl
| |
min_idPrx y : reflect (min x y = y) (y <= x).
Proof. exact: comparable_min_idPr. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
min_idPr
| |
max_idPlx y : reflect (max x y = x) (y <= x).
Proof. exact: comparable_max_idPl. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
max_idPl
| |
le_minz x y : (z <= min x y) = (z <= x) && (z <= y).
Proof. exact: comparable_le_min. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
le_min
| |
ge_minz x y : (min x y <= z) = (x <= z) || (y <= z).
Proof. exact: comparable_ge_min. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
ge_min
| |
lt_minz x y : (z < min x y) = (z < x) && (z < y).
Proof. exact: comparable_lt_min. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
lt_min
| |
gt_minz x y : (min x y < z) = (x < z) || (y < z).
Proof. exact: comparable_gt_min. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
gt_min
| |
le_maxz x y : (z <= max x y) = (z <= x) || (z <= y).
Proof. exact: comparable_le_max. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
le_max
| |
ge_maxz x y : (max x y <= z) = (x <= z) && (y <= z).
Proof. exact: comparable_ge_max. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
ge_max
| |
lt_maxz x y : (z < max x y) = (z < x) || (z < y).
Proof. exact: comparable_lt_max. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
lt_max
| |
gt_maxz x y : (max x y < z) = (x < z) && (y < z).
Proof. exact: comparable_gt_max. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
gt_max
| |
minxKx y : max (min x y) y = y. Proof. exact: comparable_minxK. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
minxK
| |
minKxx y : max x (min x y) = x. Proof. exact: comparable_minKx. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
minKx
| |
maxxKx y : min (max x y) y = y. Proof. exact: comparable_maxxK. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
maxxK
| |
maxKxx y : min x (max x y) = x. Proof. exact: comparable_maxKx. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
maxKx
| |
max_minl: left_distributive (max : T -> T -> T) min.
Proof. by move=> x y z; apply: comparable_max_minl. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
max_minl
| |
min_maxl: left_distributive (min : T -> T -> T) max.
Proof. by move=> x y z; apply: comparable_min_maxl. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
min_maxl
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.