fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
max_minr: right_distributive (max : T -> T -> T) min. Proof. by move=> x y z; apply: comparable_max_minr. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
max_minr
min_maxr: right_distributive (min : T -> T -> T) max. Proof. by move=> x y z; apply: comparable_min_maxr. Qed. HB.instance Definition _ := SemiGroup.isComLaw.Build T max maxA maxC. HB.instance Definition _ := SemiGroup.isComLaw.Build T min minA minC.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
min_maxr
leIxx y z : (meet y z <= x) = (y <= x) || (z <= x). Proof. by rewrite meetEtotal ge_min. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leIx
lexUx y z : (x <= join y z) = (x <= y) || (x <= z). Proof. by rewrite joinEtotal le_max. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lexU
ltxIx y z : (x < meet y z) = (x < y) && (x < z). Proof. by rewrite !ltNge leIx negb_or. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
ltxI
ltIxx y z : (meet y z < x) = (y < x) || (z < x). Proof. by rewrite !ltNge lexI negb_and. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
ltIx
ltxUx y z : (x < join y z) = (x < y) || (x < z). Proof. by rewrite !ltNge leUx negb_and. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
ltxU
ltUxx y z : (join y z < x) = (y < x) && (z < x). Proof. by rewrite !ltNge lexU negb_or. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
ltUx
ltexI:= (@lexI _ T, ltxI).
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
ltexI
lteIx:= (leIx, ltIx).
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lteIx
ltexU:= (lexU, ltxU).
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
ltexU
lteUx:= (@leUx _ T, ltUx).
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lteUx
le_min2x y z t : x <= z -> y <= t -> Order.min x y <= Order.min z t. Proof. exact: comparable_le_min2. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_min2
le_max2x y z t : x <= z -> y <= t -> Order.max x y <= Order.max z t. Proof. exact: comparable_le_max2. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_max2
lteifNEx y C : x < y ?<= if ~~ C = ~~ (y < x ?<= if C). Proof. by case: C => /=; case: leP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lteifNE
lteif_minrz x y C : (z < min x y ?<= if C) = (z < x ?<= if C) && (z < y ?<= if C). Proof. by case: C; rewrite /= (le_min, lt_min). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lteif_minr
lteif_minlz x y C : (min x y < z ?<= if C) = (x < z ?<= if C) || (y < z ?<= if C). Proof. by case: C; rewrite /= (ge_min, gt_min). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lteif_minl
lteif_maxrz x y C : (z < max x y ?<= if C) = (z < x ?<= if C) || (z < y ?<= if C). Proof. by case: C; rewrite /= (le_max, lt_max). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lteif_maxr
lteif_maxlz x y C : (max x y < z ?<= if C) = (x < z ?<= if C) && (y < z ?<= if C). Proof. by case: C; rewrite /= (ge_max, gt_max). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lteif_maxl
arg_minP: extremum_spec <=%O P F (arg_min i0 P F). Proof. by apply: extremumP => //; apply: le_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
arg_minP
arg_maxP: extremum_spec >=%O P F (arg_max i0 P F). Proof. by apply: extremumP => //; [apply: ge_refl | apply: ge_trans]. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
arg_maxP
count_le_gtx s : count (<= x) s = size s - count (> x) s. Proof. by rewrite -(count_predC (> x)) addKn; apply: eq_count => y; rewrite /= leNgt. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
count_le_gt
count_lt_gex s : count (< x) s = size s - count (>= x) s. Proof. by rewrite -(count_predC (>= x)) addKn; apply: eq_count => y; rewrite /= ltNge. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
count_lt_ge
bigmin_mkcondP F : \big[min/x]_(i <- r | P i) F i = \big[min/x]_(i <- r) (if P i then F i else x). Proof. by rewrite big_mkcond_idem //= minxx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmin_mkcond
bigmax_mkcondP F : \big[max/x]_(i <- r | P i) F i = \big[max/x]_(i <- r) if P i then F i else x. Proof. by rewrite big_mkcond_idem //= maxxx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmax_mkcond
bigmin_mkcondlP Q F : \big[min/x]_(i <- r | P i && Q i) F i = \big[min/x]_(i <- r | Q i) if P i then F i else x. Proof. rewrite bigmin_mkcond [RHS]bigmin_mkcond. by apply: eq_bigr => i _; case: P; case: Q. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmin_mkcondl
bigmin_mkcondrP Q F : \big[min/x]_(i <- r | P i && Q i) F i = \big[min/x]_(i <- r | P i) if Q i then F i else x. Proof. by under eq_bigl do rewrite andbC; apply: bigmin_mkcondl. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmin_mkcondr
bigmax_mkcondlP Q F : \big[max/x]_(i <- r | P i && Q i) F i = \big[max/x]_(i <- r | Q i) if P i then F i else x. Proof. rewrite bigmax_mkcond [RHS]bigmax_mkcond. by apply: eq_bigr => i _; case: P; case: Q. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmax_mkcondl
bigmax_mkcondrP Q F : \big[max/x]_(i <- r | P i && Q i) F i = \big[max/x]_(i <- r | P i) if Q i then F i else x. Proof. by under eq_bigl do rewrite andbC; apply: bigmax_mkcondl. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmax_mkcondr
bigmin_splitP F1 F2 : \big[min/x]_(i <- r | P i) (min (F1 i) (F2 i)) = min (\big[min/x]_(i <- r | P i) F1 i) (\big[min/x]_(i <- r | P i) F2 i). Proof. by rewrite big_split_idem //= minxx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmin_split
bigmax_splitP F1 F2 : \big[max/x]_(i <- r | P i) (max (F1 i) (F2 i)) = max (\big[max/x]_(i <- r | P i) F1 i) (\big[max/x]_(i <- r | P i) F2 i). Proof. by rewrite big_split_idem //= maxxx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmax_split
bigmin_idlP F : \big[min/x]_(i <- r | P i) F i = min x (\big[min/x]_(i <- r | P i) F i). Proof. by rewrite minC big_id_idem //= minxx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmin_idl
bigmax_idlP F : \big[max/x]_(i <- r | P i) F i = max x (\big[max/x]_(i <- r | P i) F i). Proof. by rewrite maxC big_id_idem //= maxxx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmax_idl
bigmin_idrP F : \big[min/x]_(i <- r | P i) F i = min (\big[min/x]_(i <- r | P i) F i) x. Proof. by rewrite [LHS]bigmin_idl minC. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmin_idr
bigmax_idrP F : \big[max/x]_(i <- r | P i) F i = max (\big[max/x]_(i <- r | P i) F i) x. Proof. by rewrite [LHS]bigmax_idl maxC. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmax_idr
bigminIDa P F : \big[min/x]_(i <- r | P i) F i = min (\big[min/x]_(i <- r | P i && a i) F i) (\big[min/x]_(i <- r | P i && ~~ a i) F i). Proof. by rewrite (bigID_idem _ _ a) //= minxx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigminID
bigmaxIDa P F : \big[max/x]_(i <- r | P i) F i = max (\big[max/x]_(i <- r | P i && a i) F i) (\big[max/x]_(i <- r | P i && ~~ a i) F i). Proof. by rewrite (bigID_idem _ _ a) //= maxxx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmaxID
sub_bigmin[x0] I r (P P' : {pred I}) (F : I -> T) : (forall i, P' i -> P i) -> \big[min/x0]_(i <- r | P i) F i <= \big[min/x0]_(i <- r | P' i) F i. Proof. exact: (sub_le_big ge_refl). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
sub_bigmin
sub_bigmax[x0] I r (P P' : {pred I}) (F : I -> T) : (forall i, P i -> P' i) -> \big[max/x0]_(i <- r | P i) F i <= \big[max/x0]_(i <- r | P' i) F i. Proof. exact: sub_le_big. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
sub_bigmax
sub_bigmin_seq[x0] (I : eqType) r r' P (F : I -> T) : {subset r' <= r} -> \big[min/x0]_(i <- r | P i) F i <= \big[min/x0]_(i <- r' | P i) F i. Proof. exact: (idem_sub_le_big ge_refl _ minxx). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
sub_bigmin_seq
sub_bigmax_seq[x0] (I : eqType) r r' P (F : I -> T) : {subset r <= r'} -> \big[max/x0]_(i <- r | P i) F i <= \big[max/x0]_(i <- r' | P i) F i. Proof. exact: (idem_sub_le_big _ _ maxxx). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
sub_bigmax_seq
sub_bigmin_cond[x0] (I : eqType) r r' P P' (F : I -> T) : {subset ([seq i <- r | P i]) <= ([seq i <- r' | P' i])} -> \big[min/x0]_(i <- r' | P' i) F i <= \big[min/x0]_(i <- r | P i) F i. Proof. exact: (idem_sub_le_big_cond ge_refl _ minxx). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
sub_bigmin_cond
sub_bigmax_cond[x0] (I : eqType) r r' P P' (F : I -> T) : {subset ([seq i <- r | P i]) <= ([seq i <- r' | P' i])} -> \big[max/x0]_(i <- r | P i) F i <= \big[max/x0]_(i <- r' | P' i) F i. Proof. exact: (idem_sub_le_big_cond _ _ maxxx). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
sub_bigmax_cond
sub_in_bigmin[x0] [I : eqType] (r : seq I) (P P' : {pred I}) F : {in r, forall i, P' i -> P i} -> \big[min/x0]_(i <- r | P i) F i <= \big[min/x0]_(i <- r | P' i) F i. Proof. exact: (sub_in_le_big ge_refl). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
sub_in_bigmin
sub_in_bigmax[x0] [I : eqType] (r : seq I) (P P' : {pred I}) F : {in r, forall i, P i -> P' i} -> \big[max/x0]_(i <- r | P i) F i <= \big[max/x0]_(i <- r | P' i) F i. Proof. exact: sub_in_le_big. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
sub_in_bigmax
le_bigmin_nat[x0] n m n' m' P (F : nat -> T) : (n <= n')%N -> (m' <= m)%N -> \big[min/x0]_(n <= i < m | P i) F i <= \big[min/x0]_(n' <= i < m' | P i) F i. Proof. exact: (le_big_nat ge_refl). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_bigmin_nat
le_bigmax_nat[x0] n m n' m' P (F : nat -> T) : (n' <= n)%N -> (m <= m')%N -> \big[max/x0]_(n <= i < m | P i) F i <= \big[max/x0]_(n' <= i < m' | P i) F i. Proof. exact: le_big_nat. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_bigmax_nat
le_bigmin_nat_cond[x0] n m n' m' (P P' : pred nat) (F : nat -> T) : (n <= n')%N -> (m' <= m)%N -> (forall i, (n' <= i < m')%N -> P' i -> P i) -> \big[min/x0]_(n <= i < m | P i) F i <= \big[min/x0]_(n' <= i < m' | P' i) F i. Proof. exact: (le_big_nat_cond ge_refl). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_bigmin_nat_cond
le_bigmax_nat_cond[x0] n m n' m' (P P' : {pred nat}) (F : nat -> T) : (n' <= n)%N -> (m <= m')%N -> (forall i, (n <= i < m)%N -> P i -> P' i) -> \big[max/x0]_(n <= i < m | P i) F i <= \big[max/x0]_(n' <= i < m' | P' i) F i. Proof. exact: le_big_nat_cond. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_bigmax_nat_cond
le_bigmin_ord[x0] n m (P : pred nat) (F : nat -> T) : (m <= n)%N -> \big[min/x0]_(i < n | P i) F i <= \big[min/x0]_(i < m | P i) F i. Proof. exact: (le_big_ord ge_refl). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_bigmin_ord
le_bigmax_ord[x0] n m (P : {pred nat}) (F : nat -> T) : (n <= m)%N -> \big[max/x0]_(i < n | P i) F i <= \big[max/x0]_(i < m | P i) F i. Proof. exact: le_big_ord. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_bigmax_ord
le_bigmin_ord_cond[x0] n m (P P' : pred nat) (F : nat -> T) : (m <= n)%N -> (forall i : 'I_m, P' i -> P i) -> \big[min/x0]_(i < n | P i) F i <= \big[min/x0]_(i < m | P' i) F i. Proof. exact: (le_big_ord_cond ge_refl). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_bigmin_ord_cond
le_bigmax_ord_cond[x0] n m (P P' : {pred nat}) (F : nat -> T) : (n <= m)%N -> (forall i : 'I_n, P i -> P' i) -> \big[max/x0]_(i < n | P i) F i <= \big[max/x0]_(i < m | P' i) F i. Proof. exact: le_big_ord_cond. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_bigmax_ord_cond
subset_bigmin[x0] [I : finType] [A A' P : {pred I}] (F : I -> T) : A' \subset A -> \big[min/x0]_(i in A | P i) F i <= \big[min/x0]_(i in A' | P i) F i. Proof. exact: (subset_le_big ge_refl). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
subset_bigmin
subset_bigmax[x0] [I : finType] (A A' P : {pred I}) (F : I -> T) : A \subset A' -> \big[max/x0]_(i in A | P i) F i <= \big[max/x0]_(i in A' | P i) F i. Proof. exact: subset_le_big. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
subset_bigmax
subset_bigmin_cond[x0] (I : finType) (A A' P P' : {pred I}) (F : I -> T) : [set i in A' | P' i] \subset [set i in A | P i] -> \big[min/x0]_(i in A | P i) F i <= \big[min/x0]_(i in A' | P' i) F i. Proof. exact: (subset_le_big_cond ge_refl). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
subset_bigmin_cond
subset_bigmax_cond[x0] (I : finType) (A A' P P' : {pred I}) (F : I -> T) : [set i in A | P i] \subset [set i in A' | P' i] -> \big[max/x0]_(i in A | P i) F i <= \big[max/x0]_(i in A' | P' i) F i. Proof. exact: subset_le_big_cond. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
subset_bigmax_cond
bigmin_le_idP F : \big[min/x]_(i <- r | P i) F i <= x. Proof. by rewrite bigmin_idl. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmin_le_id
bigmax_ge_idP F : \big[max/x]_(i <- r | P i) F i >= x. Proof. by rewrite bigmax_idl. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmax_ge_id
bigmin_eq_idP F : (forall i, P i -> x <= F i) -> \big[min/x]_(i <- r | P i) F i = x. Proof. by move=> x_le; apply: le_anti; rewrite bigmin_le_id le_bigmin. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmin_eq_id
bigmax_eq_idP F : (forall i, P i -> x >= F i) -> \big[max/x]_(i <- r | P i) F i = x. Proof. by move=> x_ge; apply: le_anti; rewrite bigmax_ge_id bigmax_le. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmax_eq_id
ge_bigmin_seqi0 P F : i0 \in r -> P i0 -> \big[min/x]_(i <- r | P i) F i <= F i0. Proof. move=> + Pi0; elim: r => // h t ih; rewrite inE big_cons. move=> /predU1P[<-|i0t]; first by rewrite Pi0 ge_min// lexx. by case: ifPn => Ph; [rewrite ge_min ih// orbT|rewrite ih]. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
ge_bigmin_seq
le_bigmax_seqi0 P F : i0 \in r -> P i0 -> F i0 <= \big[max/x]_(i <- r | P i) F i. Proof. move=> + Pi0; elim: r => // h t ih; rewrite inE big_cons. move=> /predU1P[<-|i0t]; first by rewrite Pi0 le_max// lexx. by case: ifPn => Ph; [rewrite le_max ih// orbT|rewrite ih]. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_bigmax_seq
bigmin_inf_seqi0 P t F : i0 \in r -> P i0 -> F i0 <= t -> \big[min/x]_(i <- r | P i) F i <= t. Proof. by move=> ? ? ?; exact: le_trans (@ge_bigmin_seq i0 _ _ _ _) _. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmin_inf_seq
bigmax_sup_seqi0 P t F : i0 \in r -> P i0 -> t <= F i0 -> t <= \big[max/x]_(i <- r | P i) F i. Proof. by move=> ? ? ?; exact: le_trans (@le_bigmax_seq i0 _ _ _ _). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmax_sup_seq
bigminD1j P F : P j -> \big[min/x]_(i | P i) F i = min (F j) (\big[min/x]_(i | P i && (i != j)) F i). Proof. by move/(bigD1 _) ->. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigminD1
bigmaxD1j P F : P j -> \big[max/x]_(i | P i) F i = max (F j) (\big[max/x]_(i | P i && (i != j)) F i). Proof. by move/(bigD1 _) ->. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmaxD1
bigmin_le_condj P F : P j -> \big[min/x]_(i | P i) F i <= F j. Proof. have := mem_index_enum j; rewrite unlock; elim: (index_enum I) => //= i l ih. rewrite inE => /orP [/eqP-> ->|/ih leminlfi Pi]; first by rewrite ge_min lexx. by case: ifPn => Pj; [rewrite ge_min leminlfi// orbC|exact: leminlfi]. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmin_le_cond
le_bigmax_condj P F : P j -> F j <= \big[max/x]_(i | P i) F i. Proof. by move=> Pj; rewrite (bigmaxD1 _ Pj) le_max lexx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_bigmax_cond
bigmin_lej F : \big[min/x]_i F i <= F j. Proof. exact: bigmin_le_cond. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmin_le
le_bigmaxF j : F j <= \big[max/x]_i F i. Proof. exact: le_bigmax_cond. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_bigmax
bigmin_infj P m F : P j -> F j <= m -> \big[min/x]_(i | P i) F i <= m. Proof. by move=> Pj ?; apply: le_trans (bigmin_le_cond _ Pj) _. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmin_inf
bigmax_supj P m F : P j -> m <= F j -> m <= \big[max/x]_(i | P i) F i. Proof. by move=> Pj ?; apply: le_trans (le_bigmax_cond _ Pj). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmax_sup
bigmin_gePm P F : reflect (m <= x /\ forall i, P i -> m <= F i) (m <= \big[min/x]_(i | P i) F i). Proof. apply: (iffP idP) => [lemFi|[lemx lemPi]]; [split|exact: le_bigmin]. - by rewrite (le_trans lemFi)// bigmin_idl ge_min lexx. - by move=> i Pi; rewrite (le_trans lemFi)// (bigminD1 _ Pi)// le_minl lexx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmin_geP
bigmax_lePm P F : reflect (x <= m /\ forall i, P i -> F i <= m) (\big[max/x]_(i | P i) F i <= m). Proof. apply: (iffP idP) => [|[? ?]]; last exact: bigmax_le. rewrite bigmax_idl ge_max => /andP[-> leFm]; split=> // i Pi. by apply: le_trans leFm; exact: le_bigmax_cond. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmax_leP
bigmin_gtPm P F : reflect (m < x /\ forall i, P i -> m < F i) (m < \big[min/x]_(i | P i) F i). Proof. apply: (iffP idP) => [lemFi|[lemx lemPi]]; [split|exact: lt_bigmin]. - by rewrite (lt_le_trans lemFi)// bigmin_idl ge_min lexx. - by move=> i Pi; rewrite (lt_le_trans lemFi)// (bigminD1 _ Pi)// le_minl lexx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmin_gtP
bigmax_ltPm P F : reflect (x < m /\ forall i, P i -> F i < m) (\big[max/x]_(i | P i) F i < m). Proof. apply: (iffP idP) => [|[? ?]]; last exact: bigmax_lt. rewrite bigmax_idl gt_max => /andP[-> ltFm]; split=> // i Pi. by apply: le_lt_trans ltFm; exact: le_bigmax_cond. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmax_ltP
bigmin_eq_argj P F : P j -> (forall i, P i -> F i <= x) -> \big[min/x]_(i | P i) F i = F [arg min_(i < j | P i) F i]. Proof. move=> Pi0; case: arg_minP => //= i Pi PF PFx. apply/eqP; rewrite eq_le bigmin_le_cond //=. by apply/bigmin_geP; split => //; exact: PFx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmin_eq_arg
bigmax_eq_argj P F : P j -> (forall i, P i -> x <= F i) -> \big[max/x]_(i | P i) F i = F [arg max_(i > j | P i) F i]. Proof. move=> Pi0; case: arg_maxP => //= i Pi PF PxF. apply/eqP; rewrite eq_le le_bigmax_cond // andbT. by apply/bigmax_leP; split => //; exact: PxF. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmax_eq_arg
eq_bigminj P F : P j -> (forall i, P i -> F i <= x) -> {i0 | i0 \in P & \big[min/x]_(i | P i) F i = F i0}. Proof. by move=> Pi0 Hx; rewrite (bigmin_eq_arg Pi0) //; eexists=> //; case: arg_minP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
eq_bigmin
eq_bigmaxj P F : P j -> (forall i, P i -> x <= F i) -> {i0 | i0 \in P & \big[max/x]_(i | P i) F i = F i0}. Proof. by move=> Pi0 Hx; rewrite (bigmax_eq_arg Pi0) //; eexists=> //; case: arg_maxP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
eq_bigmax
le_bigmin2P F1 F2 : (forall i, P i -> F1 i <= F2 i) -> \big[min/x]_(i | P i) F1 i <= \big[min/x]_(i | P i) F2 i. Proof. move=> FG; elim/big_ind2 : _ => // a b e f ba fe. rewrite ge_min 2!le_min ba fe /= andbT. move: (le_total a e) => /orP[/(le_trans ba)-> // | /(le_trans fe)->]. by rewrite orbT. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_bigmin2
le_bigmax2P F1 F2 : (forall i, P i -> F1 i <= F2 i) -> \big[max/x]_(i | P i) F1 i <= \big[max/x]_(i | P i) F2 i. Proof. move=> FG; elim/big_ind2 : _ => // a b e f ba fe. rewrite le_max 2!ge_max ba fe /= andbT; have [//|/= af] := leP f a. by rewrite (le_trans ba) // (le_trans _ fe) // ltW. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_bigmax2
bigmaxUl(A B : {set I}) F : \big[max/x]_(i in A) F i <= \big[max/x]_(i in A :|: B) F i. Proof. by apply: sub_bigmax => t; rewrite in_setU => ->. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmaxUl
bigmaxUr(A B : {set I}) F : \big[max/x]_(i in B) F i <= \big[max/x]_(i in A :|: B) F i. Proof. by under [leRHS]eq_bigl do rewrite setUC; apply: bigmaxUl. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmaxUr
bigminUl(A B : {set I}) F : \big[min/x]_(i in A) F i >= \big[min/x]_(i in A :|: B) F i. Proof. by apply: sub_bigmin => t; rewrite in_setU => ->. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigminUl
bigminUr(A B : {set I}) F : \big[min/x]_(i in B) F i >= \big[min/x]_(i in A :|: B) F i. Proof. by under [leLHS]eq_bigl do rewrite setUC; apply: bigminUl. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigminUr
bigmaxIl(A B : {set I}) F : \big[max/x]_(i in A) F i >= \big[max/x]_(i in A :&: B) F i. Proof. by apply: sub_bigmax => t; rewrite in_setI => /andP[-> _]. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmaxIl
bigmaxIr(A B : {set I}) F : \big[max/x]_(i in B) F i >= \big[max/x]_(i in A :&: B) F i. Proof. by under eq_bigl do rewrite setIC; apply: bigmaxIl. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmaxIr
bigminIl(A B : {set I}) F : \big[min/x]_(i in A) F i <= \big[min/x]_(i in A :&: B) F i. Proof. by apply: sub_bigmin => t; rewrite in_setI => /andP[->_]. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigminIl
bigminIr(A B : {set I}) F : \big[min/x]_(i in B) F i <= \big[min/x]_(i in A :&: B) F i. Proof. by under [leRHS]eq_bigl do rewrite setIC; apply: bigminIl. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigminIr
bigmaxD(A B : {set I}) F : \big[max/x]_(i in B) F i >= \big[max/x]_(i in B :\: A) F i. Proof. by apply: sub_bigmax => t; rewrite in_setD => /andP[_->]. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmaxD
bigminD(A B : {set I}) F : \big[min/x]_(i in B) F i <= \big[min/x]_(i in B :\: A) F i. Proof. by apply: sub_bigmin => t; rewrite in_setD => /andP[_->]. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigminD
bigmaxU(A B : {set I}) F : \big[max/x]_(i in A :|: B) F i = max (\big[max/x]_(i in A) F i) (\big[max/x]_(i in B) F i). Proof. apply: le_anti; rewrite ge_max bigmaxUl bigmaxUr !andbT; apply/bigmax_leP. split=> [|i /[!in_setU]/orP[iA|iB]]; first by rewrite le_max bigmax_ge_id. - by rewrite le_max le_bigmax_cond. - by rewrite le_max orbC le_bigmax_cond. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmaxU
bigminU(A B : {set I}) F : \big[min/x]_(i in A :|: B) F i = min (\big[min/x]_(i in A) F i) (\big[min/x]_(i in B) F i). Proof. apply: le_anti; rewrite le_min bigminUl bigminUr !andbT; apply/bigmin_geP. split=> [|i /[!in_setU]/orP[iA|iB]]; first by rewrite ge_min bigmin_le_id. - by rewrite ge_min bigmin_le_cond. - by rewrite ge_min orbC bigmin_le_cond. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigminU
bigmin_set1j F : \big[min/x]_(i in [set j]) F i = min (F j) x. Proof. exact: big_set1E. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmin_set1
bigmax_set1j F : \big[max/x]_(i in [set j]) F i = max (F j) x. Proof. exact: big_set1E. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmax_set1
bigmin_imset[I J : finType] x [h : I -> J] [A : {set I}] (F : J -> T) : \big[min/x]_(j in [set h x | x in A]) F j = \big[min/x]_(i in A) F (h i). Proof. by apply: big_imset_idem; apply: minxx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmin_imset
bigmax_imset[I J : finType] x [h : I -> J] [A : {set I}] (F : J -> T) : \big[max/x]_(j in [set h x | x in A]) F j = \big[max/x]_(i in A) F (h i). Proof. by apply: big_imset_idem; apply: maxxx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmax_imset
sorted_filter_gtx s : sorted <=%O s -> [seq y <- s | x < y] = drop (count (<= x) s) s. Proof. move=> s_sorted; rewrite count_le_gt -[LHS]revK -filter_rev. rewrite (@sorted_filter_lt _ T^d); first by rewrite take_rev revK count_rev. by rewrite rev_sorted. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
sorted_filter_gt