fact
stringlengths 8
1.54k
| type
stringclasses 19
values | library
stringclasses 8
values | imports
listlengths 1
10
| filename
stringclasses 98
values | symbolic_name
stringlengths 1
42
| docstring
stringclasses 1
value |
|---|---|---|---|---|---|---|
contra_ltNb x y : (b -> x <= y) -> (y < x -> ~~ b).
Proof. by case: comparableP; case: b. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contra_ltN
| |
contra_le_notP x y : (P -> x < y) -> (y <= x -> ~ P).
Proof. by case: comparableP => // _ PF _ /PF. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contra_le_not
| |
contra_lt_notP x y : (P -> x <= y) -> (y < x -> ~ P).
Proof. by case: comparableP => // _ PF _ /PF. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contra_lt_not
| |
contra_leFb x y : (b -> x < y) -> (y <= x -> b = false).
Proof. by case: comparableP; case: b => // _ /implyP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contra_leF
| |
contra_ltFb x y : (b -> x <= y) -> (y < x -> b = false).
Proof. by case: comparableP; case: b => // _ /implyP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contra_ltF
| |
contra_le_leqx y m n : ((n < m)%N -> y < x) -> (x <= y -> (m <= n)%N).
Proof. by case: comparableP; case: ltngtP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contra_le_leq
| |
contra_le_ltnx y m n : ((n <= m)%N -> y < x) -> (x <= y -> (m < n)%N).
Proof. by case: comparableP; case: ltngtP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contra_le_ltn
| |
contra_lt_leqx y m n : ((n < m)%N -> y <= x) -> (x < y -> (m <= n)%N).
Proof. by case: comparableP; case: ltngtP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contra_lt_leq
| |
contra_lt_ltnx y m n : ((n <= m)%N -> y <= x) -> (x < y -> (m < n)%N).
Proof. by case: comparableP; case: ltngtP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contra_lt_ltn
| |
ltW_homo: {homo f : x y / x < y} -> {homo f : x y / x <= y}.
Proof. exact: homoW. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
ltW_homo
| |
ltW_nhomo: {homo f : x y /~ x < y} -> {homo f : x y /~ x <= y}.
Proof. by apply: homoW=> // x y; rewrite eq_sym. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
ltW_nhomo
| |
inj_homo_lt:
injective f -> {homo f : x y / x <= y} -> {homo f : x y / x < y}.
Proof. exact: inj_homo. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
inj_homo_lt
| |
inj_nhomo_lt:
injective f -> {homo f : x y /~ x <= y} -> {homo f : x y /~ x < y}.
Proof. by apply: inj_homo=> // x y; rewrite eq_sym. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
inj_nhomo_lt
| |
inc_inj: {mono f : x y / x <= y} -> injective f.
Proof. exact: mono_inj. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
inc_inj
| |
dec_inj: {mono f : x y /~ x <= y} -> injective f.
Proof. exact: mono_inj. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
dec_inj
| |
ltW_homo_in:
{in D & D', {homo f : x y / x < y}} -> {in D & D', {homo f : x y / x <= y}}.
Proof. exact: homoW_in. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
ltW_homo_in
| |
ltW_nhomo_in:
{in D & D', {homo f : x y /~ x < y}} -> {in D & D', {homo f : x y /~ x <= y}}.
Proof. by apply: homoW_in=> // x y; rewrite eq_sym. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
ltW_nhomo_in
| |
inj_homo_lt_in:
{in D & D', injective f} -> {in D & D', {homo f : x y / x <= y}} ->
{in D & D', {homo f : x y / x < y}}.
Proof. exact: inj_homo_in. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
inj_homo_lt_in
| |
inj_nhomo_lt_in:
{in D & D', injective f} -> {in D & D', {homo f : x y /~ x <= y}} ->
{in D & D', {homo f : x y /~ x < y}}.
Proof. by apply: inj_homo_in=> // x y; rewrite eq_sym. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
inj_nhomo_lt_in
| |
inc_inj_in: {in D &, {mono f : x y / x <= y}} ->
{in D &, injective f}.
Proof. exact: mono_inj_in. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
inc_inj_in
| |
dec_inj_in:
{in D &, {mono f : x y /~ x <= y}} -> {in D &, injective f}.
Proof. exact: mono_inj_in. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
dec_inj_in
| |
lex0x : (x <= \bot) = (x == \bot).
Proof. by rewrite le_eqVlt ltx0 orbF. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
lex0
| |
lt0xx : (\bot < x) = (x != \bot).
Proof. by rewrite lt_def le0x andbT. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
lt0x
| |
eq0_xor_gt0x : bool -> bool -> Set :=
Eq0NotPOs : x = \bot -> eq0_xor_gt0 x true false
| POsNotEq0 : \bot < x -> eq0_xor_gt0 x false true.
|
Variant
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
eq0_xor_gt0
| |
posxPx : eq0_xor_gt0 x (x == \bot) (\bot < x).
Proof. by rewrite lt0x; have [] := eqVneq; constructor; rewrite ?lt0x. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
posxP
| |
le1xx : (\top <= x) = (x == \top). Proof. exact: (@lex0 _ T^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
le1x
| |
ltx1x : (x < \top) = (x != \top). Proof. exact: (@lt0x _ T^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
ltx1
| |
lexIx y z : (x <= y `&` z) = (x <= y) && (x <= z).
Proof. exact: lexI. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
lexI
| |
leIrx y : y `&` x <= x.
Proof. by have:= le_refl (meet y x); rewrite lexI => /andP []. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leIr
| |
leIlx y : x `&` y <= x.
Proof. by have:= le_refl (meet x y); rewrite lexI => /andP []. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leIl
| |
leIxlx y z : y <= x -> y `&` z <= x.
Proof. exact/le_trans/leIl. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leIxl
| |
leIxrx y z : z <= x -> y `&` z <= x.
Proof. exact/le_trans/leIr. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leIxr
| |
leIx2x y z : (y <= x) || (z <= x) -> y `&` z <= x.
Proof. by case/orP => [/leIxl|/leIxr]. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leIx2
| |
leEmeetx y : (x <= y) = (x `&` y == x).
Proof. by rewrite eq_le lexI leIl lexx. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leEmeet
| |
eq_meetlx y : (x `&` y == x) = (x <= y).
Proof. by apply/esym/leEmeet. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
eq_meetl
| |
eq_meetrx y : (x `&` y == y) = (y <= x).
Proof. by rewrite eq_le lexI leIr lexx andbT. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
eq_meetr
| |
meet_idPl{x y} : reflect (x `&` y = x) (x <= y).
Proof. by rewrite -eq_meetl; apply/eqP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meet_idPl
| |
meet_idPr{x y} : reflect (y `&` x = x) (x <= y).
Proof. by rewrite -eq_meetr; apply/eqP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meet_idPr
| |
meet_lx y : x <= y -> x `&` y = x. Proof. exact/meet_idPl. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meet_l
| |
meet_rx y : y <= x -> x `&` y = y. Proof. exact/meet_idPr. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meet_r
| |
leIidlx y : (x <= x `&` y) = (x <= y).
Proof. by rewrite lexI lexx. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leIidl
| |
leIidrx y : (x <= y `&` x) = (x <= y).
Proof. by rewrite lexI lexx andbT. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leIidr
| |
leI2x y z t : x <= z -> y <= t -> x `&` y <= z `&` t.
Proof. by move=> xz yt; rewrite lexI !leIx2 ?xz ?yt ?orbT //. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leI2
| |
meetC: commutative (@meet _ L).
Proof. by move=> x y; apply: le_anti; rewrite !lexI !leIr !leIl. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetC
| |
meetA: associative (@meet _ L).
Proof.
move=> x y z; apply: le_anti.
rewrite !lexI leIr leIl /= andbT -andbA.
rewrite ![_ `&` (_ `&` _) <= _]leIxr ?(leIr, leIl) //=.
by rewrite leIxl ?leIl // leIxl // leIr.
Qed.
HB.instance Definition _ := SemiGroup.isComLaw.Build L meet meetA meetC.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetA
| |
meetxx: idempotent_op (@meet _ L).
Proof. by move=> x; apply/eqP; rewrite -leEmeet. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetxx
| |
meetAC: right_commutative (@meet _ L).
Proof. by move=> x y z; rewrite -!meetA [X in _ `&` X]meetC. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetAC
| |
meetCA: left_commutative (@meet _ L).
Proof. by move=> x y z; rewrite !meetA [X in X `&` _]meetC. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetCA
| |
meetACA: interchange (@meet _ L) (@meet _ L).
Proof. by move=> x y z t; rewrite !meetA [X in X `&` _]meetAC. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetACA
| |
meetKIy x : x `&` (x `&` y) = x `&` y.
Proof. by rewrite meetA meetxx. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetKI
| |
meetIKy x : (x `&` y) `&` y = x `&` y.
Proof. by rewrite -meetA meetxx. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetIK
| |
meetKICy x : x `&` (y `&` x) = x `&` y.
Proof. by rewrite meetC meetIK meetC. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetKIC
| |
meetIKCy x : y `&` x `&` y = x `&` y.
Proof. by rewrite meetAC meetC meetxx. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetIKC
| |
meet0x: left_zero \bot (@meet _ L).
Proof. by move=> x; apply/eqP; rewrite -leEmeet. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meet0x
| |
meetx0: right_zero \bot (@meet _ L).
Proof. by move=> x; rewrite meetC meet0x. Qed.
HB.instance Definition _ := Monoid.isMulLaw.Build L \bot meet meet0x meetx0.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetx0
| |
meetx1: right_id \top (@meet _ L).
Proof. by move=> x; apply/eqP; rewrite -leEmeet. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetx1
| |
meet1x: left_id \top (@meet _ L).
Proof. by move=> x; apply/eqP; rewrite meetC meetx1. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meet1x
| |
meet_eq1x y : (x `&` y == \top) = (x == \top) && (y == \top).
Proof.
apply/idP/idP; last by move=> /andP[/eqP-> /eqP->]; rewrite meetx1.
by move=> /eqP xIy1; rewrite -!le1x -xIy1 leIl leIr.
Qed.
HB.instance Definition _ := Monoid.isMonoidLaw.Build L \top meet meet1x meetx1.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meet_eq1
| |
meets_inf_seqT (r : seq T) (P : {pred T}) (F : T -> L) (x : T) :
x \in r -> P x -> \meet_(i <- r | P i) F i <= F x.
Proof. by move=> xr Px; rewrite (big_rem x) ?Px //= leIl. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meets_inf_seq
| |
meets_max_seqT (r : seq T) (P : {pred T}) (F : T -> L) (x : T) (u : L) :
x \in r -> P x -> F x <= u -> \meet_(x <- r | P x) F x <= u.
Proof. by move=> ? ?; apply/le_trans/meets_inf_seq. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meets_max_seq
| |
meets_infI (j : I) (P : {pred I}) (F : I -> L) :
P j -> \meet_(i | P i) F i <= F j.
Proof. exact: meets_inf_seq. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meets_inf
| |
meets_maxI (j : I) (u : L) (P : {pred I}) (F : I -> L) :
P j -> F j <= u -> \meet_(i | P i) F i <= u.
Proof. exact: meets_max_seq. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meets_max
| |
meets_geJ (r : seq J) (P : {pred J}) (F : J -> L) (u : L) :
(forall x : J, P x -> u <= F x) -> u <= \meet_(x <- r | P x) F x.
Proof. by move=> leFm; elim/big_rec: _ => // i x Px xu; rewrite lexI leFm. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meets_ge
| |
meetsP_seqT (r : seq T) (P : {pred T}) (F : T -> L) (l : L) :
reflect (forall x : T, x \in r -> P x -> l <= F x)
(l <= \meet_(x <- r | P x) F x).
Proof.
apply: (iffP idP) => leFm => [x xr Px|].
exact/(le_trans leFm)/meets_inf_seq.
by rewrite big_seq_cond meets_ge// => x /andP[/leFm].
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetsP_seq
| |
meetsPI (l : L) (P : {pred I}) (F : I -> L) :
reflect (forall i : I, P i -> l <= F i) (l <= \meet_(i | P i) F i).
Proof. by apply: (iffP (meetsP_seq _ _ _ _)) => H ? ?; apply: H. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetsP
| |
le_meetsI (A B : {set I}) (F : I -> L) :
A \subset B -> \meet_(i in B) F i <= \meet_(i in A) F i.
Proof. by move=> /subsetP AB; apply/meetsP => i iA; apply/meets_inf/AB. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
le_meets
| |
meets_setUI (A B : {set I}) (F : I -> L) :
\meet_(i in (A :|: B)) F i = \meet_(i in A) F i `&` \meet_(i in B) F i.
Proof.
rewrite -!big_enum; have /= <- := @big_cat _ _ meet.
apply/eq_big_idem; first exact: meetxx.
by move=> ?; rewrite mem_cat !fintype.mem_enum inE.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meets_setU
| |
meets_seqI (r : seq I) (F : I -> L) :
\meet_(i <- r) F i = \meet_(i in r) F i.
Proof.
by rewrite -big_enum; apply/eq_big_idem => ?; rewrite /= ?meetxx ?fintype.mem_enum.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meets_seq
| |
leUxx y z : (x `|` y <= z) = (x <= z) && (y <= z).
Proof. exact: leUx. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leUx
| |
leUrx y : x <= y `|` x. Proof. exact: (@leIr _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leUr
| |
leUlx y : x <= x `|` y. Proof. exact: (@leIl _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leUl
| |
lexUlx y z : x <= y -> x <= y `|` z.
Proof. exact: (@leIxl _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
lexUl
| |
lexUrx y z : x <= z -> x <= y `|` z.
Proof. exact: (@leIxr _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
lexUr
| |
lexU2x y z : (x <= y) || (x <= z) -> x <= y `|` z.
Proof. exact: (@leIx2 _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
lexU2
| |
leEjoinx y : (x <= y) = (x `|` y == y).
Proof. by rewrite [LHS](@leEmeet _ L^d) meetC. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leEjoin
| |
eq_joinlx y : (x `|` y == x) = (y <= x).
Proof. exact: (@eq_meetl _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
eq_joinl
| |
eq_joinrx y : (x `|` y == y) = (x <= y).
Proof. exact: (@eq_meetr _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
eq_joinr
| |
join_idPl{x y} : reflect (y `|` x = y) (x <= y).
Proof. exact: (@meet_idPl _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
join_idPl
| |
join_idPr{x y} : reflect (x `|` y = y) (x <= y).
Proof. exact: (@meet_idPr _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
join_idPr
| |
join_lx y : y <= x -> x `|` y = x. Proof. exact/join_idPl. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
join_l
| |
join_rx y : x <= y -> x `|` y = y. Proof. exact/join_idPr. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
join_r
| |
leUidlx y : (x `|` y <= y) = (x <= y).
Proof. exact: (@leIidr _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leUidl
| |
leUidrx y : (y `|` x <= y) = (x <= y).
Proof. exact: (@leIidl _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leUidr
| |
leU2x y z t : x <= z -> y <= t -> x `|` y <= z `|` t.
Proof. exact: (@leI2 _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leU2
| |
joinC: commutative (@join _ L). Proof. exact: (@meetC _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinC
| |
joinA: associative (@join _ L). Proof. exact: (@meetA _ L^d). Qed.
HB.instance Definition _ := SemiGroup.isComLaw.Build L join joinA joinC.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinA
| |
joinxx: idempotent_op (@join _ L).
Proof. exact: (@meetxx _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinxx
| |
joinAC: right_commutative (@join _ L).
Proof. exact: (@meetAC _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinAC
| |
joinCA: left_commutative (@join _ L).
Proof. exact: (@meetCA _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinCA
| |
joinACA: interchange (@join _ L) (@join _ L).
Proof. exact: (@meetACA _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinACA
| |
joinKUy x : x `|` (x `|` y) = x `|` y.
Proof. exact: (@meetKI _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinKU
| |
joinUKy x : (x `|` y) `|` y = x `|` y.
Proof. exact: (@meetIK _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinUK
| |
joinKUCy x : x `|` (y `|` x) = x `|` y.
Proof. exact: (@meetKIC _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinKUC
| |
joinUKCy x : y `|` x `|` y = x `|` y.
Proof. exact: (@meetIKC _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinUKC
| |
joinx0: right_id \bot (@join _ L).
Proof. exact: (@meetx1 _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinx0
| |
join0x: left_id \bot (@join _ L).
Proof. exact: (@meet1x _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
join0x
| |
join_eq0x y : (x `|` y == \bot) = (x == \bot) && (y == \bot).
Proof. exact: (@meet_eq1 _ L^d). Qed.
HB.instance Definition _ := Monoid.isMonoidLaw.Build L \bot join join0x joinx0.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
join_eq0
| |
joins_sup_seqT (r : seq T) (P : {pred T}) (F : T -> L) (x : T) :
x \in r -> P x -> F x <= \join_(i <- r | P i) F i.
Proof. exact: (@meets_inf_seq _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joins_sup_seq
| |
joins_min_seqT (r : seq T) (P : {pred T}) (F : T -> L) (x : T) (l : L) :
x \in r -> P x -> l <= F x -> l <= \join_(x <- r | P x) F x.
Proof. exact: (@meets_max_seq _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joins_min_seq
| |
joins_supI (j : I) (P : {pred I}) (F : I -> L) :
P j -> F j <= \join_(i | P i) F i.
Proof. exact: (@meets_inf _ L^d). Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joins_sup
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.