fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
contra_ltNb x y : (b -> x <= y) -> (y < x -> ~~ b). Proof. by case: comparableP; case: b. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
contra_ltN
contra_le_notP x y : (P -> x < y) -> (y <= x -> ~ P). Proof. by case: comparableP => // _ PF _ /PF. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
contra_le_not
contra_lt_notP x y : (P -> x <= y) -> (y < x -> ~ P). Proof. by case: comparableP => // _ PF _ /PF. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
contra_lt_not
contra_leFb x y : (b -> x < y) -> (y <= x -> b = false). Proof. by case: comparableP; case: b => // _ /implyP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
contra_leF
contra_ltFb x y : (b -> x <= y) -> (y < x -> b = false). Proof. by case: comparableP; case: b => // _ /implyP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
contra_ltF
contra_le_leqx y m n : ((n < m)%N -> y < x) -> (x <= y -> (m <= n)%N). Proof. by case: comparableP; case: ltngtP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
contra_le_leq
contra_le_ltnx y m n : ((n <= m)%N -> y < x) -> (x <= y -> (m < n)%N). Proof. by case: comparableP; case: ltngtP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
contra_le_ltn
contra_lt_leqx y m n : ((n < m)%N -> y <= x) -> (x < y -> (m <= n)%N). Proof. by case: comparableP; case: ltngtP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
contra_lt_leq
contra_lt_ltnx y m n : ((n <= m)%N -> y <= x) -> (x < y -> (m < n)%N). Proof. by case: comparableP; case: ltngtP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
contra_lt_ltn
ltW_homo: {homo f : x y / x < y} -> {homo f : x y / x <= y}. Proof. exact: homoW. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
ltW_homo
ltW_nhomo: {homo f : x y /~ x < y} -> {homo f : x y /~ x <= y}. Proof. by apply: homoW=> // x y; rewrite eq_sym. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
ltW_nhomo
inj_homo_lt: injective f -> {homo f : x y / x <= y} -> {homo f : x y / x < y}. Proof. exact: inj_homo. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
inj_homo_lt
inj_nhomo_lt: injective f -> {homo f : x y /~ x <= y} -> {homo f : x y /~ x < y}. Proof. by apply: inj_homo=> // x y; rewrite eq_sym. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
inj_nhomo_lt
inc_inj: {mono f : x y / x <= y} -> injective f. Proof. exact: mono_inj. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
inc_inj
dec_inj: {mono f : x y /~ x <= y} -> injective f. Proof. exact: mono_inj. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
dec_inj
ltW_homo_in: {in D & D', {homo f : x y / x < y}} -> {in D & D', {homo f : x y / x <= y}}. Proof. exact: homoW_in. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
ltW_homo_in
ltW_nhomo_in: {in D & D', {homo f : x y /~ x < y}} -> {in D & D', {homo f : x y /~ x <= y}}. Proof. by apply: homoW_in=> // x y; rewrite eq_sym. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
ltW_nhomo_in
inj_homo_lt_in: {in D & D', injective f} -> {in D & D', {homo f : x y / x <= y}} -> {in D & D', {homo f : x y / x < y}}. Proof. exact: inj_homo_in. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
inj_homo_lt_in
inj_nhomo_lt_in: {in D & D', injective f} -> {in D & D', {homo f : x y /~ x <= y}} -> {in D & D', {homo f : x y /~ x < y}}. Proof. by apply: inj_homo_in=> // x y; rewrite eq_sym. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
inj_nhomo_lt_in
inc_inj_in: {in D &, {mono f : x y / x <= y}} -> {in D &, injective f}. Proof. exact: mono_inj_in. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
inc_inj_in
dec_inj_in: {in D &, {mono f : x y /~ x <= y}} -> {in D &, injective f}. Proof. exact: mono_inj_in. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
dec_inj_in
lex0x : (x <= \bot) = (x == \bot). Proof. by rewrite le_eqVlt ltx0 orbF. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lex0
lt0xx : (\bot < x) = (x != \bot). Proof. by rewrite lt_def le0x andbT. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lt0x
eq0_xor_gt0x : bool -> bool -> Set := Eq0NotPOs : x = \bot -> eq0_xor_gt0 x true false | POsNotEq0 : \bot < x -> eq0_xor_gt0 x false true.
Variant
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
eq0_xor_gt0
posxPx : eq0_xor_gt0 x (x == \bot) (\bot < x). Proof. by rewrite lt0x; have [] := eqVneq; constructor; rewrite ?lt0x. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
posxP
le1xx : (\top <= x) = (x == \top). Proof. exact: (@lex0 _ T^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le1x
ltx1x : (x < \top) = (x != \top). Proof. exact: (@lt0x _ T^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
ltx1
lexIx y z : (x <= y `&` z) = (x <= y) && (x <= z). Proof. exact: lexI. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lexI
leIrx y : y `&` x <= x. Proof. by have:= le_refl (meet y x); rewrite lexI => /andP []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leIr
leIlx y : x `&` y <= x. Proof. by have:= le_refl (meet x y); rewrite lexI => /andP []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leIl
leIxlx y z : y <= x -> y `&` z <= x. Proof. exact/le_trans/leIl. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leIxl
leIxrx y z : z <= x -> y `&` z <= x. Proof. exact/le_trans/leIr. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leIxr
leIx2x y z : (y <= x) || (z <= x) -> y `&` z <= x. Proof. by case/orP => [/leIxl|/leIxr]. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leIx2
leEmeetx y : (x <= y) = (x `&` y == x). Proof. by rewrite eq_le lexI leIl lexx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leEmeet
eq_meetlx y : (x `&` y == x) = (x <= y). Proof. by apply/esym/leEmeet. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
eq_meetl
eq_meetrx y : (x `&` y == y) = (y <= x). Proof. by rewrite eq_le lexI leIr lexx andbT. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
eq_meetr
meet_idPl{x y} : reflect (x `&` y = x) (x <= y). Proof. by rewrite -eq_meetl; apply/eqP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meet_idPl
meet_idPr{x y} : reflect (y `&` x = x) (x <= y). Proof. by rewrite -eq_meetr; apply/eqP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meet_idPr
meet_lx y : x <= y -> x `&` y = x. Proof. exact/meet_idPl. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meet_l
meet_rx y : y <= x -> x `&` y = y. Proof. exact/meet_idPr. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meet_r
leIidlx y : (x <= x `&` y) = (x <= y). Proof. by rewrite lexI lexx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leIidl
leIidrx y : (x <= y `&` x) = (x <= y). Proof. by rewrite lexI lexx andbT. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leIidr
leI2x y z t : x <= z -> y <= t -> x `&` y <= z `&` t. Proof. by move=> xz yt; rewrite lexI !leIx2 ?xz ?yt ?orbT //. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leI2
meetC: commutative (@meet _ L). Proof. by move=> x y; apply: le_anti; rewrite !lexI !leIr !leIl. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meetC
meetA: associative (@meet _ L). Proof. move=> x y z; apply: le_anti. rewrite !lexI leIr leIl /= andbT -andbA. rewrite ![_ `&` (_ `&` _) <= _]leIxr ?(leIr, leIl) //=. by rewrite leIxl ?leIl // leIxl // leIr. Qed. HB.instance Definition _ := SemiGroup.isComLaw.Build L meet meetA meetC.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meetA
meetxx: idempotent_op (@meet _ L). Proof. by move=> x; apply/eqP; rewrite -leEmeet. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meetxx
meetAC: right_commutative (@meet _ L). Proof. by move=> x y z; rewrite -!meetA [X in _ `&` X]meetC. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meetAC
meetCA: left_commutative (@meet _ L). Proof. by move=> x y z; rewrite !meetA [X in X `&` _]meetC. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meetCA
meetACA: interchange (@meet _ L) (@meet _ L). Proof. by move=> x y z t; rewrite !meetA [X in X `&` _]meetAC. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meetACA
meetKIy x : x `&` (x `&` y) = x `&` y. Proof. by rewrite meetA meetxx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meetKI
meetIKy x : (x `&` y) `&` y = x `&` y. Proof. by rewrite -meetA meetxx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meetIK
meetKICy x : x `&` (y `&` x) = x `&` y. Proof. by rewrite meetC meetIK meetC. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meetKIC
meetIKCy x : y `&` x `&` y = x `&` y. Proof. by rewrite meetAC meetC meetxx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meetIKC
meet0x: left_zero \bot (@meet _ L). Proof. by move=> x; apply/eqP; rewrite -leEmeet. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meet0x
meetx0: right_zero \bot (@meet _ L). Proof. by move=> x; rewrite meetC meet0x. Qed. HB.instance Definition _ := Monoid.isMulLaw.Build L \bot meet meet0x meetx0.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meetx0
meetx1: right_id \top (@meet _ L). Proof. by move=> x; apply/eqP; rewrite -leEmeet. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meetx1
meet1x: left_id \top (@meet _ L). Proof. by move=> x; apply/eqP; rewrite meetC meetx1. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meet1x
meet_eq1x y : (x `&` y == \top) = (x == \top) && (y == \top). Proof. apply/idP/idP; last by move=> /andP[/eqP-> /eqP->]; rewrite meetx1. by move=> /eqP xIy1; rewrite -!le1x -xIy1 leIl leIr. Qed. HB.instance Definition _ := Monoid.isMonoidLaw.Build L \top meet meet1x meetx1.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meet_eq1
meets_inf_seqT (r : seq T) (P : {pred T}) (F : T -> L) (x : T) : x \in r -> P x -> \meet_(i <- r | P i) F i <= F x. Proof. by move=> xr Px; rewrite (big_rem x) ?Px //= leIl. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meets_inf_seq
meets_max_seqT (r : seq T) (P : {pred T}) (F : T -> L) (x : T) (u : L) : x \in r -> P x -> F x <= u -> \meet_(x <- r | P x) F x <= u. Proof. by move=> ? ?; apply/le_trans/meets_inf_seq. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meets_max_seq
meets_infI (j : I) (P : {pred I}) (F : I -> L) : P j -> \meet_(i | P i) F i <= F j. Proof. exact: meets_inf_seq. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meets_inf
meets_maxI (j : I) (u : L) (P : {pred I}) (F : I -> L) : P j -> F j <= u -> \meet_(i | P i) F i <= u. Proof. exact: meets_max_seq. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meets_max
meets_geJ (r : seq J) (P : {pred J}) (F : J -> L) (u : L) : (forall x : J, P x -> u <= F x) -> u <= \meet_(x <- r | P x) F x. Proof. by move=> leFm; elim/big_rec: _ => // i x Px xu; rewrite lexI leFm. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meets_ge
meetsP_seqT (r : seq T) (P : {pred T}) (F : T -> L) (l : L) : reflect (forall x : T, x \in r -> P x -> l <= F x) (l <= \meet_(x <- r | P x) F x). Proof. apply: (iffP idP) => leFm => [x xr Px|]. exact/(le_trans leFm)/meets_inf_seq. by rewrite big_seq_cond meets_ge// => x /andP[/leFm]. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meetsP_seq
meetsPI (l : L) (P : {pred I}) (F : I -> L) : reflect (forall i : I, P i -> l <= F i) (l <= \meet_(i | P i) F i). Proof. by apply: (iffP (meetsP_seq _ _ _ _)) => H ? ?; apply: H. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meetsP
le_meetsI (A B : {set I}) (F : I -> L) : A \subset B -> \meet_(i in B) F i <= \meet_(i in A) F i. Proof. by move=> /subsetP AB; apply/meetsP => i iA; apply/meets_inf/AB. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_meets
meets_setUI (A B : {set I}) (F : I -> L) : \meet_(i in (A :|: B)) F i = \meet_(i in A) F i `&` \meet_(i in B) F i. Proof. rewrite -!big_enum; have /= <- := @big_cat _ _ meet. apply/eq_big_idem; first exact: meetxx. by move=> ?; rewrite mem_cat !fintype.mem_enum inE. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meets_setU
meets_seqI (r : seq I) (F : I -> L) : \meet_(i <- r) F i = \meet_(i in r) F i. Proof. by rewrite -big_enum; apply/eq_big_idem => ?; rewrite /= ?meetxx ?fintype.mem_enum. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meets_seq
leUxx y z : (x `|` y <= z) = (x <= z) && (y <= z). Proof. exact: leUx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leUx
leUrx y : x <= y `|` x. Proof. exact: (@leIr _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leUr
leUlx y : x <= x `|` y. Proof. exact: (@leIl _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leUl
lexUlx y z : x <= y -> x <= y `|` z. Proof. exact: (@leIxl _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lexUl
lexUrx y z : x <= z -> x <= y `|` z. Proof. exact: (@leIxr _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lexUr
lexU2x y z : (x <= y) || (x <= z) -> x <= y `|` z. Proof. exact: (@leIx2 _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lexU2
leEjoinx y : (x <= y) = (x `|` y == y). Proof. by rewrite [LHS](@leEmeet _ L^d) meetC. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leEjoin
eq_joinlx y : (x `|` y == x) = (y <= x). Proof. exact: (@eq_meetl _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
eq_joinl
eq_joinrx y : (x `|` y == y) = (x <= y). Proof. exact: (@eq_meetr _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
eq_joinr
join_idPl{x y} : reflect (y `|` x = y) (x <= y). Proof. exact: (@meet_idPl _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
join_idPl
join_idPr{x y} : reflect (x `|` y = y) (x <= y). Proof. exact: (@meet_idPr _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
join_idPr
join_lx y : y <= x -> x `|` y = x. Proof. exact/join_idPl. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
join_l
join_rx y : x <= y -> x `|` y = y. Proof. exact/join_idPr. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
join_r
leUidlx y : (x `|` y <= y) = (x <= y). Proof. exact: (@leIidr _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leUidl
leUidrx y : (y `|` x <= y) = (x <= y). Proof. exact: (@leIidl _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leUidr
leU2x y z t : x <= z -> y <= t -> x `|` y <= z `|` t. Proof. exact: (@leI2 _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leU2
joinC: commutative (@join _ L). Proof. exact: (@meetC _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joinC
joinA: associative (@join _ L). Proof. exact: (@meetA _ L^d). Qed. HB.instance Definition _ := SemiGroup.isComLaw.Build L join joinA joinC.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joinA
joinxx: idempotent_op (@join _ L). Proof. exact: (@meetxx _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joinxx
joinAC: right_commutative (@join _ L). Proof. exact: (@meetAC _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joinAC
joinCA: left_commutative (@join _ L). Proof. exact: (@meetCA _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joinCA
joinACA: interchange (@join _ L) (@join _ L). Proof. exact: (@meetACA _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joinACA
joinKUy x : x `|` (x `|` y) = x `|` y. Proof. exact: (@meetKI _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joinKU
joinUKy x : (x `|` y) `|` y = x `|` y. Proof. exact: (@meetIK _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joinUK
joinKUCy x : x `|` (y `|` x) = x `|` y. Proof. exact: (@meetKIC _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joinKUC
joinUKCy x : y `|` x `|` y = x `|` y. Proof. exact: (@meetIKC _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joinUKC
joinx0: right_id \bot (@join _ L). Proof. exact: (@meetx1 _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joinx0
join0x: left_id \bot (@join _ L). Proof. exact: (@meet1x _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
join0x
join_eq0x y : (x `|` y == \bot) = (x == \bot) && (y == \bot). Proof. exact: (@meet_eq1 _ L^d). Qed. HB.instance Definition _ := Monoid.isMonoidLaw.Build L \bot join join0x joinx0.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
join_eq0
joins_sup_seqT (r : seq T) (P : {pred T}) (F : T -> L) (x : T) : x \in r -> P x -> F x <= \join_(i <- r | P i) F i. Proof. exact: (@meets_inf_seq _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joins_sup_seq
joins_min_seqT (r : seq T) (P : {pred T}) (F : T -> L) (x : T) (l : L) : x \in r -> P x -> l <= F x -> l <= \join_(x <- r | P x) F x. Proof. exact: (@meets_max_seq _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joins_min_seq
joins_supI (j : I) (P : {pred I}) (F : I -> L) : P j -> F j <= \join_(i | P i) F i. Proof. exact: (@meets_inf _ L^d). Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joins_sup