fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
quotientIGA G : H \subset G -> (A :&: G) / H = A / H :&: G / H. Proof. by rewrite -{1}ker_coset; apply: morphimIG. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotientIG
quotientDA B : A / H :\: B / H \subset (A :\: B) / H. Proof. exact: morphimD. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotientD
quotientD1A : (A / H)^# \subset A^# / H. Proof. exact: morphimD1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotientD1
quotientDGA G : H \subset G -> (A :\: G) / H = A / H :\: G / H. Proof. by rewrite -{1}ker_coset; apply: morphimDG. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotientDG
quotientKA : A \subset 'N(H) -> coset H @*^-1 (A / H) = H * A. Proof. by rewrite -{8}ker_coset; apply: morphimK. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotientK
quotientYKG : G \subset 'N(H) -> coset H @*^-1 (G / H) = H <*> G. Proof. by move=> nHG; rewrite quotientK ?norm_joinEr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotientYK
quotientGKG : H <| G -> coset H @*^-1 (G / H) = G. Proof. by case/andP; rewrite -{1}ker_coset; apply: morphimGK. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotientGK
quotient_classx A : x \in 'N(H) -> A \subset 'N(H) -> x ^: A / H = coset H x ^: (A / H). Proof. exact: morphim_class. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient_class
classes_quotientA : A \subset 'N(H) -> classes (A / H) = [set xA / H | xA in classes A]. Proof. exact: classes_morphim. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
classes_quotient
cosetpre_set1x : x \in 'N(H) -> coset H @*^-1 [set coset H x] = H :* x. Proof. by rewrite -{9}ker_coset; apply: morphpre_set1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
cosetpre_set1
cosetpre_set1_cosetxbar : coset H @*^-1 [set xbar] = xbar. Proof. by case: (cosetP xbar) => x Nx ->; rewrite cosetpre_set1 ?val_coset. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
cosetpre_set1_coset
cosetpreKC : coset H @*^-1 C / H = C. Proof. by rewrite /quotient morphpreK ?sub_im_coset. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
cosetpreK
trivg_quotient: H / H = 1. Proof. by rewrite -[X in X / _]ker_coset /quotient morphim_ker. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
trivg_quotient
quotientS1G : G \subset H -> G / H = 1. Proof. by move=> sGH; apply/trivgP; rewrite -trivg_quotient quotientS. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotientS1
sub_cosetpreM : H \subset coset H @*^-1 M. Proof. by rewrite -{1}ker_coset; apply: ker_sub_pre. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
sub_cosetpre
quotient_properG K : H <| G -> H <| K -> (G / H \proper K / H) = (G \proper K). Proof. by move=> nHG nHK; rewrite -cosetpre_proper ?quotientGK. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient_proper
normal_cosetpreM : H <| coset H @*^-1 M. Proof. by rewrite -{1}ker_coset; apply: ker_normal_pre. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
normal_cosetpre
cosetpreSKC D : (coset H @*^-1 C \subset coset H @*^-1 D) = (C \subset D). Proof. by rewrite morphpreSK ?sub_im_coset. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
cosetpreSK
sub_quotient_preA C : A \subset 'N(H) -> (A / H \subset C) = (A \subset coset H @*^-1 C). Proof. exact: sub_morphim_pre. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
sub_quotient_pre
sub_cosetpre_quoC G : H <| G -> (coset H @*^-1 C \subset G) = (C \subset G / H). Proof. by move=> nHG; rewrite -cosetpreSK quotientGK. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
sub_cosetpre_quo
quotient_sub1A : A \subset 'N(H) -> (A / H \subset [1]) = (A \subset H). Proof. by move=> nHA /=; rewrite -[gval H in RHS]ker_coset ker_trivg_morphim nHA. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient_sub1
quotientSKA B : A \subset 'N(H) -> (A / H \subset B / H) = (A \subset H * B). Proof. by move=> nHA; rewrite morphimSK ?ker_coset. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotientSK
quotientSGKA G : A \subset 'N(H) -> H \subset G -> (A / H \subset G / H) = (A \subset G). Proof. by rewrite -{2}ker_coset; apply: morphimSGK. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotientSGK
quotient_injG: {in [pred G : {group gT} | H <| G] &, injective (fun G => G / H)}. Proof. by rewrite /normal -{1}ker_coset; apply: morphim_injG. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient_injG
quotient_injG1 G2 : H <| G1 -> H <| G2 -> G1 / H = G2 / H -> G1 :=: G2. Proof. by rewrite /normal -[in mem H]ker_coset; apply: morphim_inj. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient_inj
quotient_neq1A : H <| A -> (A / H != 1) = (H \proper A). Proof. case/andP=> sHA nHA; rewrite /proper sHA -trivg_quotient eqEsubset andbC. by rewrite quotientS //= quotientSGK. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient_neq1
quotient_genA : A \subset 'N(H) -> <<A>> / H = <<A / H>>. Proof. exact: morphim_gen. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient_gen
cosetpre_genC : 1 \in C -> coset H @*^-1 <<C>> = <<coset H @*^-1 C>>. Proof. by move=> C1; rewrite morphpre_gen ?sub_im_coset. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
cosetpre_gen
quotientRA B : A \subset 'N(H) -> B \subset 'N(H) -> [~: A, B] / H = [~: A / H, B / H]. Proof. exact: morphimR. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotientR
quotient_normA : 'N(A) / H \subset 'N(A / H). Proof. exact: morphim_norm. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient_norm
quotient_normsA B : A \subset 'N(B) -> A / H \subset 'N(B / H). Proof. exact: morphim_norms. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient_norms
quotient_subnormA B : 'N_A(B) / H \subset 'N_(A / H)(B / H). Proof. exact: morphim_subnorm. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient_subnorm
quotient_normalA B : A <| B -> A / H <| B / H. Proof. exact: morphim_normal. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient_normal
quotient_cent1x : 'C[x] / H \subset 'C[coset H x]. Proof. case Nx: (x \in 'N(H)); first exact: morphim_cent1. by rewrite coset_default // cent11T subsetT. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient_cent1
quotient_cent1sA x : A \subset 'C[x] -> A / H \subset 'C[coset H x]. Proof. by move=> sAC; apply: subset_trans (quotientS sAC) (quotient_cent1 x). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient_cent1s
quotient_subcent1A x : 'C_A[x] / H \subset 'C_(A / H)[coset H x]. Proof. exact: subset_trans (quotientI _ _) (setIS _ (quotient_cent1 x)). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient_subcent1
quotient_centA : 'C(A) / H \subset 'C(A / H). Proof. exact: morphim_cent. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient_cent
quotient_centsA B : A \subset 'C(B) -> A / H \subset 'C(B / H). Proof. exact: morphim_cents. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient_cents
quotient_abelianA : abelian A -> abelian (A / H). Proof. exact: morphim_abelian. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient_abelian
quotient_subcentA B : 'C_A(B) / H \subset 'C_(A / H)(B / H). Proof. exact: morphim_subcent. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient_subcent
norm_quotient_preA C : A \subset 'N(H) -> A / H \subset 'N(C) -> A \subset 'N(coset H @*^-1 C). Proof. by move/sub_quotient_pre=> -> /subset_trans-> //; apply: morphpre_norm. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
norm_quotient_pre
cosetpre_normalC D : (coset H @*^-1 C <| coset H @*^-1 D) = (C <| D). Proof. by rewrite morphpre_normal ?sub_im_coset. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
cosetpre_normal
quotient_normGG : H <| G -> 'N(G) / H = 'N(G / H). Proof. case/andP=> sHG nHG. by rewrite [_ / _]morphim_normG ?ker_coset // im_coset setTI. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient_normG
quotient_subnormGA G : H <| G -> 'N_A(G) / H = 'N_(A / H)(G / H). Proof. by case/andP=> sHG nHG; rewrite -morphim_subnormG ?ker_coset. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient_subnormG
cosetpre_cent1x : 'C_('N(H))[x] \subset coset H @*^-1 'C[coset H x]. Proof. case Nx: (x \in 'N(H)); first by rewrite morphpre_cent1. by rewrite coset_default // cent11T morphpreT subsetIl. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
cosetpre_cent1
cosetpre_cent1sC x : coset H @*^-1 C \subset 'C[x] -> C \subset 'C[coset H x]. Proof. move=> sC; rewrite -cosetpreSK; apply: subset_trans (cosetpre_cent1 x). by rewrite subsetI subsetIl. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
cosetpre_cent1s
cosetpre_subcent1C x : 'C_(coset H @*^-1 C)[x] \subset coset H @*^-1 'C_C[coset H x]. Proof. by rewrite -morphpreIdom -setIA setICA morphpreI setIS // cosetpre_cent1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
cosetpre_subcent1
cosetpre_centA : 'C_('N(H))(A) \subset coset H @*^-1 'C(A / H). Proof. exact: morphpre_cent. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
cosetpre_cent
cosetpre_centsA C : coset H @*^-1 C \subset 'C(A) -> C \subset 'C(A / H). Proof. by apply: morphpre_cents; rewrite ?sub_im_coset. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
cosetpre_cents
cosetpre_subcentC A : 'C_(coset H @*^-1 C)(A) \subset coset H @*^-1 'C_C(A / H). Proof. exact: morphpre_subcent. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
cosetpre_subcent
restrm_quotientEG A (nHG : G \subset 'N(H)) : A \subset G -> restrm nHG (coset H) @* A = A / H. Proof. exact: restrmEsub. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
restrm_quotientE
inv_quotient_spec(P : pred {group gT}) : Prop := InvQuotientSpec K of Kbar :=: K / H & H \subset K & P K.
Variant
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
inv_quotient_spec
inv_quotientS: Kbar \subset G / H -> inv_quotient_spec (fun K => K \subset G). Proof. move=> sKH; exists (coset H @*^-1 Kbar); first by rewrite cosetpreK. by rewrite sub_cosetpre. by rewrite sub_cosetpre_quo. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
inv_quotientS
inv_quotientN: Kbar <| G / H -> inv_quotient_spec (fun K => K <| G). Proof. move=> nKbar; case/inv_quotientS: (normal_sub nKbar) => K defKbar sHK sKG. exists K => //; rewrite defKbar -cosetpre_normal !quotientGK // in nKbar. exact: normalS nHG. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
inv_quotientN
quotientMidrA : A * H / H = A / H. Proof. by rewrite [_ /_]morphimMr ?normG //= -!quotientE trivg_quotient mulg1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotientMidr
quotientMidlA : H * A / H = A / H. Proof. by rewrite [_ /_]morphimMl ?normG //= -!quotientE trivg_quotient mul1g. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotientMidl
quotientYidrG : G \subset 'N(H) -> G <*> H / H = G / H. Proof. move=> nHG; rewrite -genM_join quotient_gen ?mul_subG ?normG //. by rewrite quotientMidr genGid. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotientYidr
quotientYidlG : G \subset 'N(H) -> H <*> G / H = G / H. Proof. by move=> nHG; rewrite joingC quotientYidr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotientYidl
quotient_isom: isom G (G / H) (restrm nHG (coset H)). Proof. by apply/isomP; rewrite ker_restrm setIC ker_coset tiHG im_restrm. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient_isom
quotient_isog: isog G (G / H). Proof. exact: isom_isog quotient_isom. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient_isog
coset1_injm: 'injm (@coset gT 1). Proof. by rewrite ker_coset /=. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
coset1_injm
quotient1_isom: isom A (A / 1) (coset 1). Proof. by apply: sub_isom coset1_injm; rewrite ?norms1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient1_isom
quotient1_isog: isog A (A / 1). Proof. by apply: isom_isog quotient1_isom; apply: norms1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient1_isog
fH:= (coset (f @* H) \o f).
Notation
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
fH
quotm_dom_proof: G \subset 'dom fH. Proof. by rewrite -sub_morphim_pre. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotm_dom_proof
fH_G:= (restrm quotm_dom_proof fH).
Notation
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
fH_G
quotm_ker_proof: 'ker (coset H) \subset 'ker fH_G. Proof. by rewrite ker_restrm ker_comp !ker_coset morphpreIdom morphimK ?mulG_subr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotm_ker_proof
quotm:= factm quotm_ker_proof nHG.
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotm
quotm_morphism:= [morphism G / H of quotm].
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotm_morphism
quotmEx : x \in G -> quotm (coset H x) = coset (f @* H) (f x). Proof. exact: factmE. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotmE
morphim_quotmA : quotm @* (A / H) = f @* A / f @* H. Proof. by rewrite morphim_factm [LHS]morphim_restrm morphim_comp morphimIdom. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
morphim_quotm
morphpre_quotmAbar : quotm @*^-1 (Abar / f @* H) = f @*^-1 Abar / H. Proof. rewrite morphpre_factm morphpre_restrm morphpre_comp /=. rewrite morphpreIdom -[Abar / _]quotientInorm quotientK ?subsetIr //=. rewrite morphpreMl ?morphimS // morphimK // [_ * H]normC ?subIset ?nHG //. rewrite -quotientE -mulgA quotientMidl /= setIC -morphpreIim setIA. by rewrite (setIidPl nfHfG) morphpreIim -morphpreMl ?sub1G ?mul1g. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
morphpre_quotm
ker_quotm: 'ker quotm = 'ker f / H. Proof. by rewrite -morphpre_quotm /quotient morphim1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
ker_quotm
injm_quotm: 'injm f -> 'injm quotm. Proof. by move/trivgP=> /= kf1; rewrite ker_quotm kf1 quotientE morphim1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
injm_quotm
im_qisom_proof: 'N(H) \subset 'N(G). Proof. by rewrite eqGH. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
im_qisom_proof
qisom_ker_proof: 'ker (coset G) \subset 'ker (coset H). Proof. by rewrite eqGH. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
qisom_ker_proof
qisom_restr_proof: setT \subset 'N(H) / G. Proof. by rewrite eqGH im_quotient. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
qisom_restr_proof
qisom:= restrm qisom_restr_proof (factm qisom_ker_proof im_qisom_proof).
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
qisom
qisom_morphism:= Eval hnf in [morphism of qisom].
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
qisom_morphism
qisomEx : qisom (coset G x) = coset H x. Proof. case Nx: (x \in 'N(H)); first exact: factmE. by rewrite !coset_default ?eqGH ?morph1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
qisomE
val_qisomGx : val (qisom Gx) = val Gx. Proof. by case: (cosetP Gx) => x Nx ->{Gx}; rewrite qisomE /= !val_coset -?eqGH. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
val_qisom
morphim_qisomA : qisom @* (A / G) = A / H. Proof. by rewrite morphim_restrm setTI morphim_factm. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
morphim_qisom
morphpre_qisomA : qisom @*^-1 (A / H) = A / G. Proof. rewrite morphpre_restrm setTI morphpre_factm eqGH. by rewrite morphpreK // im_coset subsetT. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
morphpre_qisom
injm_qisom: 'injm qisom. Proof. by rewrite -quotient1 -morphpre_qisom morphpreS ?sub1G. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
injm_qisom
im_qisom: qisom @* setT = setT. Proof. by rewrite -{2}im_quotient morphim_qisom eqGH im_quotient. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
im_qisom
qisom_isom: isom setT setT qisom. Proof. by apply/isomP; rewrite injm_qisom im_qisom. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
qisom_isom
qisom_isog: [set: coset_of G] \isog [set: coset_of H]. Proof. exact: isom_isog qisom_isom. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
qisom_isog
qisom_inj: injective qisom. Proof. by move=> x y; apply: (injmP injm_qisom); rewrite inE. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
qisom_inj
morphim_qisom_inj: injective (fun Gx => qisom @* Gx). Proof. by move=> Gx Gy; apply: injm_morphim_inj; rewrite (injm_qisom, subsetT). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
morphim_qisom_inj
first_isom(G : {group aT}) (f : {morphism G >-> rT}) : {g : {morphism G / 'ker f >-> rT} | 'injm g & forall A : {set aT}, g @* (A / 'ker f) = f @* A}. Proof. have nkG := ker_norm f. have skk: 'ker (coset ('ker f)) \subset 'ker f by rewrite ker_coset. exists (factm_morphism skk nkG) => /=; last exact: morphim_factm. by rewrite ker_factm -quotientE trivg_quotient. Qed. Variables (G H : {group aT}) (f : {morphism G >-> rT}). Hypothesis sHG : H \subset G.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
first_isom
first_isog: (G / 'ker f) \isog (f @* G). Proof. by case: (first_isom f) => g injg im_g; apply/isogP; exists g; rewrite ?im_g. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
first_isog
first_isom_loc: {g : {morphism H / 'ker_H f >-> rT} | 'injm g & forall A : {set aT}, A \subset H -> g @* (A / 'ker_H f) = f @* A}. Proof. case: (first_isom (restrm_morphism sHG f)). rewrite ker_restrm => g injg im_g; exists g => // A sAH. by rewrite im_g morphim_restrm (setIidPr sAH). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
first_isom_loc
first_isog_loc: (H / 'ker_H f) \isog (f @* H). Proof. by case: first_isom_loc => g injg im_g; apply/isogP; exists g; rewrite ?im_g. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
first_isog_loc
second_isom: {f : {morphism H / (K :&: H) >-> coset_of K} | 'injm f & forall A : {set gT}, A \subset H -> f @* (A / (K :&: H)) = A / K}. Proof. have ->: K :&: H = 'ker_H (coset K) by rewrite ker_coset setIC. exact: first_isom_loc. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
second_isom
second_isog: H / (K :&: H) \isog H / K. Proof. by rewrite setIC -{1 3}(ker_coset K); apply: first_isog_loc. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
second_isog
weak_second_isog: H / (K :&: H) \isog H * K / K. Proof. by rewrite quotientMidr; apply: second_isog. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
weak_second_isog
homg_quotientS(A : {set gT}) : A \subset 'N(H) -> A \subset 'N(K) -> H \subset K -> A / K \homg A / H. Proof. rewrite -!(gen_subG A) /=; set L := <<A>> => nHL nKL sKH. have sub_ker: 'ker (restrm nHL (coset H)) \subset 'ker (restrm nKL (coset K)). by rewrite !ker_restrm !ker_coset setIS. have sAL: A \subset L := subset_gen A; rewrite -(setIidPr sAL). rewrite -[_ / H](morphim_restrm nHL) -[_ / K](morphim_restrm nKL) /=. by rewrite -(morphim_factm sub_ker (subxx L)) morphim_homg ?morphimS. Qed. Hypothesis sHK : H \subset K. Hypothesis snHG : H <| G. Hypothesis snKG : K <| G.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
homg_quotientS
third_isom: {f : {morphism (G / H) / (K / H) >-> coset_of K} | 'injm f & forall A : {set gT}, A \subset G -> f @* (A / H / (K / H)) = A / K}. Proof. have [[sKG nKG] [sHG nHG]] := (andP snKG, andP snHG). have sHker: 'ker (coset H) \subset 'ker (restrm nKG (coset K)). by rewrite ker_restrm !ker_coset subsetI sHG. have:= first_isom_loc (factm_morphism sHker nHG) (subxx _) => /=. rewrite ker_factm_loc ker_restrm ker_coset !(setIidPr sKG) /= -!quotientE. case=> f injf im_f; exists f => // A sAG; rewrite im_f ?morphimS //. by rewrite morphim_factm morphim_restrm (setIidPr sAG). Qed.
Theorem
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
third_isom
third_isog: (G / H / (K / H)) \isog (G / K). Proof. by case: third_isom => f inj_f im_f; apply/isogP; exists f; rewrite ?im_f. Qed.
Theorem
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
third_isog
char_from_quotient(gT : finGroupType) (G H K : {group gT}) : H <| K -> H \char G -> K / H \char G / H -> K \char G. Proof. case/andP=> sHK nHK chHG. have nsHG := char_normal chHG; have [sHG nHG] := andP nsHG. case/charP; rewrite quotientSGK // => sKG /= chKG. apply/charP; split=> // f injf Gf; apply/morphim_fixP => //. rewrite -(quotientSGK _ sHK); last by rewrite -morphimIim Gf subIset ?nHG. have{chHG} Hf: f @* H = H by case/charP: chHG => _; apply. set q := quotm_morphism f nsHG; have{injf}: 'injm q by apply: injm_quotm. have: q @* _ = _ := morphim_quotm _ _ _; move: q; rewrite Hf => q im_q injq. by rewrite -im_q chKG // im_q Gf. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
char_from_quotient