fact
stringlengths 8
1.54k
| type
stringclasses 19
values | library
stringclasses 8
values | imports
listlengths 1
10
| filename
stringclasses 98
values | symbolic_name
stringlengths 1
42
| docstring
stringclasses 1
value |
|---|---|---|---|---|---|---|
card_morphimG : #|f @* G| = #|D :&: G : 'ker f|.
Proof.
rewrite -morphimIdom -indexgI -card_quotient; last first.
by rewrite normsI ?normG ?subIset ?ker_norm.
by apply: esym (card_isog _); rewrite first_isog_loc ?subsetIl.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype prime finset fingroup morphism",
"From mathcomp Require Import automorphism"
] |
fingroup/quotient.v
|
card_morphim
| |
dvdn_morphimG : #|f @* G| %| #|G|.
Proof.
rewrite card_morphim (dvdn_trans (dvdn_indexg _ _)) //.
by rewrite cardSg ?subsetIr.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype prime finset fingroup morphism",
"From mathcomp Require Import automorphism"
] |
fingroup/quotient.v
|
dvdn_morphim
| |
logn_morphimp G : logn p #|f @* G| <= logn p #|G|.
Proof. by rewrite dvdn_leq_log ?dvdn_morphim. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype prime finset fingroup morphism",
"From mathcomp Require Import automorphism"
] |
fingroup/quotient.v
|
logn_morphim
| |
coprime_morphlG p : coprime #|G| p -> coprime #|f @* G| p.
Proof. exact: coprime_dvdl (dvdn_morphim G). Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype prime finset fingroup morphism",
"From mathcomp Require Import automorphism"
] |
fingroup/quotient.v
|
coprime_morphl
| |
coprime_morphrG p : coprime p #|G| -> coprime p #|f @* G|.
Proof. exact: coprime_dvdr (dvdn_morphim G). Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype prime finset fingroup morphism",
"From mathcomp Require Import automorphism"
] |
fingroup/quotient.v
|
coprime_morphr
| |
coprime_morphG H : coprime #|G| #|H| -> coprime #|f @* G| #|f @* H|.
Proof. by move=> coGH; rewrite coprime_morphl // coprime_morphr. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype prime finset fingroup morphism",
"From mathcomp Require Import automorphism"
] |
fingroup/quotient.v
|
coprime_morph
| |
index_morphim_kerG H :
H \subset G -> G \subset D ->
(#|f @* G : f @* H| * #|'ker_G f : H|)%N = #|G : H|.
Proof.
move=> sHG sGD; apply/eqP.
rewrite -(eqn_pmul2l (cardG_gt0 (f @* H))) mulnA Lagrange ?morphimS //.
rewrite !card_morphim (setIidPr sGD) (setIidPr (subset_trans sHG sGD)).
rewrite -(eqn_pmul2l (cardG_gt0 ('ker_H f))) /=.
by rewrite -{1}(setIidPr sHG) setIAC mulnCA mulnC mulnA !LagrangeI Lagrange.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype prime finset fingroup morphism",
"From mathcomp Require Import automorphism"
] |
fingroup/quotient.v
|
index_morphim_ker
| |
index_morphimG H : G :&: H \subset D -> #|f @* G : f @* H| %| #|G : H|.
Proof.
move=> dGH; rewrite -(indexgI G) -(setIidPr dGH) setIA.
apply: dvdn_trans (indexSg (subsetIl _ H) (subsetIr D G)).
rewrite -index_morphim_ker ?subsetIl ?subsetIr ?dvdn_mulr //= morphimIdom.
by rewrite indexgS ?morphimS ?subsetIr.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype prime finset fingroup morphism",
"From mathcomp Require Import automorphism"
] |
fingroup/quotient.v
|
index_morphim
| |
index_injmG H : 'injm f -> G \subset D -> #|f @* G : f @* H| = #|G : H|.
Proof.
move=> injf dG; rewrite -{2}(setIidPr dG) -(indexgI _ H) /=.
rewrite -index_morphim_ker ?subsetIl ?subsetIr //= setIAC morphimIdom setIC.
rewrite injmI ?subsetIr // indexgI /= morphimIdom setIC ker_injm //.
by rewrite -(indexgI (1 :&: _)) /= -setIA !(setIidPl (sub1G _)) indexgg muln1.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype prime finset fingroup morphism",
"From mathcomp Require Import automorphism"
] |
fingroup/quotient.v
|
index_injm
| |
card_morphpreL : L \subset f @* D -> #|f @*^-1 L| = (#|'ker f| * #|L|)%N.
Proof.
move/morphpreK=> {2} <-; rewrite card_morphim morphpreIdom.
by rewrite Lagrange // morphpreS ?sub1G.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype prime finset fingroup morphism",
"From mathcomp Require Import automorphism"
] |
fingroup/quotient.v
|
card_morphpre
| |
index_morphpreL M :
L \subset f @* D -> #|f @*^-1 L : f @*^-1 M| = #|L : M|.
Proof.
move=> dL; rewrite -!divgI -morphpreI /= card_morphpre //.
have: L :&: M \subset f @* D by rewrite subIset ?dL.
by move/card_morphpre->; rewrite divnMl ?cardG_gt0.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype prime finset fingroup morphism",
"From mathcomp Require Import automorphism"
] |
fingroup/quotient.v
|
index_morphpre
| |
card_homg(aT rT : finGroupType) (G : {group aT}) (R : {group rT}) :
G \homg R -> #|G| %| #|R|.
Proof. by case/homgP=> f <-; rewrite card_morphim setIid dvdn_indexg. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype prime finset fingroup morphism",
"From mathcomp Require Import automorphism"
] |
fingroup/quotient.v
|
card_homg
| |
dvdn_quotient: #|G / H| %| #|G|.
Proof. exact: dvdn_morphim. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype prime finset fingroup morphism",
"From mathcomp Require Import automorphism"
] |
fingroup/quotient.v
|
dvdn_quotient
| |
index_quotient_ker:
K \subset G -> G \subset 'N(H) ->
(#|G / H : K / H| * #|G :&: H : K|)%N = #|G : K|.
Proof. by rewrite -{5}(ker_coset H); apply: index_morphim_ker. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype prime finset fingroup morphism",
"From mathcomp Require Import automorphism"
] |
fingroup/quotient.v
|
index_quotient_ker
| |
index_quotient: G :&: K \subset 'N(H) -> #|G / H : K / H| %| #|G : K|.
Proof. exact: index_morphim. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype prime finset fingroup morphism",
"From mathcomp Require Import automorphism"
] |
fingroup/quotient.v
|
index_quotient
| |
index_quotient_eq:
G :&: H \subset K -> K \subset G -> G \subset 'N(H) ->
#|G / H : K / H| = #|G : K|.
Proof.
move=> sGH_K sKG sGN; rewrite -index_quotient_ker {sKG sGN}//.
by rewrite -(indexgI _ K) (setIidPl sGH_K) indexgg muln1.
Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype prime finset fingroup morphism",
"From mathcomp Require Import automorphism"
] |
fingroup/quotient.v
|
index_quotient_eq
| |
card_cosetpre: #|coset H @*^-1 L| = (#|H| * #|L|)%N.
Proof. by rewrite card_morphpre ?ker_coset ?sub_im_coset. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype prime finset fingroup morphism",
"From mathcomp Require Import automorphism"
] |
fingroup/quotient.v
|
card_cosetpre
| |
index_cosetpre: #|coset H @*^-1 L : coset H @*^-1 M| = #|L : M|.
Proof. by rewrite index_morphpre ?sub_im_coset. Qed.
|
Lemma
|
fingroup
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div",
"From mathcomp Require Import choice fintype prime finset fingroup morphism",
"From mathcomp Require Import automorphism"
] |
fingroup/quotient.v
|
index_cosetpre
| |
RecordPreorder_isDuallyPOrder (d : disp_t) T of Preorder d T := {
le_anti : antisymmetric (@le d T);
ge_anti : antisymmetric (fun x y => @le d T y x);
}.
#[short(type="porderType")]
HB.structure Definition POrder (d : disp_t) :=
{ T of Preorder d T & Preorder_isDuallyPOrder d T }.
#[short(type="bPOrderType")]
HB.structure Definition BPOrder d := { T of hasBottom d T & POrder d T }.
#[short(type="tPOrderType")]
HB.structure Definition TPOrder d := { T of hasTop d T & POrder d T }.
#[short(type="tbPOrderType")]
HB.structure Definition TBPOrder d := { T of hasTop d T & BPOrder d T }.
|
HB.mixin
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Record
| |
RecordPOrder_isMeetSemilattice d (T : Type) of POrder d T := {
meet : T -> T -> T;
lexI : forall x y z, (x <= meet y z) = (x <= y) && (x <= z);
}.
#[key="T", primitive]
HB.mixin Record POrder_isJoinSemilattice d T of POrder d T := {
join : T -> T -> T;
leUx : forall x y z, (join x y <= z) = (x <= z) && (y <= z);
}.
#[short(type="meetSemilatticeType")]
HB.structure Definition MeetSemilattice d :=
{ T of POrder d T & POrder_isMeetSemilattice d T }.
#[short(type="bMeetSemilatticeType")]
HB.structure Definition BMeetSemilattice d :=
{ T of MeetSemilattice d T & hasBottom d T }.
#[short(type="tMeetSemilatticeType")]
HB.structure Definition TMeetSemilattice d :=
{ T of MeetSemilattice d T & hasTop d T }.
#[short(type="tbMeetSemilatticeType")]
HB.structure Definition TBMeetSemilattice d :=
{ T of BMeetSemilattice d T & hasTop d T }.
#[short(type="joinSemilatticeType")]
HB.structure Definition JoinSemilattice d :=
{ T of POrder d T & POrder_isJoinSemilattice d T }.
#[short(type="bJoinSemilatticeType")]
HB.structure Definition BJoinSemilattice d :=
{ T of JoinSemilattice d T & hasBottom d T }.
#[short(type="tJoinSemilatticeType")]
HB.structure Definition TJoinSemilattice d :=
{ T of JoinSemilattice d T & hasTop d T }.
#[short(type="tbJoinSemilatticeType")]
|
HB.mixin
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Record
| |
lel_xor_gt(x y : T) :
T -> T -> T -> T -> T -> T -> T -> T -> bool -> bool -> Set :=
| LelNotGt of x <= y : lel_xor_gt x y x x y y x x y y true false
| GtlNotLe of y < x : lel_xor_gt x y y y x x y y x x false true.
|
Variant
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
lel_xor_gt
| |
ltl_xor_ge(x y : T) :
T -> T -> T -> T -> T -> T -> T -> T -> bool -> bool -> Set :=
| LtlNotGe of x < y : ltl_xor_ge x y x x y y x x y y false true
| GelNotLt of y <= x : ltl_xor_ge x y y y x x y y x x true false.
|
Variant
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
ltl_xor_ge
| |
comparel(x y : T) :
T -> T -> T -> T -> T -> T -> T -> T ->
bool -> bool -> bool -> bool -> bool -> bool -> Set :=
| ComparelLt of x < y : comparel x y
x x y y x x y y false false false true false true
| ComparelGt of y < x : comparel x y
y y x x y y x x false false true false true false
| ComparelEq of x = y : comparel x y
x x x x x x x x true true true true false false.
|
Variant
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
comparel
| |
incomparel(x y : T) :
T -> T -> T -> T -> T -> T -> T -> T ->
bool -> bool -> bool -> bool -> bool -> bool -> bool -> bool -> Set :=
| InComparelLt of x < y : incomparel x y
x x y y x x y y false false false true false true true true
| InComparelGt of y < x : incomparel x y
y y x x y y x x false false true false true false true true
| InComparel of x >< y : incomparel x y
x y y x (meet y x) (meet x y) (join y x) (join x y)
false false false false false false false false
| InComparelEq of x = y : incomparel x y
x x x x x x x x true true true true false false true true.
|
Variant
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
incomparel
| |
RecordLattice_isDistributive d (T : Type) of Lattice d T := {
meetUl : @left_distributive T T meet join;
joinIl : @left_distributive T T join meet;
}.
#[short(type="distrLatticeType")]
HB.structure Definition DistrLattice d :=
{ T of Lattice_isDistributive d T & Lattice d T }.
#[short(type="bDistrLatticeType")]
HB.structure Definition BDistrLattice d :=
{ T of DistrLattice d T & hasBottom d T }.
#[short(type="tDistrLatticeType")]
HB.structure Definition TDistrLattice d :=
{ T of DistrLattice d T & hasTop d T }.
#[short(type="tbDistrLatticeType")]
HB.structure Definition TBDistrLattice d :=
{ T of BDistrLattice d T & hasTop d T }.
#[key="T", primitive]
HB.mixin Record DistrLattice_isTotal d T of DistrLattice d T :=
{ le_total : total (<=%O : rel T) }.
#[short(type="orderType")]
HB.structure Definition Total d :=
{ T of DistrLattice_isTotal d T & DistrLattice d T }.
#[short(type="bOrderType")]
HB.structure Definition BTotal d := { T of Total d T & hasBottom d T }.
#[short(type="tOrderType")]
HB.structure Definition TTotal d := { T of Total d T & hasTop d T }.
#[short(type="tbOrderType")]
HB.structure Definition TBTotal d := { T of BTotal d T & hasTop d T }.
#[key="T", primitive]
HB.mixin Record DistrLattice_hasRelativeComplement d T of DistrLattice d T := {
|
HB.mixin
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Record
| |
DefinitionCDistrLattice d :=
{ T of DistrLattice d T & DistrLattice_hasRelativeComplement d T }.
#[key="T", primitive]
HB.mixin Record CDistrLattice_hasSectionalComplement d T
of CDistrLattice d T & hasBottom d T := {
diff : T -> T -> T;
|
HB.structure
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Definition
| |
DefinitionCBDistrLattice d :=
{ T of CDistrLattice d T & hasBottom d T &
CDistrLattice_hasSectionalComplement d T }.
#[key="T", primitive]
HB.mixin Record CDistrLattice_hasDualSectionalComplement d T
of CDistrLattice d T & hasTop d T := {
codiff : T -> T -> T;
codiffErcompl : forall x y, codiff x y = rcompl x \top y;
}.
#[short(type="ctDistrLatticeType")]
HB.structure Definition CTDistrLattice d :=
{ T of CDistrLattice d T & hasTop d T &
CDistrLattice_hasDualSectionalComplement d T }.
|
HB.structure
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Definition
| |
RecordCDistrLattice_hasComplement d T of
CTDistrLattice d T & CBDistrLattice d T := {
compl : T -> T;
|
HB.mixin
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Record
| |
DefinitionCTBDistrLattice d :=
{ T of CBDistrLattice d T & CTDistrLattice d T &
CDistrLattice_hasComplement d T }.
|
HB.structure
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Definition
| |
DefinitionFinPOrder d := { T of Finite T & POrder d T }.
#[short(type="finBPOrderType")]
HB.structure Definition FinBPOrder d := { T of FinPOrder d T & hasBottom d T }.
#[short(type="finTPOrderType")]
HB.structure Definition FinTPOrder d := { T of FinPOrder d T & hasTop d T }.
#[short(type="finTBPOrderType")]
HB.structure Definition FinTBPOrder d := { T of FinBPOrder d T & hasTop d T }.
#[short(type="finMeetSemilatticeType")]
HB.structure Definition FinMeetSemilattice d :=
{ T of Finite T & MeetSemilattice d T }.
#[short(type="finBMeetSemilatticeType")]
HB.structure Definition FinBMeetSemilattice d :=
{ T of Finite T & BMeetSemilattice d T }.
#[short(type="finJoinSemilatticeType")]
HB.structure Definition FinJoinSemilattice d :=
{ T of Finite T & JoinSemilattice d T }.
#[short(type="finTJoinSemilatticeType")]
HB.structure Definition FinTJoinSemilattice d :=
{ T of Finite T & TJoinSemilattice d T }.
#[short(type="finLatticeType")]
HB.structure Definition FinLattice d := { T of Finite T & Lattice d T }.
#[short(type="finTBLatticeType")]
HB.structure Definition FinTBLattice d := { T of Finite T & TBLattice d T }.
#[short(type="finDistrLatticeType")]
HB.structure Definition FinDistrLattice d :=
{ T of Finite T & DistrLattice d T }.
#[short(type="finTBDistrLatticeType")]
HB.structure Definition FinTBDistrLattice d :=
{ T of Finite T & TBDistrLattice d T }.
|
HB.structure
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Definition
| |
dual_meet:= (@meet (dual_display _) _).
|
Notation
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
dual_meet
| |
dual_join:= (@join (dual_display _) _).
|
Notation
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
dual_join
| |
Definition_ (d : disp_t) (T : porderType d) :=
Preorder_isDuallyPOrder.Build (dual_display d) T^d
ge_anti le_anti.
HB.instance Definition _ d (T : joinSemilatticeType d) :=
POrder_isMeetSemilattice.Build (dual_display d) T^d (fun x y z => leUx y z x).
|
HB.instance
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Definition
| |
meetEduald (T : joinSemilatticeType d) (x y : T) :
((x : T^d) `&^d` y) = (x `|` y).
Proof. by []. Qed.
HB.instance Definition _ d (T : meetSemilatticeType d) :=
POrder_isJoinSemilattice.Build (dual_display d) T^d (fun x y z => lexI z x y).
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetEdual
| |
joinEduald (T : meetSemilatticeType d) (x y : T) :
((x : T^d) `|^d` y) = (x `&` y).
Proof. by []. Qed.
HB.saturate.
HB.instance Definition _ d (T : distrLatticeType d) :=
Lattice_isDistributive.Build (dual_display d) T^d joinIl meetUl.
HB.instance Definition _ d (T : orderType d) :=
DistrLattice_isTotal.Build (dual_display d) T^d (fun x y => le_total y x).
HB.saturate.
HB.instance Definition _ d (T : cDistrLatticeType d) :=
DistrLattice_hasRelativeComplement.Build (dual_display d) T^d
(fun x y => rcomplPjoin y x) (fun x y => rcomplPmeet y x).
HB.instance Definition _ d (T : ctDistrLatticeType d) :=
CDistrLattice_hasSectionalComplement.Build (dual_display d) T^d codiffErcompl.
HB.instance Definition _ d (T : cbDistrLatticeType d) :=
CDistrLattice_hasDualSectionalComplement.Build (dual_display d) T^d
diffErcompl.
HB.instance Definition _ d (T : ctbDistrLatticeType d) :=
CDistrLattice_hasComplement.Build (dual_display d) T^d
complEcodiff complEdiff.
HB.saturate.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinEdual
| |
le_anti: antisymmetric (<=%O : rel T).
Proof. exact: le_anti. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
le_anti
| |
ge_anti: antisymmetric (>=%O : rel T).
Proof. by move=> x y /le_anti. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
ge_anti
| |
eq_lex y: (x == y) = (x <= y <= x).
Proof. by apply/eqP/idP => [->|/le_anti]; rewrite ?lexx. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
eq_le
| |
lt_defx y : (x < y) = (y != x) && (x <= y).
Proof.
rewrite andbC lt_le_def; case/boolP: (x <= y) => //= xy.
congr negb; apply/idP/eqP => [yx|->]; last exact/lexx.
by apply/le_anti; rewrite yx.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
lt_def
| |
lt_neqAlex y: (x < y) = (x != y) && (x <= y).
Proof. by rewrite lt_def eq_sym. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
lt_neqAle
| |
le_eqVltx y: (x <= y) = (x == y) || (x < y).
Proof. by rewrite lt_neqAle; case: eqP => //= ->; rewrite lexx. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
le_eqVlt
| |
lte_anti:= (=^~ eq_le, @lt_asym disp T, @lt_le_asym disp T, @le_lt_asym disp T).
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
lte_anti
| |
eq_geP{x y} : reflect (forall z, (z <= x) = (z <= y)) (x == y).
Proof.
by apply: (iffP idP) => [/eqP->//|/[dup]] /[!eq_le] -> <-; rewrite !lexx.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
eq_geP
| |
eq_leP{x y} : reflect (forall z, (x <= z) = (y <= z)) (x == y).
Proof.
by apply: (iffP idP) => [/eqP->//|/[dup]] /[!eq_le] <- ->; rewrite !lexx.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
eq_leP
| |
lt_sorted_uniq_les : sorted <%O s = uniq s && sorted <=%O s.
Proof.
rewrite le_sorted_pairwise lt_sorted_pairwise uniq_pairwise -pairwise_relI.
by apply/eq_pairwise => ? ?; rewrite lt_neqAle.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
lt_sorted_uniq_le
| |
le_sorted_eqs1 s2 :
sorted <=%O s1 -> sorted <=%O s2 -> perm_eq s1 s2 -> s1 = s2.
Proof. exact/sorted_eq/le_anti/le_trans. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
le_sorted_eq
| |
count_lt_le_memx s : (count (< x) s < count (<= x) s)%N = (x \in s).
Proof.
have := count_predUI (pred1 x) (< x) s.
have -> : count (predI (pred1 x) (< x)) s = 0%N.
rewrite (@eq_count _ _ pred0) ?count_pred0 // => y /=.
by rewrite lt_neqAle; case: eqP => //= ->; rewrite eqxx.
have /eq_count-> : [predU1 x & < x] =1 (<= x) by move=> y /=; rewrite le_eqVlt.
by rewrite addn0 => ->; rewrite -add1n leq_add2r -has_count has_pred1.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
count_lt_le_mem
| |
comparable_ltgtPx y : x >=< y ->
compare x y (min y x) (min x y) (max y x) (max x y)
(y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y).
Proof.
rewrite /min /max />=<%O !le_eqVlt [y == x]eq_sym.
have := (eqVneq x y, (boolP (x < y), boolP (y < x))).
move=> [[->//|neq_xy /=] [[] xy [] //=]] ; do ?by rewrite ?ltxx; constructor.
by rewrite ltxx in xy.
by rewrite le_gtF // ltW.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
comparable_ltgtP
| |
comparable_lePx y : x >=< y ->
le_xor_gt x y (min y x) (min x y) (max y x) (max x y) (x <= y) (y < x).
Proof. by move=> /comparable_ltgtP [?|?|->]; constructor; rewrite // ltW. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
comparable_leP
| |
comparable_ltPx y : x >=< y ->
lt_xor_ge x y (min y x) (min x y) (max y x) (max x y) (y <= x) (x < y).
Proof. by move=> /comparable_ltgtP [?|?|->]; constructor; rewrite // ltW. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
comparable_ltP
| |
comparablePx y : incompare x y
(min y x) (min x y) (max y x) (max x y)
(y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y)
(y >=< x) (x >=< y).
Proof.
rewrite ![y >=< _]comparable_sym; have [c_xy|i_xy] := boolP (x >=< y).
by case: (comparable_ltgtP c_xy) => ?; constructor.
by rewrite /min /max ?incomparable_eqF ?incomparable_leF;
rewrite ?incomparable_ltF// 1?comparable_sym //; constructor.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
comparableP
| |
leifPx y C : reflect (x <= y ?= iff C) (if C then x == y else x < y).
Proof.
rewrite /leif le_eqVlt; apply: (iffP idP)=> [|[]].
by case: C => [/eqP->|lxy]; rewrite ?eqxx // lxy lt_eqF.
by move=> /orP[/eqP->|lxy] <-; rewrite ?eqxx // lt_eqF.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leifP
| |
leif_transx1 x2 x3 C12 C23 :
x1 <= x2 ?= iff C12 -> x2 <= x3 ?= iff C23 -> x1 <= x3 ?= iff C12 && C23.
Proof.
move=> ltx12 ltx23; apply/leifP; rewrite -ltx12.
case eqx12: (x1 == x2).
by rewrite (eqP eqx12) lt_neqAle !ltx23 andbT; case C23.
by rewrite (@lt_le_trans _ _ x2) ?ltx23 // lt_neqAle eqx12 ltx12.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leif_trans
| |
leif_lex y : x <= y -> x <= y ?= iff (x >= y).
Proof. by move=> lexy; split=> //; rewrite eq_le lexy. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leif_le
| |
leif_eqx y : x <= y -> x <= y ?= iff (x == y).
Proof. by []. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leif_eq
| |
ge_leifx y C : x <= y ?= iff C -> (y <= x) = C.
Proof. by case=> le_xy; rewrite eq_le le_xy. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
ge_leif
| |
lt_leifx y C : x <= y ?= iff C -> (x < y) = ~~ C.
Proof. by move=> le_xy; rewrite lt_neqAle !le_xy andbT. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
lt_leif
| |
ltNleifx y C : x <= y ?= iff ~~ C -> (x < y) = C.
Proof. by move=> /lt_leif; rewrite negbK. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
ltNleif
| |
lteif_antiC1 C2 x y :
(x < y ?<= if C1) && (y < x ?<= if C2) = C1 && C2 && (x == y).
Proof. by case: C1 C2 => [][]; rewrite lte_anti. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
lteif_anti
| |
lteifNC x y : x < y ?<= if ~~ C -> ~~ (y < x ?<= if C).
Proof. by case: C => /=; case: comparableP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
lteifN
| |
minElex y : min x y = if x <= y then x else y.
Proof. by case: comparableP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
minEle
| |
maxElex y : max x y = if x <= y then y else x.
Proof. by case: comparableP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
maxEle
| |
comparable_minEgtx y : x >=< y -> min x y = if x > y then y else x.
Proof. by case: comparableP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
comparable_minEgt
| |
comparable_maxEgtx y : x >=< y -> max x y = if x > y then x else y.
Proof. by case: comparableP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
comparable_maxEgt
| |
comparable_minEgex y : x >=< y -> min x y = if x >= y then y else x.
Proof. by case: comparableP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
comparable_minEge
| |
comparable_maxEgex y : x >=< y -> max x y = if x >= y then x else y.
Proof. by case: comparableP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
comparable_maxEge
| |
min_lx y : x <= y -> min x y = x. Proof. by case: comparableP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
min_l
| |
min_rx y : y <= x -> min x y = y. Proof. by case: comparableP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
min_r
| |
max_lx y : y <= x -> max x y = x. Proof. by case: comparableP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
max_l
| |
max_rx y : x <= y -> max x y = y. Proof. by case: comparableP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
max_r
| |
eq_minlx y : (min x y == x) = (x <= y).
Proof. by rewrite !(fun_if, if_arg) eqxx; case: comparableP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
eq_minl
| |
eq_maxrx y : (max x y == y) = (x <= y).
Proof. by rewrite !(fun_if, if_arg) eqxx; case: comparableP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
eq_maxr
| |
min_idPlx y : reflect (min x y = x) (x <= y).
Proof. by rewrite -eq_minl; apply/eqP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
min_idPl
| |
max_idPrx y : reflect (max x y = y) (x <= y).
Proof. by rewrite -eq_maxr; apply/eqP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
max_idPr
| |
comparable_minC: min x y = min y x.
Proof. by case: comparableP cmp_xy. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
comparable_minC
| |
comparable_maxC: max x y = max y x.
Proof. by case: comparableP cmp_xy. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
comparable_maxC
| |
comparable_eq_minr: (min x y == y) = (y <= x).
Proof. by rewrite !(fun_if, if_arg) eqxx; case: comparableP cmp_xy. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
comparable_eq_minr
| |
comparable_eq_maxl: (max x y == x) = (y <= x).
Proof. by rewrite !(fun_if, if_arg) eqxx; case: comparableP cmp_xy. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
comparable_eq_maxl
| |
comparable_min_idPr: reflect (min x y = y) (y <= x).
Proof. by rewrite -comparable_eq_minr; apply/eqP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
comparable_min_idPr
| |
comparable_max_idPl: reflect (max x y = x) (y <= x).
Proof. by rewrite -comparable_eq_maxl; apply/eqP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
comparable_max_idPl
| |
comparable_lteifNEC : x >=< y -> x < y ?<= if ~~ C = ~~ (y < x ?<= if C).
Proof. by case: C => /=; case: comparableP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
comparable_lteifNE
| |
comparable_max_minl: max (min x y) z = min (max x z) (max y z).
Proof.
move: cmp_xy cmp_xz cmp_yz; rewrite !(fun_if, if_arg)/=.
move: (P x y) (P x z) (P y z).
move=> [xy|xy|xy|<-] [xz|xz|xz|<-] [yz|yz|yz|//->]//= _; rewrite ?ltxx//.
- by have := lt_trans xy (lt_trans yz xz); rewrite ltxx.
- by have := lt_trans xy (lt_trans xz yz); rewrite ltxx.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
comparable_max_minl
| |
comparable_le_min2: x <= z -> y <= w ->
Order.min x y <= Order.min z w.
Proof.
move: cmp_xy cmp_zw => /comparable_leP[] xy /comparable_leP[] zw // xz yw.
- exact: le_trans xy yw.
- exact: le_trans (ltW xy) xz.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
comparable_le_min2
| |
comparable_le_max2: x <= z -> y <= w ->
Order.max x y <= Order.max z w.
Proof.
move: cmp_xy cmp_zw => /comparable_leP[] xy /comparable_leP[] zw // xz yw.
- exact: le_trans yw (ltW zw).
- exact: le_trans xz zw.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
comparable_le_max2
| |
comparable_minACx y z : x >=< y -> x >=< z -> y >=< z ->
min (min x y) z = min (min x z) y.
Proof.
move=> xy xz yz; rewrite -comparable_minA// [min y z]comparable_minC//.
by rewrite comparable_minA// 1?comparable_sym.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
comparable_minAC
| |
comparable_maxACx y z : x >=< y -> x >=< z -> y >=< z ->
max (max x y) z = max (max x z) y.
Proof.
move=> xy xz yz; rewrite -comparable_maxA// [max y z]comparable_maxC//.
by rewrite comparable_maxA// 1?comparable_sym.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
comparable_maxAC
| |
comparable_minCAx y z : x >=< y -> x >=< z -> y >=< z ->
min x (min y z) = min y (min x z).
Proof.
move=> xy xz yz; rewrite comparable_minA// [min x y]comparable_minC//.
by rewrite -comparable_minA// 1?comparable_sym.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
comparable_minCA
| |
comparable_maxCAx y z : x >=< y -> x >=< z -> y >=< z ->
max x (max y z) = max y (max x z).
Proof.
move=> xy xz yz; rewrite comparable_maxA// [max x y]comparable_maxC//.
by rewrite -comparable_maxA// 1?comparable_sym.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
comparable_maxCA
| |
comparable_minACAx y z t :
x >=< y -> x >=< z -> x >=< t -> y >=< z -> y >=< t -> z >=< t ->
min (min x y) (min z t) = min (min x z) (min y t).
Proof.
move=> xy xz xt yz yt zt; rewrite comparable_minA// ?comparable_minl//.
rewrite [min _ z]comparable_minAC// -comparable_minA// ?comparable_minl//.
by rewrite inE comparable_sym.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
comparable_minACA
| |
comparable_maxACAx y z t :
x >=< y -> x >=< z -> x >=< t -> y >=< z -> y >=< t -> z >=< t ->
max (max x y) (max z t) = max (max x z) (max y t).
Proof.
move=> xy xz xt yz yt zt; rewrite comparable_maxA// ?comparable_maxl//.
rewrite [max _ z]comparable_maxAC// -comparable_maxA// ?comparable_maxl//.
by rewrite inE comparable_sym.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
comparable_maxACA
| |
comparable_min_maxrx y z : x >=< y -> x >=< z -> y >=< z ->
min x (max y z) = max (min x y) (min x z).
Proof.
move=> xy xz yz; rewrite ![min x _]comparable_minC// ?comparable_maxr//.
by rewrite comparable_min_maxl// 1?comparable_sym.
Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
comparable_min_maxr
| |
mono_in_leif(A : {pred T}) (f : T -> T) C :
{in A &, {mono f : x y / x <= y}} ->
{in A &, forall x y, (f x <= f y ?= iff C) = (x <= y ?= iff C)}.
Proof. by move=> mf x y Ax Ay; rewrite /leif !eq_le !mf. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
mono_in_leif
| |
mono_leif(f : T -> T) C :
{mono f : x y / x <= y} ->
forall x y, (f x <= f y ?= iff C) = (x <= y ?= iff C).
Proof. by move=> mf x y; rewrite /leif !eq_le !mf. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
mono_leif
| |
nmono_in_leif(A : {pred T}) (f : T -> T) C :
{in A &, {mono f : x y /~ x <= y}} ->
{in A &, forall x y, (f x <= f y ?= iff C) = (y <= x ?= iff C)}.
Proof. by move=> mf x y Ax Ay; rewrite /leif !eq_le !mf. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
nmono_in_leif
| |
nmono_leif(f : T -> T) C : {mono f : x y /~ x <= y} ->
forall x y, (f x <= f y ?= iff C) = (y <= x ?= iff C).
Proof. by move=> mf x y; rewrite /leif !eq_le !mf. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
nmono_leif
| |
bigmax_le: x0 <= x -> (forall i, P i -> f i <= x) ->
\big[max/x0]_(i <- r | P i) f i <= x.
Proof. by move=> ? ?; elim/big_ind: _ => // *; rewrite maxEle; case: ifPn. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
bigmax_le
| |
le_bigmin: x <= x0 -> (forall i, P i -> x <= f i) ->
x <= \big[min/x0]_(i <- r | P i) f i.
Proof. by move=> ? ?; elim/big_ind: _ => // *; rewrite minEle; case: ifPn. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
le_bigmin
| |
contra_leTb x y : (~~ b -> x < y) -> (y <= x -> b).
Proof. by case: comparableP; case: b. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contra_leT
| |
contra_ltTb x y : (~~ b -> x <= y) -> (y < x -> b).
Proof. by case: comparableP; case: b. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contra_ltT
| |
contra_leNb x y : (b -> x < y) -> (y <= x -> ~~ b).
Proof. by case: comparableP; case: b. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
contra_leN
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.