fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
card_morphimG : #|f @* G| = #|D :&: G : 'ker f|. Proof. rewrite -morphimIdom -indexgI -card_quotient; last first. by rewrite normsI ?normG ?subIset ?ker_norm. by apply: esym (card_isog _); rewrite first_isog_loc ?subsetIl. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
card_morphim
dvdn_morphimG : #|f @* G| %| #|G|. Proof. rewrite card_morphim (dvdn_trans (dvdn_indexg _ _)) //. by rewrite cardSg ?subsetIr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
dvdn_morphim
logn_morphimp G : logn p #|f @* G| <= logn p #|G|. Proof. by rewrite dvdn_leq_log ?dvdn_morphim. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
logn_morphim
coprime_morphlG p : coprime #|G| p -> coprime #|f @* G| p. Proof. exact: coprime_dvdl (dvdn_morphim G). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
coprime_morphl
coprime_morphrG p : coprime p #|G| -> coprime p #|f @* G|. Proof. exact: coprime_dvdr (dvdn_morphim G). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
coprime_morphr
coprime_morphG H : coprime #|G| #|H| -> coprime #|f @* G| #|f @* H|. Proof. by move=> coGH; rewrite coprime_morphl // coprime_morphr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
coprime_morph
index_morphim_kerG H : H \subset G -> G \subset D -> (#|f @* G : f @* H| * #|'ker_G f : H|)%N = #|G : H|. Proof. move=> sHG sGD; apply/eqP. rewrite -(eqn_pmul2l (cardG_gt0 (f @* H))) mulnA Lagrange ?morphimS //. rewrite !card_morphim (setIidPr sGD) (setIidPr (subset_trans sHG sGD)). rewrite -(eqn_pmul2l (cardG_gt0 ('ker_H f))) /=. by rewrite -{1}(setIidPr sHG) setIAC mulnCA mulnC mulnA !LagrangeI Lagrange. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
index_morphim_ker
index_morphimG H : G :&: H \subset D -> #|f @* G : f @* H| %| #|G : H|. Proof. move=> dGH; rewrite -(indexgI G) -(setIidPr dGH) setIA. apply: dvdn_trans (indexSg (subsetIl _ H) (subsetIr D G)). rewrite -index_morphim_ker ?subsetIl ?subsetIr ?dvdn_mulr //= morphimIdom. by rewrite indexgS ?morphimS ?subsetIr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
index_morphim
index_injmG H : 'injm f -> G \subset D -> #|f @* G : f @* H| = #|G : H|. Proof. move=> injf dG; rewrite -{2}(setIidPr dG) -(indexgI _ H) /=. rewrite -index_morphim_ker ?subsetIl ?subsetIr //= setIAC morphimIdom setIC. rewrite injmI ?subsetIr // indexgI /= morphimIdom setIC ker_injm //. by rewrite -(indexgI (1 :&: _)) /= -setIA !(setIidPl (sub1G _)) indexgg muln1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
index_injm
card_morphpreL : L \subset f @* D -> #|f @*^-1 L| = (#|'ker f| * #|L|)%N. Proof. move/morphpreK=> {2} <-; rewrite card_morphim morphpreIdom. by rewrite Lagrange // morphpreS ?sub1G. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
card_morphpre
index_morphpreL M : L \subset f @* D -> #|f @*^-1 L : f @*^-1 M| = #|L : M|. Proof. move=> dL; rewrite -!divgI -morphpreI /= card_morphpre //. have: L :&: M \subset f @* D by rewrite subIset ?dL. by move/card_morphpre->; rewrite divnMl ?cardG_gt0. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
index_morphpre
card_homg(aT rT : finGroupType) (G : {group aT}) (R : {group rT}) : G \homg R -> #|G| %| #|R|. Proof. by case/homgP=> f <-; rewrite card_morphim setIid dvdn_indexg. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
card_homg
dvdn_quotient: #|G / H| %| #|G|. Proof. exact: dvdn_morphim. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
dvdn_quotient
index_quotient_ker: K \subset G -> G \subset 'N(H) -> (#|G / H : K / H| * #|G :&: H : K|)%N = #|G : K|. Proof. by rewrite -{5}(ker_coset H); apply: index_morphim_ker. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
index_quotient_ker
index_quotient: G :&: K \subset 'N(H) -> #|G / H : K / H| %| #|G : K|. Proof. exact: index_morphim. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
index_quotient
index_quotient_eq: G :&: H \subset K -> K \subset G -> G \subset 'N(H) -> #|G / H : K / H| = #|G : K|. Proof. move=> sGH_K sKG sGN; rewrite -index_quotient_ker {sKG sGN}//. by rewrite -(indexgI _ K) (setIidPl sGH_K) indexgg muln1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
index_quotient_eq
card_cosetpre: #|coset H @*^-1 L| = (#|H| * #|L|)%N. Proof. by rewrite card_morphpre ?ker_coset ?sub_im_coset. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
card_cosetpre
index_cosetpre: #|coset H @*^-1 L : coset H @*^-1 M| = #|L : M|. Proof. by rewrite index_morphpre ?sub_im_coset. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
index_cosetpre
RecordPreorder_isDuallyPOrder (d : disp_t) T of Preorder d T := { le_anti : antisymmetric (@le d T); ge_anti : antisymmetric (fun x y => @le d T y x); }. #[short(type="porderType")] HB.structure Definition POrder (d : disp_t) := { T of Preorder d T & Preorder_isDuallyPOrder d T }. #[short(type="bPOrderType")] HB.structure Definition BPOrder d := { T of hasBottom d T & POrder d T }. #[short(type="tPOrderType")] HB.structure Definition TPOrder d := { T of hasTop d T & POrder d T }. #[short(type="tbPOrderType")] HB.structure Definition TBPOrder d := { T of hasTop d T & BPOrder d T }.
HB.mixin
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Record
RecordPOrder_isMeetSemilattice d (T : Type) of POrder d T := { meet : T -> T -> T; lexI : forall x y z, (x <= meet y z) = (x <= y) && (x <= z); }. #[key="T", primitive] HB.mixin Record POrder_isJoinSemilattice d T of POrder d T := { join : T -> T -> T; leUx : forall x y z, (join x y <= z) = (x <= z) && (y <= z); }. #[short(type="meetSemilatticeType")] HB.structure Definition MeetSemilattice d := { T of POrder d T & POrder_isMeetSemilattice d T }. #[short(type="bMeetSemilatticeType")] HB.structure Definition BMeetSemilattice d := { T of MeetSemilattice d T & hasBottom d T }. #[short(type="tMeetSemilatticeType")] HB.structure Definition TMeetSemilattice d := { T of MeetSemilattice d T & hasTop d T }. #[short(type="tbMeetSemilatticeType")] HB.structure Definition TBMeetSemilattice d := { T of BMeetSemilattice d T & hasTop d T }. #[short(type="joinSemilatticeType")] HB.structure Definition JoinSemilattice d := { T of POrder d T & POrder_isJoinSemilattice d T }. #[short(type="bJoinSemilatticeType")] HB.structure Definition BJoinSemilattice d := { T of JoinSemilattice d T & hasBottom d T }. #[short(type="tJoinSemilatticeType")] HB.structure Definition TJoinSemilattice d := { T of JoinSemilattice d T & hasTop d T }. #[short(type="tbJoinSemilatticeType")]
HB.mixin
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Record
lel_xor_gt(x y : T) : T -> T -> T -> T -> T -> T -> T -> T -> bool -> bool -> Set := | LelNotGt of x <= y : lel_xor_gt x y x x y y x x y y true false | GtlNotLe of y < x : lel_xor_gt x y y y x x y y x x false true.
Variant
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lel_xor_gt
ltl_xor_ge(x y : T) : T -> T -> T -> T -> T -> T -> T -> T -> bool -> bool -> Set := | LtlNotGe of x < y : ltl_xor_ge x y x x y y x x y y false true | GelNotLt of y <= x : ltl_xor_ge x y y y x x y y x x true false.
Variant
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
ltl_xor_ge
comparel(x y : T) : T -> T -> T -> T -> T -> T -> T -> T -> bool -> bool -> bool -> bool -> bool -> bool -> Set := | ComparelLt of x < y : comparel x y x x y y x x y y false false false true false true | ComparelGt of y < x : comparel x y y y x x y y x x false false true false true false | ComparelEq of x = y : comparel x y x x x x x x x x true true true true false false.
Variant
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
comparel
incomparel(x y : T) : T -> T -> T -> T -> T -> T -> T -> T -> bool -> bool -> bool -> bool -> bool -> bool -> bool -> bool -> Set := | InComparelLt of x < y : incomparel x y x x y y x x y y false false false true false true true true | InComparelGt of y < x : incomparel x y y y x x y y x x false false true false true false true true | InComparel of x >< y : incomparel x y x y y x (meet y x) (meet x y) (join y x) (join x y) false false false false false false false false | InComparelEq of x = y : incomparel x y x x x x x x x x true true true true false false true true.
Variant
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
incomparel
RecordLattice_isDistributive d (T : Type) of Lattice d T := { meetUl : @left_distributive T T meet join; joinIl : @left_distributive T T join meet; }. #[short(type="distrLatticeType")] HB.structure Definition DistrLattice d := { T of Lattice_isDistributive d T & Lattice d T }. #[short(type="bDistrLatticeType")] HB.structure Definition BDistrLattice d := { T of DistrLattice d T & hasBottom d T }. #[short(type="tDistrLatticeType")] HB.structure Definition TDistrLattice d := { T of DistrLattice d T & hasTop d T }. #[short(type="tbDistrLatticeType")] HB.structure Definition TBDistrLattice d := { T of BDistrLattice d T & hasTop d T }. #[key="T", primitive] HB.mixin Record DistrLattice_isTotal d T of DistrLattice d T := { le_total : total (<=%O : rel T) }. #[short(type="orderType")] HB.structure Definition Total d := { T of DistrLattice_isTotal d T & DistrLattice d T }. #[short(type="bOrderType")] HB.structure Definition BTotal d := { T of Total d T & hasBottom d T }. #[short(type="tOrderType")] HB.structure Definition TTotal d := { T of Total d T & hasTop d T }. #[short(type="tbOrderType")] HB.structure Definition TBTotal d := { T of BTotal d T & hasTop d T }. #[key="T", primitive] HB.mixin Record DistrLattice_hasRelativeComplement d T of DistrLattice d T := {
HB.mixin
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Record
DefinitionCDistrLattice d := { T of DistrLattice d T & DistrLattice_hasRelativeComplement d T }. #[key="T", primitive] HB.mixin Record CDistrLattice_hasSectionalComplement d T of CDistrLattice d T & hasBottom d T := { diff : T -> T -> T;
HB.structure
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
DefinitionCBDistrLattice d := { T of CDistrLattice d T & hasBottom d T & CDistrLattice_hasSectionalComplement d T }. #[key="T", primitive] HB.mixin Record CDistrLattice_hasDualSectionalComplement d T of CDistrLattice d T & hasTop d T := { codiff : T -> T -> T; codiffErcompl : forall x y, codiff x y = rcompl x \top y; }. #[short(type="ctDistrLatticeType")] HB.structure Definition CTDistrLattice d := { T of CDistrLattice d T & hasTop d T & CDistrLattice_hasDualSectionalComplement d T }.
HB.structure
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
RecordCDistrLattice_hasComplement d T of CTDistrLattice d T & CBDistrLattice d T := { compl : T -> T;
HB.mixin
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Record
DefinitionCTBDistrLattice d := { T of CBDistrLattice d T & CTDistrLattice d T & CDistrLattice_hasComplement d T }.
HB.structure
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
DefinitionFinPOrder d := { T of Finite T & POrder d T }. #[short(type="finBPOrderType")] HB.structure Definition FinBPOrder d := { T of FinPOrder d T & hasBottom d T }. #[short(type="finTPOrderType")] HB.structure Definition FinTPOrder d := { T of FinPOrder d T & hasTop d T }. #[short(type="finTBPOrderType")] HB.structure Definition FinTBPOrder d := { T of FinBPOrder d T & hasTop d T }. #[short(type="finMeetSemilatticeType")] HB.structure Definition FinMeetSemilattice d := { T of Finite T & MeetSemilattice d T }. #[short(type="finBMeetSemilatticeType")] HB.structure Definition FinBMeetSemilattice d := { T of Finite T & BMeetSemilattice d T }. #[short(type="finJoinSemilatticeType")] HB.structure Definition FinJoinSemilattice d := { T of Finite T & JoinSemilattice d T }. #[short(type="finTJoinSemilatticeType")] HB.structure Definition FinTJoinSemilattice d := { T of Finite T & TJoinSemilattice d T }. #[short(type="finLatticeType")] HB.structure Definition FinLattice d := { T of Finite T & Lattice d T }. #[short(type="finTBLatticeType")] HB.structure Definition FinTBLattice d := { T of Finite T & TBLattice d T }. #[short(type="finDistrLatticeType")] HB.structure Definition FinDistrLattice d := { T of Finite T & DistrLattice d T }. #[short(type="finTBDistrLatticeType")] HB.structure Definition FinTBDistrLattice d := { T of Finite T & TBDistrLattice d T }.
HB.structure
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
dual_meet:= (@meet (dual_display _) _).
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
dual_meet
dual_join:= (@join (dual_display _) _).
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
dual_join
Definition_ (d : disp_t) (T : porderType d) := Preorder_isDuallyPOrder.Build (dual_display d) T^d ge_anti le_anti. HB.instance Definition _ d (T : joinSemilatticeType d) := POrder_isMeetSemilattice.Build (dual_display d) T^d (fun x y z => leUx y z x).
HB.instance
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
Definition
meetEduald (T : joinSemilatticeType d) (x y : T) : ((x : T^d) `&^d` y) = (x `|` y). Proof. by []. Qed. HB.instance Definition _ d (T : meetSemilatticeType d) := POrder_isJoinSemilattice.Build (dual_display d) T^d (fun x y z => lexI z x y).
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
meetEdual
joinEduald (T : meetSemilatticeType d) (x y : T) : ((x : T^d) `|^d` y) = (x `&` y). Proof. by []. Qed. HB.saturate. HB.instance Definition _ d (T : distrLatticeType d) := Lattice_isDistributive.Build (dual_display d) T^d joinIl meetUl. HB.instance Definition _ d (T : orderType d) := DistrLattice_isTotal.Build (dual_display d) T^d (fun x y => le_total y x). HB.saturate. HB.instance Definition _ d (T : cDistrLatticeType d) := DistrLattice_hasRelativeComplement.Build (dual_display d) T^d (fun x y => rcomplPjoin y x) (fun x y => rcomplPmeet y x). HB.instance Definition _ d (T : ctDistrLatticeType d) := CDistrLattice_hasSectionalComplement.Build (dual_display d) T^d codiffErcompl. HB.instance Definition _ d (T : cbDistrLatticeType d) := CDistrLattice_hasDualSectionalComplement.Build (dual_display d) T^d diffErcompl. HB.instance Definition _ d (T : ctbDistrLatticeType d) := CDistrLattice_hasComplement.Build (dual_display d) T^d complEcodiff complEdiff. HB.saturate.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
joinEdual
le_anti: antisymmetric (<=%O : rel T). Proof. exact: le_anti. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_anti
ge_anti: antisymmetric (>=%O : rel T). Proof. by move=> x y /le_anti. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
ge_anti
eq_lex y: (x == y) = (x <= y <= x). Proof. by apply/eqP/idP => [->|/le_anti]; rewrite ?lexx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
eq_le
lt_defx y : (x < y) = (y != x) && (x <= y). Proof. rewrite andbC lt_le_def; case/boolP: (x <= y) => //= xy. congr negb; apply/idP/eqP => [yx|->]; last exact/lexx. by apply/le_anti; rewrite yx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lt_def
lt_neqAlex y: (x < y) = (x != y) && (x <= y). Proof. by rewrite lt_def eq_sym. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lt_neqAle
le_eqVltx y: (x <= y) = (x == y) || (x < y). Proof. by rewrite lt_neqAle; case: eqP => //= ->; rewrite lexx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_eqVlt
lte_anti:= (=^~ eq_le, @lt_asym disp T, @lt_le_asym disp T, @le_lt_asym disp T).
Definition
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lte_anti
eq_geP{x y} : reflect (forall z, (z <= x) = (z <= y)) (x == y). Proof. by apply: (iffP idP) => [/eqP->//|/[dup]] /[!eq_le] -> <-; rewrite !lexx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
eq_geP
eq_leP{x y} : reflect (forall z, (x <= z) = (y <= z)) (x == y). Proof. by apply: (iffP idP) => [/eqP->//|/[dup]] /[!eq_le] <- ->; rewrite !lexx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
eq_leP
lt_sorted_uniq_les : sorted <%O s = uniq s && sorted <=%O s. Proof. rewrite le_sorted_pairwise lt_sorted_pairwise uniq_pairwise -pairwise_relI. by apply/eq_pairwise => ? ?; rewrite lt_neqAle. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lt_sorted_uniq_le
le_sorted_eqs1 s2 : sorted <=%O s1 -> sorted <=%O s2 -> perm_eq s1 s2 -> s1 = s2. Proof. exact/sorted_eq/le_anti/le_trans. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_sorted_eq
count_lt_le_memx s : (count (< x) s < count (<= x) s)%N = (x \in s). Proof. have := count_predUI (pred1 x) (< x) s. have -> : count (predI (pred1 x) (< x)) s = 0%N. rewrite (@eq_count _ _ pred0) ?count_pred0 // => y /=. by rewrite lt_neqAle; case: eqP => //= ->; rewrite eqxx. have /eq_count-> : [predU1 x & < x] =1 (<= x) by move=> y /=; rewrite le_eqVlt. by rewrite addn0 => ->; rewrite -add1n leq_add2r -has_count has_pred1. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
count_lt_le_mem
comparable_ltgtPx y : x >=< y -> compare x y (min y x) (min x y) (max y x) (max x y) (y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y). Proof. rewrite /min /max />=<%O !le_eqVlt [y == x]eq_sym. have := (eqVneq x y, (boolP (x < y), boolP (y < x))). move=> [[->//|neq_xy /=] [[] xy [] //=]] ; do ?by rewrite ?ltxx; constructor. by rewrite ltxx in xy. by rewrite le_gtF // ltW. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
comparable_ltgtP
comparable_lePx y : x >=< y -> le_xor_gt x y (min y x) (min x y) (max y x) (max x y) (x <= y) (y < x). Proof. by move=> /comparable_ltgtP [?|?|->]; constructor; rewrite // ltW. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
comparable_leP
comparable_ltPx y : x >=< y -> lt_xor_ge x y (min y x) (min x y) (max y x) (max x y) (y <= x) (x < y). Proof. by move=> /comparable_ltgtP [?|?|->]; constructor; rewrite // ltW. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
comparable_ltP
comparablePx y : incompare x y (min y x) (min x y) (max y x) (max x y) (y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y) (y >=< x) (x >=< y). Proof. rewrite ![y >=< _]comparable_sym; have [c_xy|i_xy] := boolP (x >=< y). by case: (comparable_ltgtP c_xy) => ?; constructor. by rewrite /min /max ?incomparable_eqF ?incomparable_leF; rewrite ?incomparable_ltF// 1?comparable_sym //; constructor. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
comparableP
leifPx y C : reflect (x <= y ?= iff C) (if C then x == y else x < y). Proof. rewrite /leif le_eqVlt; apply: (iffP idP)=> [|[]]. by case: C => [/eqP->|lxy]; rewrite ?eqxx // lxy lt_eqF. by move=> /orP[/eqP->|lxy] <-; rewrite ?eqxx // lt_eqF. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leifP
leif_transx1 x2 x3 C12 C23 : x1 <= x2 ?= iff C12 -> x2 <= x3 ?= iff C23 -> x1 <= x3 ?= iff C12 && C23. Proof. move=> ltx12 ltx23; apply/leifP; rewrite -ltx12. case eqx12: (x1 == x2). by rewrite (eqP eqx12) lt_neqAle !ltx23 andbT; case C23. by rewrite (@lt_le_trans _ _ x2) ?ltx23 // lt_neqAle eqx12 ltx12. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leif_trans
leif_lex y : x <= y -> x <= y ?= iff (x >= y). Proof. by move=> lexy; split=> //; rewrite eq_le lexy. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leif_le
leif_eqx y : x <= y -> x <= y ?= iff (x == y). Proof. by []. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
leif_eq
ge_leifx y C : x <= y ?= iff C -> (y <= x) = C. Proof. by case=> le_xy; rewrite eq_le le_xy. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
ge_leif
lt_leifx y C : x <= y ?= iff C -> (x < y) = ~~ C. Proof. by move=> le_xy; rewrite lt_neqAle !le_xy andbT. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lt_leif
ltNleifx y C : x <= y ?= iff ~~ C -> (x < y) = C. Proof. by move=> /lt_leif; rewrite negbK. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
ltNleif
lteif_antiC1 C2 x y : (x < y ?<= if C1) && (y < x ?<= if C2) = C1 && C2 && (x == y). Proof. by case: C1 C2 => [][]; rewrite lte_anti. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lteif_anti
lteifNC x y : x < y ?<= if ~~ C -> ~~ (y < x ?<= if C). Proof. by case: C => /=; case: comparableP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
lteifN
minElex y : min x y = if x <= y then x else y. Proof. by case: comparableP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
minEle
maxElex y : max x y = if x <= y then y else x. Proof. by case: comparableP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
maxEle
comparable_minEgtx y : x >=< y -> min x y = if x > y then y else x. Proof. by case: comparableP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
comparable_minEgt
comparable_maxEgtx y : x >=< y -> max x y = if x > y then x else y. Proof. by case: comparableP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
comparable_maxEgt
comparable_minEgex y : x >=< y -> min x y = if x >= y then y else x. Proof. by case: comparableP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
comparable_minEge
comparable_maxEgex y : x >=< y -> max x y = if x >= y then x else y. Proof. by case: comparableP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
comparable_maxEge
min_lx y : x <= y -> min x y = x. Proof. by case: comparableP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
min_l
min_rx y : y <= x -> min x y = y. Proof. by case: comparableP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
min_r
max_lx y : y <= x -> max x y = x. Proof. by case: comparableP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
max_l
max_rx y : x <= y -> max x y = y. Proof. by case: comparableP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
max_r
eq_minlx y : (min x y == x) = (x <= y). Proof. by rewrite !(fun_if, if_arg) eqxx; case: comparableP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
eq_minl
eq_maxrx y : (max x y == y) = (x <= y). Proof. by rewrite !(fun_if, if_arg) eqxx; case: comparableP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
eq_maxr
min_idPlx y : reflect (min x y = x) (x <= y). Proof. by rewrite -eq_minl; apply/eqP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
min_idPl
max_idPrx y : reflect (max x y = y) (x <= y). Proof. by rewrite -eq_maxr; apply/eqP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
max_idPr
comparable_minC: min x y = min y x. Proof. by case: comparableP cmp_xy. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
comparable_minC
comparable_maxC: max x y = max y x. Proof. by case: comparableP cmp_xy. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
comparable_maxC
comparable_eq_minr: (min x y == y) = (y <= x). Proof. by rewrite !(fun_if, if_arg) eqxx; case: comparableP cmp_xy. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
comparable_eq_minr
comparable_eq_maxl: (max x y == x) = (y <= x). Proof. by rewrite !(fun_if, if_arg) eqxx; case: comparableP cmp_xy. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
comparable_eq_maxl
comparable_min_idPr: reflect (min x y = y) (y <= x). Proof. by rewrite -comparable_eq_minr; apply/eqP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
comparable_min_idPr
comparable_max_idPl: reflect (max x y = x) (y <= x). Proof. by rewrite -comparable_eq_maxl; apply/eqP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
comparable_max_idPl
comparable_lteifNEC : x >=< y -> x < y ?<= if ~~ C = ~~ (y < x ?<= if C). Proof. by case: C => /=; case: comparableP. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
comparable_lteifNE
comparable_max_minl: max (min x y) z = min (max x z) (max y z). Proof. move: cmp_xy cmp_xz cmp_yz; rewrite !(fun_if, if_arg)/=. move: (P x y) (P x z) (P y z). move=> [xy|xy|xy|<-] [xz|xz|xz|<-] [yz|yz|yz|//->]//= _; rewrite ?ltxx//. - by have := lt_trans xy (lt_trans yz xz); rewrite ltxx. - by have := lt_trans xy (lt_trans xz yz); rewrite ltxx. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
comparable_max_minl
comparable_le_min2: x <= z -> y <= w -> Order.min x y <= Order.min z w. Proof. move: cmp_xy cmp_zw => /comparable_leP[] xy /comparable_leP[] zw // xz yw. - exact: le_trans xy yw. - exact: le_trans (ltW xy) xz. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
comparable_le_min2
comparable_le_max2: x <= z -> y <= w -> Order.max x y <= Order.max z w. Proof. move: cmp_xy cmp_zw => /comparable_leP[] xy /comparable_leP[] zw // xz yw. - exact: le_trans yw (ltW zw). - exact: le_trans xz zw. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
comparable_le_max2
comparable_minACx y z : x >=< y -> x >=< z -> y >=< z -> min (min x y) z = min (min x z) y. Proof. move=> xy xz yz; rewrite -comparable_minA// [min y z]comparable_minC//. by rewrite comparable_minA// 1?comparable_sym. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
comparable_minAC
comparable_maxACx y z : x >=< y -> x >=< z -> y >=< z -> max (max x y) z = max (max x z) y. Proof. move=> xy xz yz; rewrite -comparable_maxA// [max y z]comparable_maxC//. by rewrite comparable_maxA// 1?comparable_sym. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
comparable_maxAC
comparable_minCAx y z : x >=< y -> x >=< z -> y >=< z -> min x (min y z) = min y (min x z). Proof. move=> xy xz yz; rewrite comparable_minA// [min x y]comparable_minC//. by rewrite -comparable_minA// 1?comparable_sym. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
comparable_minCA
comparable_maxCAx y z : x >=< y -> x >=< z -> y >=< z -> max x (max y z) = max y (max x z). Proof. move=> xy xz yz; rewrite comparable_maxA// [max x y]comparable_maxC//. by rewrite -comparable_maxA// 1?comparable_sym. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
comparable_maxCA
comparable_minACAx y z t : x >=< y -> x >=< z -> x >=< t -> y >=< z -> y >=< t -> z >=< t -> min (min x y) (min z t) = min (min x z) (min y t). Proof. move=> xy xz xt yz yt zt; rewrite comparable_minA// ?comparable_minl//. rewrite [min _ z]comparable_minAC// -comparable_minA// ?comparable_minl//. by rewrite inE comparable_sym. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
comparable_minACA
comparable_maxACAx y z t : x >=< y -> x >=< z -> x >=< t -> y >=< z -> y >=< t -> z >=< t -> max (max x y) (max z t) = max (max x z) (max y t). Proof. move=> xy xz xt yz yt zt; rewrite comparable_maxA// ?comparable_maxl//. rewrite [max _ z]comparable_maxAC// -comparable_maxA// ?comparable_maxl//. by rewrite inE comparable_sym. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
comparable_maxACA
comparable_min_maxrx y z : x >=< y -> x >=< z -> y >=< z -> min x (max y z) = max (min x y) (min x z). Proof. move=> xy xz yz; rewrite ![min x _]comparable_minC// ?comparable_maxr//. by rewrite comparable_min_maxl// 1?comparable_sym. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
comparable_min_maxr
mono_in_leif(A : {pred T}) (f : T -> T) C : {in A &, {mono f : x y / x <= y}} -> {in A &, forall x y, (f x <= f y ?= iff C) = (x <= y ?= iff C)}. Proof. by move=> mf x y Ax Ay; rewrite /leif !eq_le !mf. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
mono_in_leif
mono_leif(f : T -> T) C : {mono f : x y / x <= y} -> forall x y, (f x <= f y ?= iff C) = (x <= y ?= iff C). Proof. by move=> mf x y; rewrite /leif !eq_le !mf. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
mono_leif
nmono_in_leif(A : {pred T}) (f : T -> T) C : {in A &, {mono f : x y /~ x <= y}} -> {in A &, forall x y, (f x <= f y ?= iff C) = (y <= x ?= iff C)}. Proof. by move=> mf x y Ax Ay; rewrite /leif !eq_le !mf. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
nmono_in_leif
nmono_leif(f : T -> T) C : {mono f : x y /~ x <= y} -> forall x y, (f x <= f y ?= iff C) = (y <= x ?= iff C). Proof. by move=> mf x y; rewrite /leif !eq_le !mf. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
nmono_leif
bigmax_le: x0 <= x -> (forall i, P i -> f i <= x) -> \big[max/x0]_(i <- r | P i) f i <= x. Proof. by move=> ? ?; elim/big_ind: _ => // *; rewrite maxEle; case: ifPn. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
bigmax_le
le_bigmin: x <= x0 -> (forall i, P i -> x <= f i) -> x <= \big[min/x0]_(i <- r | P i) f i. Proof. by move=> ? ?; elim/big_ind: _ => // *; rewrite minEle; case: ifPn. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
le_bigmin
contra_leTb x y : (~~ b -> x < y) -> (y <= x -> b). Proof. by case: comparableP; case: b. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
contra_leT
contra_ltTb x y : (~~ b -> x <= y) -> (y < x -> b). Proof. by case: comparableP; case: b. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
contra_ltT
contra_leNb x y : (b -> x < y) -> (y <= x -> ~~ b). Proof. by case: comparableP; case: b. Qed.
Lemma
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset", "From mathcomp Require Export preorder" ]
order/order.v
contra_leN