fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
cast_perm_compm n p (eq_m_n : m = n) (eq_n_p : n = p) s : cast_perm eq_n_p (cast_perm eq_m_n s) = cast_perm (etrans eq_m_n eq_n_p) s. Proof. by case: _ / eq_n_p. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype tuple finfun bigop finset binomial", "From mathcomp Require Import fingroup morphism" ]
fingroup/perm.v
cast_perm_comp
cast_permKm n eq_m_n : cancel (@cast_perm m n eq_m_n) (cast_perm (esym eq_m_n)). Proof. by subst m. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype tuple finfun bigop finset binomial", "From mathcomp Require Import fingroup morphism" ]
fingroup/perm.v
cast_permK
cast_permKVm n eq_m_n : cancel (cast_perm (esym eq_m_n)) (@cast_perm m n eq_m_n). Proof. by subst m. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype tuple finfun bigop finset binomial", "From mathcomp Require Import fingroup morphism" ]
fingroup/perm.v
cast_permKV
cast_perm_symm n (eq_m_n : m = n) s t : s = cast_perm eq_m_n t -> t = cast_perm (esym eq_m_n) s. Proof. by move/(canLR (cast_permK _)). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype tuple finfun bigop finset binomial", "From mathcomp Require Import fingroup morphism" ]
fingroup/perm.v
cast_perm_sym
cast_perm_injm n eq_m_n : injective (@cast_perm m n eq_m_n). Proof. exact: can_inj (cast_permK eq_m_n). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype tuple finfun bigop finset binomial", "From mathcomp Require Import fingroup morphism" ]
fingroup/perm.v
cast_perm_inj
cast_perm_morphMm n eq_m_n : {morph @cast_perm m n eq_m_n : x y / x * y >-> x * y}. Proof. by subst m. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype tuple finfun bigop finset binomial", "From mathcomp Require Import fingroup morphism" ]
fingroup/perm.v
cast_perm_morphM
morph_of_cast_permm n eq_m_n := @Morphism _ _ setT (cast_perm eq_m_n) (in2W (@cast_perm_morphM m n eq_m_n)).
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype tuple finfun bigop finset binomial", "From mathcomp Require Import fingroup morphism" ]
fingroup/perm.v
morph_of_cast_perm
isom_cast_permm n eq_m_n : isom setT setT (@cast_perm m n eq_m_n). Proof. case: {n} _ / eq_m_n; apply/isomP; split. exact/injmP/(in2W (@cast_perm_inj _ _ _)). by apply/setP => /= s /[!inE]; apply/imsetP; exists s; rewrite ?inE. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype tuple finfun bigop finset binomial", "From mathcomp Require Import fingroup morphism" ]
fingroup/perm.v
isom_cast_perm
term:= | Cst of nat | Idx | Inv of term | Exp of term & nat | Mul of term & term | Conj of term & term | Comm of term & term.
Inductive
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq", "From mathcomp Require Import fintype finset fingroup morphism" ]
fingroup/presentation.v
term
eval{gT} e t : gT := match t with | Cst i => nth 1 e i | Idx => 1 | Inv t1 => (eval e t1)^-1 | Exp t1 n => eval e t1 ^+ n | Mul t1 t2 => eval e t1 * eval e t2 | Conj t1 t2 => eval e t1 ^ eval e t2 | Comm t1 t2 => [~ eval e t1, eval e t2] end.
Fixpoint
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq", "From mathcomp Require Import fintype finset fingroup morphism" ]
fingroup/presentation.v
eval
formula:= Eq2 of term & term | And of formula & formula.
Inductive
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq", "From mathcomp Require Import fintype finset fingroup morphism" ]
fingroup/presentation.v
formula
Eq1s := Eq2 s Idx.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq", "From mathcomp Require Import fintype finset fingroup morphism" ]
fingroup/presentation.v
Eq1
Eq3s1 s2 t := And (Eq2 s1 t) (Eq2 s2 t).
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq", "From mathcomp Require Import fintype finset fingroup morphism" ]
fingroup/presentation.v
Eq3
rel_type:= NoRel | Rel vT of vT & vT.
Inductive
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq", "From mathcomp Require Import fintype finset fingroup morphism" ]
fingroup/presentation.v
rel_type
bool_of_relr := if r is Rel vT v1 v2 then v1 == v2 else true. Local Coercion bool_of_rel : rel_type >-> bool.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq", "From mathcomp Require Import fintype finset fingroup morphism" ]
fingroup/presentation.v
bool_of_rel
and_relvT (v1 v2 : vT) r := if r is Rel wT w1 w2 then Rel (v1, w1) (v2, w2) else Rel v1 v2.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq", "From mathcomp Require Import fintype finset fingroup morphism" ]
fingroup/presentation.v
and_rel
rel{gT} (e : seq gT) f r := match f with | Eq2 s t => and_rel (eval e s) (eval e t) r | And f1 f2 => rel e f1 (rel e f2 r) end.
Fixpoint
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq", "From mathcomp Require Import fintype finset fingroup morphism" ]
fingroup/presentation.v
rel
type:= Generator of term -> type | Formula of formula.
Inductive
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq", "From mathcomp Require Import fintype finset fingroup morphism" ]
fingroup/presentation.v
type
Castp : type := p. Local Coercion Formula : formula >-> type.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq", "From mathcomp Require Import fintype finset fingroup morphism" ]
fingroup/presentation.v
Cast
envgT := Env of {set gT} & seq gT.
Inductive
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq", "From mathcomp Require Import fintype finset fingroup morphism" ]
fingroup/presentation.v
env
env1{gT} (x : gT : finType) := Env <[x]> [:: x].
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq", "From mathcomp Require Import fintype finset fingroup morphism" ]
fingroup/presentation.v
env1
satgT vT B n (s : vT -> env gT) p := match p with | Formula f => [exists v, let: Env A e := s v in and_rel A B (rel (rev e) f NoRel)] | Generator p' => let s' v := let: Env A e := s v.1 in Env (A <*> <[v.2]>) (v.2 :: e) in sat B n.+1 s' (p' (Cst n)) end.
Fixpoint
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq", "From mathcomp Require Import fintype finset fingroup morphism" ]
fingroup/presentation.v
sat
homgT (B : {set gT}) p := sat B 1 env1 (p (Cst 0)).
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq", "From mathcomp Require Import fintype finset fingroup morphism" ]
fingroup/presentation.v
hom
isogT (B : {set gT}) p := forall rT (H : {group rT}), (H \homg B) = hom H p.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq", "From mathcomp Require Import fintype finset fingroup morphism" ]
fingroup/presentation.v
iso
bool_of_rel: rel_type >-> bool.
Coercion
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq", "From mathcomp Require Import fintype finset fingroup morphism" ]
fingroup/presentation.v
bool_of_rel
Eq1: term >-> formula.
Coercion
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq", "From mathcomp Require Import fintype finset fingroup morphism" ]
fingroup/presentation.v
Eq1
Formula: formula >-> type. Declare Custom Entry group_presentation.
Coercion
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq", "From mathcomp Require Import fintype finset fingroup morphism" ]
fingroup/presentation.v
Formula
isoGrp_homgT (G : {group gT}) p : G \isog Grp p -> G \homg Grp p. Proof. by move <-; apply: homg_refl. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq", "From mathcomp Require Import fintype finset fingroup morphism" ]
fingroup/presentation.v
isoGrp_hom
isoGrpPgT (G : {group gT}) p rT (H : {group rT}) : G \isog Grp p -> reflect (#|H| = #|G| /\ H \homg Grp p) (H \isog G). Proof. move=> isoGp; apply: (iffP idP) => [isoGH | [oH homHp]]. by rewrite (card_isog isoGH) -isoGp isog_hom. by rewrite isogEcard isoGp homHp /= oH. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq", "From mathcomp Require Import fintype finset fingroup morphism" ]
fingroup/presentation.v
isoGrpP
homGrp_transrT gT (H : {set rT}) (G : {group gT}) p : H \homg G -> G \homg Grp p -> H \homg Grp p. Proof. case/homgP=> h <-{H}; rewrite /hom; move: {p}(p _) => p. have evalG e t: all [in G] e -> eval (map h e) t = h (eval e t). move=> Ge; apply: (@proj2 (eval e t \in G)); elim: t => /=. - move=> i; case: (leqP (size e) i) => [le_e_i | lt_i_e]. by rewrite !nth_default ?size_map ?morph1. by rewrite (nth_map 1) // [_ \in G](allP Ge) ?mem_nth. - by rewrite morph1. - by move=> t [Gt ->]; rewrite groupV morphV. - by move=> t [Gt ->] n; rewrite groupX ?morphX. - by move=> t1 [Gt1 ->] t2 [Gt2 ->]; rewrite groupM ?morphM. - by move=> t1 [Gt1 ->] t2 [Gt2 ->]; rewrite groupJ ?morphJ. by move=> t1 [Gt1 ->] t2 [Gt2 ->]; rewrite groupR ?morphR. have and_relE xT x1 x2 r: @and_rel xT x1 x2 r = (x1 == x2) && r :> bool. by case: r => //=; rewrite andbT. have rsatG e f: all [in G] e -> rel e f NoRel -> rel (map h e) f NoRel. move=> Ge; have: NoRel -> NoRel by []; move: NoRel {2 4}NoRel. elim: f => [x1 x2 | f1 IH1 f2 IH2] r hr IHr; last by apply: IH1; apply: IH2. by rewrite !and_relE !evalG //; case/andP; move/eqP->; rewrite eqxx. set s := env1; set vT := gT : finType in s *. set s' := env1; set vT' := rT : finType in s' *. have (v): let: Env A e := s v in A \subset G -> all [in G] e /\ exists v', s' v' = Env (h @* A) (map h e). - rewrite /= cycle_subG andbT => Gv; rewrite morphim_cycle //. by split; last exists (h v). elim: p 1%N vT vT' s s' => /= [p IHp | f] n vT vT ...
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq", "From mathcomp Require Import fintype finset fingroup morphism" ]
fingroup/presentation.v
homGrp_trans
eq_homGrpgT rT (G : {group gT}) (H : {group rT}) p : G \isog H -> (G \homg Grp p) = (H \homg Grp p). Proof. by rewrite isogEhom => /andP[homGH homHG]; apply/idP/idP; apply: homGrp_trans. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq", "From mathcomp Require Import fintype finset fingroup morphism" ]
fingroup/presentation.v
eq_homGrp
isoGrp_transgT rT (G : {group gT}) (H : {group rT}) p : G \isog H -> H \isog Grp p -> G \isog Grp p. Proof. by move=> isoGH isoHp kT K; rewrite -isoHp; apply: eq_homgr. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq", "From mathcomp Require Import fintype finset fingroup morphism" ]
fingroup/presentation.v
isoGrp_trans
intro_isoGrpgT (G : {group gT}) p : G \homg Grp p -> (forall rT (H : {group rT}), H \homg Grp p -> H \homg G) -> G \isog Grp p. Proof. move=> homGp freeG rT H. by apply/idP/idP=> [homHp|]; [apply: homGrp_trans homGp | apply: freeG]. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq", "From mathcomp Require Import fintype finset fingroup morphism" ]
fingroup/presentation.v
intro_isoGrp
H:= <<A>>.
Notation
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
H
coset_range:= [pred B in rcosets H 'N(A)].
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
coset_range
coset_of: Type := Coset { set_of_coset :> GroupSet.sort gT; _ : coset_range set_of_coset }. HB.instance Definition _ := [isSub for set_of_coset]. #[hnf] HB.instance Definition _ := [Finite of coset_of by <:].
Record
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
coset_of
coset_one_proof: coset_range H. Proof. by apply/rcosetsP; exists (1 : gT); rewrite (group1, mulg1). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
coset_one_proof
coset_one:= Coset coset_one_proof. Let nNH := subsetP (norm_gen A).
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
coset_one
coset_range_mul(B C : coset_of) : coset_range (B * C). Proof. case: B C => _ /= /rcosetsP[x Nx ->] [_ /= /rcosetsP[y Ny ->]]. by apply/rcosetsP; exists (x * y); rewrite !(groupM, rcoset_mul, nNH). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
coset_range_mul
coset_mulB C := Coset (coset_range_mul B C).
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
coset_mul
coset_range_inv(B : coset_of) : coset_range B^-1. Proof. case: B => _ /= /rcosetsP[x Nx ->]; rewrite norm_rlcoset ?nNH // invg_lcoset. by apply/rcosetsP; exists x^-1; rewrite ?groupV. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
coset_range_inv
coset_invB := Coset (coset_range_inv B).
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
coset_inv
coset_mulP: associative coset_mul. Proof. by move=> B C D; apply: val_inj; rewrite /= mulgA. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
coset_mulP
coset_oneP: left_id coset_one coset_mul. Proof. case=> B coB; apply: val_inj => /=; case/rcosetsP: coB => x Hx ->{B}. by rewrite mulgA mulGid. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
coset_oneP
coset_invP: left_inverse coset_one coset_inv coset_mul. Proof. case=> B coB; apply: val_inj => /=; case/rcosetsP: coB => x Hx ->{B}. rewrite invg_rcoset -mulgA (mulgA H) mulGid. by rewrite norm_rlcoset ?nNH // -lcosetM mulVg mul1g. Qed. HB.instance Definition _ := Finite_isGroup.Build coset_of coset_mulP coset_oneP coset_invP.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
coset_invP
cosetx : coset_of := insubd (1 : coset_of) (H :* x).
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
coset
val_coset_primx : x \in 'N(A) -> coset x :=: H :* x. Proof. by move=> Nx; rewrite val_insubd /= mem_rcosets -{1}(mul1g x) mem_mulg. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
val_coset_prim
coset_morphM: {in 'N(A) &, {morph coset : x y / x * y}}. Proof. move=> x y Nx Ny; apply: val_inj. by rewrite /= !val_coset_prim ?groupM //= rcoset_mul ?nNH. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
coset_morphM
coset_morphism:= Morphism coset_morphM.
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
coset_morphism
ker_coset_prim: 'ker coset = 'N_H(A). Proof. apply/setP=> z; rewrite !in_setI andbC 2!inE -val_eqE /=. case Nz: (z \in 'N(A)); rewrite ?andbF ?val_coset_prim // !andbT. by apply/eqP/idP=> [<-| Az]; rewrite (rcoset_refl, rcoset_id). Qed. Implicit Type xbar : coset_of.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
ker_coset_prim
coset_memy xbar : y \in xbar -> coset y = xbar. Proof. case: xbar => /= Hx NHx Hxy; apply: val_inj=> /=. case/rcosetsP: NHx (NHx) Hxy => x Nx -> NHx Hxy. by rewrite val_insubd /= (rcoset_eqP Hxy) NHx. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
coset_mem
mem_repr_cosetxbar : repr xbar \in xbar. Proof. by case: xbar => /= _ /rcosetsP[x _ ->]; apply: mem_repr_rcoset. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
mem_repr_coset
repr_coset1: repr (1 : coset_of) = 1. Proof. exact: repr_group. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
repr_coset1
coset_reprK: cancel (fun xbar => repr xbar) coset. Proof. by move=> xbar; apply: coset_mem (mem_repr_coset xbar). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
coset_reprK
cosetPxbar : {x | x \in 'N(A) & xbar = coset x}. Proof. pose x := repr 'N_xbar(A). have [xbar_x Nx]: x \in xbar /\ x \in 'N(A). apply/setIP; rewrite {}/x; case: xbar => /= _ /rcosetsP[y Ny ->]. by apply: (mem_repr y); rewrite inE rcoset_refl. by exists x; last rewrite (coset_mem xbar_x). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
cosetP
coset_idx : x \in A -> coset x = 1. Proof. by move=> Ax; apply: coset_mem; apply: mem_gen. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
coset_id
im_coset: coset @* 'N(A) = setT. Proof. by apply/setP=> xbar; case: (cosetP xbar) => x Nx ->; rewrite inE mem_morphim. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
im_coset
sub_im_coset(C : {set coset_of}) : C \subset coset @* 'N(A). Proof. by rewrite im_coset subsetT. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
sub_im_coset
cosetpre_properC D : (coset @*^-1 C \proper coset @*^-1 D) = (C \proper D). Proof. by rewrite morphpre_proper ?sub_im_coset. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
cosetpre_proper
quotient: {set coset_of} := coset @* Q.
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient
quotientE: quotient = coset @* Q. Proof. by []. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotientE
quotient_groupG A : {group coset_of A} := Eval hnf in [group of G / A]. Infix "/" := quotient_group : Group_scope.
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient_group
val_cosetx : x \in 'N(H) -> coset H x :=: H :* x. Proof. by move=> Nx; rewrite val_coset_prim // genGid. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
val_coset
coset_defaultx : (x \in 'N(H)) = false -> coset H x = 1. Proof. move=> Nx; apply: val_inj. by rewrite val_insubd /= mem_rcosets /= genGid mulSGid ?normG ?Nx. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
coset_default
coset_normxbar : xbar \subset 'N(H). Proof. case: xbar => /= _ /rcosetsP[x Nx ->]. by rewrite genGid mul_subG ?sub1set ?normG. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
coset_norm
ker_coset: 'ker (coset H) = H. Proof. by rewrite ker_coset_prim genGid (setIidPl _) ?normG. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
ker_coset
coset_idrx : x \in 'N(H) -> coset H x = 1 -> x \in H. Proof. by move=> Nx Hx1; rewrite -ker_coset mem_morphpre //= Hx1 set11. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
coset_idr
repr_coset_normxbar : repr xbar \in 'N(H). Proof. exact: subsetP (coset_norm _) _ (mem_repr_coset _). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
repr_coset_norm
imset_cosetG : coset H @: G = G / H. Proof. apply/eqP; rewrite eqEsubset andbC imsetS ?subsetIr //=. apply/subsetP=> _ /imsetP[x Gx ->]. by case Nx: (x \in 'N(H)); rewrite ?(coset_default Nx) ?mem_morphim ?group1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
imset_coset
val_quotientA : val @: (A / H) = rcosets H 'N_A(H). Proof. apply/setP=> B; apply/imsetP/rcosetsP=> [[xbar Axbar]|[x /setIP[Ax Nx]]] ->{B}. case/morphimP: Axbar => x Nx Ax ->{xbar}. by exists x; [rewrite inE Ax | rewrite /= val_coset]. by exists (coset H x); [apply/morphimP; exists x | rewrite /= val_coset]. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
val_quotient
card_quotient_subnormA : #|A / H| = #|'N_A(H) : H|. Proof. by rewrite -(card_imset _ val_inj) val_quotient. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
card_quotient_subnorm
leq_quotientA : #|A / H| <= #|A|. Proof. exact: leq_morphim. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
leq_quotient
ltn_quotientA : H :!=: 1 -> H \subset A -> #|A / H| < #|A|. Proof. by move=> ntH sHA; rewrite ltn_morphim // ker_coset (setIidPr sHA) proper1G. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
ltn_quotient
card_quotientA : A \subset 'N(H) -> #|A / H| = #|A : H|. Proof. by move=> nHA; rewrite card_quotient_subnorm (setIidPl nHA). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
card_quotient
divg_normalG : H <| G -> #|G| %/ #|H| = #|G / H|. Proof. by case/andP=> sHG nHG; rewrite divgS ?card_quotient. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
divg_normal
coset1: coset H 1 :=: H. Proof. by rewrite morph1 /= genGid. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
coset1
cosetpre1: coset H @*^-1 1 = H. Proof. by rewrite -kerE ker_coset. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
cosetpre1
im_quotient: 'N(H) / H = setT. Proof. exact: im_coset. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
im_quotient
quotientT: setT / H = setT. Proof. by rewrite -im_quotient; apply: morphimT. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotientT
quotientInormA : 'N_A(H) / H = A / H. Proof. by rewrite /quotient setIC morphimIdom. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotientInorm
quotient_setIpreA D : (A :&: coset H @*^-1 D) / H = A / H :&: D. Proof. exact: morphim_setIpre. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient_setIpre
mem_quotientx G : x \in G -> coset H x \in G / H. Proof. by move=> Gx; rewrite -imset_coset imset_f. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
mem_quotient
quotientSA B : A \subset B -> A / H \subset B / H. Proof. exact: morphimS. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotientS
quotient0: set0 / H = set0. Proof. exact: morphim0. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient0
quotient_set1x : x \in 'N(H) -> [set x] / H = [set coset H x]. Proof. exact: morphim_set1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient_set1
quotient1: 1 / H = 1. Proof. exact: morphim1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient1
quotientVA : A^-1 / H = (A / H)^-1. Proof. exact: morphimV. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotientV
quotientMlA B : A \subset 'N(H) -> A * B / H = (A / H) * (B / H). Proof. exact: morphimMl. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotientMl
quotientMrA B : B \subset 'N(H) -> A * B / H = (A / H) * (B / H). Proof. exact: morphimMr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotientMr
cosetpreMC D : coset H @*^-1 (C * D) = coset H @*^-1 C * coset H @*^-1 D. Proof. by rewrite morphpreMl ?sub_im_coset. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
cosetpreM
quotientJA x : x \in 'N(H) -> A :^ x / H = (A / H) :^ coset H x. Proof. exact: morphimJ. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotientJ
quotientUA B : (A :|: B) / H = A / H :|: B / H. Proof. exact: morphimU. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotientU
quotientIA B : (A :&: B) / H \subset A / H :&: B / H. Proof. exact: morphimI. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotientI
quotientYA B : A \subset 'N(H) -> B \subset 'N(H) -> (A <*> B) / H = (A / H) <*> (B / H). Proof. exact: morphimY. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotientY
quotient_homgA : A \subset 'N(H) -> homg (A / H) A. Proof. exact: morphim_homg. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotient_homg
coset_kerlx y : x \in H -> coset H (x * y) = coset H y. Proof. move=> Hx; case Ny: (y \in 'N(H)); first by rewrite mkerl ?ker_coset. by rewrite !coset_default ?groupMl // (subsetP (normG H)). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
coset_kerl
coset_kerrx y : y \in H -> coset H (x * y) = coset H x. Proof. move=> Hy; case Nx: (x \in 'N(H)); first by rewrite mkerr ?ker_coset. by rewrite !coset_default ?groupMr // (subsetP (normG H)). Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
coset_kerr
rcoset_kercosetPx y : x \in 'N(H) -> y \in 'N(H) -> reflect (coset H x = coset H y) (x \in H :* y). Proof. by rewrite -{6}ker_coset; apply: rcoset_kerP. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
rcoset_kercosetP
kercoset_rcosetx y : x \in 'N(H) -> y \in 'N(H) -> coset H x = coset H y -> exists2 z, z \in H & x = z * y. Proof. by move=> Nx Ny eqfxy; rewrite -ker_coset; apply: ker_rcoset. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
kercoset_rcoset
quotientGIG A : H \subset G -> (G :&: A) / H = G / H :&: A / H. Proof. by rewrite -{1}ker_coset; apply: morphimGI. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq div", "From mathcomp Require Import choice fintype prime finset fingroup morphism", "From mathcomp Require Import automorphism" ]
fingroup/quotient.v
quotientGI