fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
factm_morphM: {in q @* G &, {morph ff : x y / x * y}}. Proof. move=> _ _ /morphimP[x Hx Gx ->] /morphimP[y Hy Gy ->]. by rewrite -morphM ?factmE ?groupM // morphM. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
factm_morphM
factm_morphism:= Morphism factm_morphM.
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
factm_morphism
morphim_factm(A : {set aT}) : ff @* (q @* A) = f @* A. Proof. rewrite -morphim_comp /= {1}/morphim /= morphimGK //; last first. by rewrite (subset_trans sKqKf) ?subsetIl. apply/setP=> y; apply/morphimP/morphimP; by case=> x Gx Ax ->{y}; exists x; rewrite //= factmE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_factm
morphpre_factm(C : {set rT}) : ff @*^-1 C = q @* (f @*^-1 C). Proof. apply/setP=> y /[!inE]/=; apply/andP/morphimP=> [[]|[x Hx]]; last first. by case/morphpreP=> Gx Cfx ->; rewrite factmE ?imset_f ?inE ?Hx. case/morphimP=> x Hx Gx ->; rewrite factmE //. by exists x; rewrite // !inE Gx. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpre_factm
ker_factm: 'ker ff = q @* 'ker f. Proof. exact: morphpre_factm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
ker_factm
injm_factm: 'injm f -> 'injm ff. Proof. by rewrite ker_factm => /trivgP->; rewrite morphim1. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
injm_factm
injm_factmP: reflect ('ker f = 'ker q) ('injm ff). Proof. rewrite ker_factm -morphimIdom sub_morphim_pre ?subsetIl //. rewrite setIA (setIidPr sGH) (sameP setIidPr eqP) (setIidPl _) // eq_sym. exact: eqP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
injm_factmP
ker_factm_loc(K : {group aT}) : 'ker_(q @* K) ff = q @* 'ker_K f. Proof. by rewrite ker_factm -morphimIG. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
ker_factm_loc
invm_subker: 'ker f \subset 'ker (idm G). Proof. by rewrite ker_idm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
invm_subker
invm:= factm invm_subker (subxx _).
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
invm
invm_morphism:= Eval hnf in [morphism of invm].
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
invm_morphism
invmE: {in G, cancel f invm}. Proof. exact: factmE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
invmE
invmK: {in f @* G, cancel invm f}. Proof. by move=> fx; case/morphimP=> x _ Gx ->; rewrite invmE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
invmK
morphpre_invmA : invm @*^-1 A = f @* A. Proof. by rewrite morphpre_factm morphpre_idm morphimIdom. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpre_invm
morphim_invmA : A \subset G -> invm @* (f @* A) = A. Proof. by move=> sAG; rewrite morphim_factm morphim_idm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_invm
morphim_invmEC : invm @* C = f @*^-1 C. Proof. rewrite -morphpreIdom -(morphim_invm (subsetIl _ _)). by rewrite morphimIdom -morphpreIim morphpreK (subsetIl, morphimIdom). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_invmE
injm_properA B : A \subset G -> B \subset G -> (f @* A \proper f @* B) = (A \proper B). Proof. move=> dA dB; rewrite -morphpre_invm -(morphpre_invm B). by rewrite morphpre_proper ?morphim_invm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
injm_proper
injm_invm: 'injm invm. Proof. by move/can_in_inj/injmP: invmK. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
injm_invm
ker_invm: 'ker invm = 1. Proof. by move/trivgP: injm_invm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
ker_invm
im_invm: invm @* (f @* G) = G. Proof. exact: morphim_invm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
im_invm
ifactm:= tag (domP [morphism of g \o invm injf] (morphpre_invm injf G)).
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
ifactm
ifactmE: {in D, forall x, ifactm (f x) = g x}. Proof. rewrite /ifactm => x Dx; case: domP => f' /= [def_f' _ _ _]. by rewrite {f'}def_f' //= invmE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
ifactmE
morphim_ifactm(A : {set gT}) : A \subset D -> ifactm @* (f @* A) = g @* A. Proof. rewrite /ifactm => sAD; case: domP => _ /= [_ _ _ ->]. by rewrite morphim_comp morphim_invm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_ifactm
im_ifactm: G \subset D -> ifactm @* (f @* G) = g @* G. Proof. exact: morphim_ifactm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
im_ifactm
morphpre_ifactmC : ifactm @*^-1 C = f @* (g @*^-1 C). Proof. rewrite /ifactm; case: domP => _ /= [_ _ -> _]. by rewrite morphpre_comp morphpre_invm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpre_ifactm
ker_ifactm: 'ker ifactm = f @* 'ker g. Proof. exact: morphpre_ifactm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
ker_ifactm
injm_ifactm: 'injm g -> 'injm ifactm. Proof. by rewrite ker_ifactm => /trivgP->; rewrite morphim1. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
injm_ifactm
morphic(f : aT -> rT) := [forall u in [predX A & A], f (u.1 * u.2) == f u.1 * f u.2].
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphic
isomf := f @: A^# == B^#.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
isom
misomf := morphic f && isom f.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
misom
isog:= [exists f : {ffun aT -> rT}, misom f].
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
isog
morphicP: reflect {in A &, {morph f : x y / x * y}} (morphic f). Proof. apply: (iffP forallP) => [fM x y Ax Ay | fM [x y] /=]. by apply/eqP; have:= fM (x, y); rewrite inE /= Ax Ay. by apply/implyP=> /andP[Ax Ay]; rewrite fM. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphicP
morphmof morphic f := f : aT -> FinGroup.sort rT.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphm
morphmEfM : morphm fM = f. Proof. by []. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphmE
morphm_morphismfM := @Morphism _ _ A (morphm fM) (morphicP fM).
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphm_morphism
misomPf : reflect {fM : morphic f & isom (morphm fM)} (misom f). Proof. by apply: (iffP andP) => [] [fM fiso] //; exists fM. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
misomP
misom_isogf : misom f -> isog. Proof. case/andP=> fM iso_f; apply/existsP; exists (finfun f). apply/andP; split; last by rewrite /misom /isom !(eq_imset _ (ffunE f)). by apply/forallP=> u; rewrite !ffunE; apply: forallP fM u. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
misom_isog
isom_isog(D : {group aT}) (f : {morphism D >-> rT}) : A \subset D -> isom f -> isog. Proof. move=> sAD isof; apply: (@misom_isog f); rewrite /misom isof andbT. by apply/morphicP; apply: (sub_in2 (subsetP sAD) (morphM f)). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
isom_isog
isog_isom: isog -> {f : {morphism A >-> rT} | isom f}. Proof. by case/existsP/sigW=> f /misomP[fM isom_f]; exists (morphm_morphism fM). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
isog_isom
isomP(f : {morphism G >-> rT}) : reflect ('injm f /\ f @* G = H) (isom G H f). Proof. apply: (iffP eqP) => [eqfGH | [injf <-]]; last first. by rewrite -injmD1 // morphimEsub ?subsetDl. split. apply/subsetP=> x /morphpreP[Gx fx1]; have: f x \notin H^# by rewrite inE fx1. by apply: contraR => ntx; rewrite -eqfGH imset_f // inE ntx. rewrite morphimEdom -{2}(setD1K (group1 G)) imsetU eqfGH. by rewrite imset_set1 morph1 setD1K. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
isomP
isogP: reflect (exists2 f : {morphism G >-> rT}, 'injm f & f @* G = H) (G \isog H). Proof. apply: (iffP idP) => [/isog_isom[f /isomP[]] | [f injf fG]]; first by exists f. by apply: (isom_isog f) => //; apply/isomP. Qed. Variable f : {morphism G >-> rT}. Hypothesis isoGH : isom G H f.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
isogP
isom_inj: 'injm f. Proof. by have /isomP[] := isoGH. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
isom_inj
isom_im: f @* G = H. Proof. by have /isomP[] := isoGH. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
isom_im
isom_card: #|G| = #|H|. Proof. by rewrite -isom_im card_injm ?isom_inj. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
isom_card
isom_sub_im: H \subset f @* G. Proof. by rewrite isom_im. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
isom_sub_im
isom_inv:= restrm isom_sub_im (invm isom_inj).
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
isom_inv
morphim_isom(H : {group aT}) (K : {group rT}) : H \subset G -> isom H K f -> f @* H = K. Proof. by case/(restrmP f)=> g [gf _ _ <- //]; rewrite -gf; case/isomP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_isom
sub_isom(A : {set aT}) (C : {set rT}) : A \subset G -> f @* A = C -> 'injm f -> isom A C f. Proof. move=> sAG; case: (restrmP f sAG) => g [_ _ _ img] <-{C} injf. rewrite /isom -morphimEsub ?morphimDG ?morphim1 //. by rewrite subDset setUC subsetU ?sAG. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
sub_isom
sub_isog(A : {set aT}) : A \subset G -> 'injm f -> isog A (f @* A). Proof. by move=> sAG injf; apply: (isom_isog f sAG); apply: sub_isom. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
sub_isog
restr_isom_to(A : {set aT}) (C R : {group rT}) (sAG : A \subset G) : f @* A = C -> isom G R f -> isom A C (restrm sAG f). Proof. by move=> defC /isomP[inj_f _]; apply: sub_isom. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
restr_isom_to
restr_isom(A : {group aT}) (R : {group rT}) (sAG : A \subset G) : isom G R f -> isom A (f @* A) (restrm sAG f). Proof. exact: restr_isom_to. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
restr_isom
idm_isom: isom G G (idm G). Proof. exact: sub_isom (im_idm G) (injm_idm G). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
idm_isom
isog_refl: G \isog G. Proof. exact: isom_isog idm_isom. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
isog_refl
card_isog: G \isog H -> #|G| = #|H|. Proof. by case/isogP=> f injf <-; apply: isom_card (f) _; apply/isomP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
card_isog
isog_abelian: G \isog H -> abelian G = abelian H. Proof. by case/isogP=> f injf <-; rewrite injm_abelian. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
isog_abelian
trivial_isog: G :=: 1 -> H :=: 1 -> G \isog H. Proof. move=> -> ->; apply/isogP. exists [morphism of @trivm gT hT 1]; rewrite /= ?morphim1 //. by rewrite ker_trivm; apply: subxx. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
trivial_isog
isog_eq1: G \isog H -> (G :==: 1) = (H :==: 1). Proof. by move=> isoGH; rewrite !trivg_card1 card_isog. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
isog_eq1
isom_sym(f : {morphism G >-> hT}) (isoGH : isom G H f) : isom H G (isom_inv isoGH). Proof. rewrite sub_isom 1?injm_restrm ?injm_invm // im_restrm. by rewrite -(isom_im isoGH) im_invm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
isom_sym
isog_symr: G \isog H -> H \isog G. Proof. by case/isog_isom=> f /isom_sym/isom_isog->. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
isog_symr
isog_trans: G \isog H -> H \isog K -> G \isog K. Proof. case/isogP=> f injf <-; case/isogP=> g injg <-. have defG: f @*^-1 (f @* G) = G by rewrite morphimGK ?subsetIl. rewrite -morphim_comp -{1 8}defG. by apply/isogP; exists [morphism of g \o f]; rewrite ?injm_comp. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
isog_trans
nclasses_isog: G \isog H -> #|classes G| = #|classes H|. Proof. by case/isogP=> f injf <-; rewrite nclasses_injm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
nclasses_isog
isog_sym: (G \isog H) = (H \isog G). Proof. by apply/idP/idP; apply: isog_symr. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
isog_sym
isog_transl: G \isog H -> (G \isog K) = (H \isog K). Proof. by move=> iso; apply/idP/idP; apply: isog_trans; rewrite // -isog_sym. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
isog_transl
isog_transr: G \isog H -> (K \isog G) = (K \isog H). Proof. by move=> iso; apply/idP/idP; move/isog_trans; apply; rewrite // -isog_sym. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
isog_transr
homgrT aT (C : {set rT}) (D : {set aT}) := [exists (f : {ffun aT -> rT} | morphic D f), f @: D == C].
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
homg
homgPrT aT (C : {set rT}) (D : {set aT}) : reflect (exists f : {morphism D >-> rT}, f @* D = C) (homg C D). Proof. apply: (iffP exists_eq_inP) => [[f fM <-] | [f <-]]. by exists (morphm_morphism fM); rewrite /morphim /= setIid. exists (finfun f); first by apply/morphicP=> x y Dx Dy; rewrite !ffunE morphM. by rewrite /morphim setIid; apply: eq_imset => x; rewrite ffunE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
homgP
morphim_homgaT rT (A D : {set aT}) (f : {morphism D >-> rT}) : A \subset D -> homg (f @* A) A. Proof. move=> sAD; apply/homgP; exists (restrm_morphism sAD f). by rewrite morphim_restrm setIid. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_homg
leq_homgrT aT (C : {set rT}) (G : {group aT}) : homg C G -> #|C| <= #|G|. Proof. by case/homgP=> f <-; apply: leq_morphim. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
leq_homg
homg_reflaT (A : {set aT}) : homg A A. Proof. by apply/homgP; exists (idm_morphism A); rewrite im_idm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
homg_refl
homg_transaT (B : {set aT}) rT (C : {set rT}) gT (G : {group gT}) : homg C B -> homg B G -> homg C G. Proof. move=> homCB homBG; case/homgP: homBG homCB => fG <- /homgP[fK <-]. by rewrite -morphim_comp morphim_homg // -sub_morphim_pre. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
homg_trans
isogEcardrT aT (G : {group rT}) (H : {group aT}) : (G \isog H) = (homg G H) && (#|H| <= #|G|). Proof. rewrite isog_sym; apply/isogP/andP=> [[f injf <-] | []]. by rewrite leq_eqVlt eq_sym card_im_injm injf morphim_homg. case/homgP=> f <-; rewrite leq_eqVlt eq_sym card_im_injm. by rewrite ltnNge leq_morphim orbF; exists f. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
isogEcard
isog_homrT aT (G : {group rT}) (H : {group aT}) : G \isog H -> homg G H. Proof. by rewrite isogEcard; case/andP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
isog_hom
isogEhomrT aT (G : {group rT}) (H : {group aT}) : (G \isog H) = homg G H && homg H G. Proof. apply/idP/andP=> [isoGH | [homGH homHG]]. by rewrite !isog_hom // isog_sym. by rewrite isogEcard homGH leq_homg. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
isogEhom
eq_homglgT aT rT (G : {group gT}) (H : {group aT}) (K : {group rT}) : G \isog H -> homg G K = homg H K. Proof. by rewrite isogEhom => /andP[homGH homHG]; apply/idP/idP; apply: homg_trans. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
eq_homgl
eq_homgrgT rT aT (G : {group gT}) (H : {group rT}) (K : {group aT}) : G \isog H -> homg K G = homg K H. Proof. rewrite isogEhom => /andP[homGH homHG]. by apply/idP/idP=> homK; apply: homg_trans homK _. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
eq_homgr
sgval_morphism:= Morphism (@sgvalM _ G).
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
sgval_morphism
subg_morphism:= Morphism (@subgM _ G).
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
subg_morphism
injm_sgval: 'injm sgval. Proof. exact/injmP/(in2W subg_inj). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
injm_sgval
injm_subg: 'injm (subg G). Proof. exact/injmP/(can_in_inj subgK). Qed. Hint Resolve injm_sgval injm_subg : core.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
injm_subg
ker_sgval: 'ker sgval = 1. Proof. exact/trivgP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
ker_sgval
ker_subg: 'ker (subg G) = 1. Proof. exact/trivgP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
ker_subg
im_subg: subg G @* G = [subg G]. Proof. apply/eqP; rewrite -subTset morphimEdom. by apply/subsetP=> u _; rewrite -(sgvalK u) imset_f ?subgP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
im_subg
sgval_subA : sgval @* A \subset G. Proof. by apply/subsetP=> x; case/imsetP=> u _ ->; apply: subgP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
sgval_sub
sgvalmKA : subg G @* (sgval @* A) = A. Proof. apply/eqP; rewrite eqEcard !card_injm ?subsetT ?sgval_sub // leqnn andbT. rewrite -morphim_comp; apply/subsetP=> _ /morphimP[v _ Av ->] /=. by rewrite sgvalK. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
sgvalmK
subgmK(A : {set gT}) : A \subset G -> sgval @* (subg G @* A) = A. Proof. move=> sAG; apply/eqP; rewrite eqEcard !card_injm ?subsetT //. rewrite leqnn andbT -morphim_comp morphimE /= morphpreT. by apply/subsetP=> _ /morphimP[v Gv Av ->] /=; rewrite subgK. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
subgmK
im_sgval: sgval @* [subg G] = G. Proof. by rewrite -{2}im_subg subgmK. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
im_sgval
isom_subg: isom G [subg G] (subg G). Proof. by apply/isomP; rewrite im_subg. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
isom_subg
isom_sgval: isom [subg G] G sgval. Proof. by apply/isomP; rewrite im_sgval. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
isom_sgval
isog_subg: isog G [subg G]. Proof. exact: isom_isog isom_subg. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
isog_subg
perm_type: predArgType := Perm (pval : {ffun T -> T}) & injectiveb pval.
Inductive
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype tuple finfun bigop finset binomial", "From mathcomp Require Import fingroup morphism" ]
fingroup/perm.v
perm_type
pvalp := let: Perm f _ := p in f.
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype tuple finfun bigop finset binomial", "From mathcomp Require Import fingroup morphism" ]
fingroup/perm.v
pval
perm_of:= perm_type. Identity Coercion type_of_perm : perm_of >-> perm_type. HB.instance Definition _ := [isSub for pval]. HB.instance Definition _ := [Finite of perm_type by <:].
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype tuple finfun bigop finset binomial", "From mathcomp Require Import fingroup morphism" ]
fingroup/perm.v
perm_of
perm_proof(f : T -> T) : injective f -> injectiveb (finfun f). Proof. by move=> f_inj; apply/injectiveP; apply: eq_inj f_inj _ => x; rewrite ffunE. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype tuple finfun bigop finset binomial", "From mathcomp Require Import fingroup morphism" ]
fingroup/perm.v
perm_proof
perm_unlock:= Unlockable perm.unlock. HB.lock Definition fun_of_perm T (u : perm_type T) : T -> T := val u.
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype tuple finfun bigop finset binomial", "From mathcomp Require Import fingroup morphism" ]
fingroup/perm.v
perm_unlock
fun_of_perm_unlock:= Unlockable fun_of_perm.unlock.
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype tuple finfun bigop finset binomial", "From mathcomp Require Import fingroup morphism" ]
fingroup/perm.v
fun_of_perm_unlock
fun_of_perm: perm_type >-> Funclass.
Coercion
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype tuple finfun bigop finset binomial", "From mathcomp Require Import fingroup morphism" ]
fingroup/perm.v
fun_of_perm
permPs t : s =1 t <-> s = t. Proof. by split=> [| -> //]; rewrite unlock => eq_sv; apply/val_inj/ffunP. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype tuple finfun bigop finset binomial", "From mathcomp Require Import fingroup morphism" ]
fingroup/perm.v
permP
pvalEs : pval s = s :> (T -> T). Proof. by rewrite [@fun_of_perm]unlock. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype tuple finfun bigop finset binomial", "From mathcomp Require Import fingroup morphism" ]
fingroup/perm.v
pvalE
permEf f_inj : @perm T f f_inj =1 f. Proof. by move=> x; rewrite -pvalE [@perm]unlock ffunE. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype tuple finfun bigop finset binomial", "From mathcomp Require Import fingroup morphism" ]
fingroup/perm.v
permE
perm_inj{s} : injective s. Proof. by rewrite -!pvalE; apply: (injectiveP _ (valP s)). Qed. Hint Resolve perm_inj : core.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path", "From mathcomp Require Import choice fintype tuple finfun bigop finset binomial", "From mathcomp Require Import fingroup morphism" ]
fingroup/perm.v
perm_inj