fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
ker_dprodm: 'ker dprodm = [set a * b^-1 | a in H, b in K & fH a == fK b]. Proof. exact: ker_cprodm. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
ker_dprodm
injm_dprodm: 'injm dprodm = [&& 'injm fH, 'injm fK & fH @* H :&: fK @* K == 1]. Proof. rewrite injm_cprodm -(morphimIdom fH K). by case/dprodP: eqHK_G => _ _ _ ->; rewrite morphim1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
injm_dprodm
isog_dprodA B G C D L : A \x B = G -> C \x D = L -> isog A C -> isog B D -> isog G L. Proof. move=> defG {C D} /dprodP[[C D -> ->] defL cCD trCD]. case/dprodP: defG (defG) => {A B} [[A B -> ->] defG _ _] dG defC defD. case/isogP: defC defL cCD trCD => fA injfA <-{C}. case/isogP: defD => fB injfB <-{D} defL cCD trCD. apply/isogP; exists (dprodm_morphism dG cCD). by rewrite injm_dprodm injfA injfB trCD eqxx. by rewrite /= -{2}defG morphim_dprodm. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
isog_dprod
xsdprodm_dom1: DgH \subset 'dom fsH. Proof. by rewrite ['dom _]morphpre_invm. Qed. Local Notation gH := (restrm xsdprodm_dom1 fsH).
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
xsdprodm_dom1
xsdprodm_dom2: DgK \subset 'dom fsK. Proof. by rewrite ['dom _]morphpre_invm. Qed. Local Notation gK := (restrm xsdprodm_dom2 fsK).
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
xsdprodm_dom2
im_sdprodm1: gH @* DgH = fH @* H. Proof. by rewrite morphim_restrm setIid morphim_comp im_invm. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
im_sdprodm1
im_sdprodm2: gK @* DgK = fK @* K. Proof. by rewrite morphim_restrm setIid morphim_comp im_invm. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
im_sdprodm2
xsdprodm_act: {in DgH & DgK, morph_act 'J 'J gH gK}. Proof. move=> fh fk; case/morphimP=> h _ Hh ->{fh}; case/morphimP=> k _ Kk ->{fk}. by rewrite /= -sdpair_act // /restrm /= !invmE ?actf ?gact_stable. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
xsdprodm_act
xsdprodm:= sdprodm (sdprod_sdpair to) xsdprodm_act.
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
xsdprodm
xsdprod_morphism:= [morphism of xsdprodm].
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
xsdprod_morphism
im_xsdprodm: xsdprodm @* setT = fH @* H * fK @* K. Proof. by rewrite -im_sdpair morphim_sdprodm // im_sdprodm1 im_sdprodm2. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
im_xsdprodm
injm_xsdprodm: 'injm xsdprodm = [&& 'injm fH, 'injm fK & fH @* H :&: fK @* K == 1]. Proof. rewrite injm_sdprodm im_sdprodm1 im_sdprodm2 !subG1 /=. rewrite (ker_restrm xsdprodm_dom1) (ker_restrm xsdprodm_dom2) /= !ker_comp. rewrite !morphpre_invm !morphimIim. by rewrite !morphim_injm_eq1 ?subsetIl ?injm_sdpair1 ?injm_sdpair2. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
injm_xsdprodm
mulgm: gT * gT -> _ := uncurry mul.
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
mulgm
imset_mulgm(A B : {set gT}) : mulgm @: setX A B = A * B. Proof. by rewrite -curry_imset2X. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
imset_mulgm
mulgmPH1 H2 G : reflect (H1 \x H2 = G) (misom (setX H1 H2) G mulgm). Proof. apply: (iffP misomP) => [[pM /isomP[injf /= <-]] | ]. have /dprodP[_ /= defX cH12] := setX_dprod H1 H2. rewrite -{4}defX {}defX => /(congr1 (fun A => morphm pM @* A)). move/(morphimS (morphm_morphism pM)): cH12 => /=. have sH1H: setX H1 1 \subset setX H1 H2 by rewrite setXS ?sub1G. have sH2H: setX 1 H2 \subset setX H1 H2 by rewrite setXS ?sub1G. rewrite morphim1 injm_cent ?injmI //= subsetI => /andP[_]. by rewrite !morphimEsub //= !imset_mulgm mulg1 mul1g; apply: dprodE. case/dprodP=> _ defG cH12 trH12. have fM: morphic (setX H1 H2) mulgm. apply/morphicP=> [[x1 x2] [y1 y2] /setXP[_ Hx2] /setXP[Hy1 _]]. by rewrite /= mulgA -(mulgA x1) -(centsP cH12 x2 _ y1) ?mulgA//. exists fM; apply/isomP; split; last by rewrite morphimEsub //= imset_mulgm. apply/subsetP=> [[x1 x2]]; rewrite !inE /= andbC -eq_invg_mul. case: eqP => //= <-; rewrite groupV -in_setI trH12 => /set1P->. by rewrite invg1 eqxx. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
mulgmP
morphism(D : {set aT}) : Type := Morphism { mfun :> aT -> FinGroup.sort rT; _ : {in D &, {morph mfun : x y / x * y}} }.
Structure
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphism
morphism_forD of phant rT := morphism D.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphism_for
clone_morphismD f := let: Morphism _ fM := f return {type of @Morphism D for f} -> morphism_for D (Phant rT) in fun k => k fM. Variables (D A : {set aT}) (R : {set rT}) (x : aT) (y : rT) (f : aT -> rT).
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
clone_morphism
morphim_spec: Prop := MorphimSpec z & z \in D & z \in A & y = f z.
Variant
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_spec
morphimP: reflect morphim_spec (y \in f @: (D :&: A)). Proof. apply: (iffP imsetP) => [] [z]; first by case/setIP; exists z. by exists z; first apply/setIP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphimP
morphpreP: reflect (x \in D /\ f x \in R) (x \in D :&: f @^-1: R). Proof. by rewrite !inE; apply: andP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpreP
morphM: {in D &, {morph f : x y / x * y}}. Proof. by case f. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphM
morPhantom:= (phantom (aT -> rT)).
Notation
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morPhantom
MorPhantom:= Phantom (aT -> rT).
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
MorPhantom
domof morPhantom f := D.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
dom
morphimof morPhantom f := fun A => f @: (D :&: A).
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim
morphpreof morPhantom f := fun R : {set rT} => D :&: f @^-1: R.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpre
kermph := morphpre mph 1.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
ker
morph1: f 1 = 1. Proof. by apply: (mulgI (f 1)); rewrite -morphM ?mulg1. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morph1
morph_prodI r (P : pred I) F : (forall i, P i -> F i \in D) -> f (\prod_(i <- r | P i) F i) = \prod_( i <- r | P i) f (F i). Proof. move=> D_F; elim/(big_load (fun x => x \in D)): _. elim/big_rec2: _ => [|i _ x Pi [Dx <-]]; first by rewrite morph1. by rewrite groupM ?morphM // D_F. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morph_prod
morphV: {in D, {morph f : x / x^-1}}. Proof. move=> x Dx; apply: (mulgI (f x)). by rewrite -morphM ?groupV // !mulgV morph1. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphV
morphJ: {in D &, {morph f : x y / x ^ y}}. Proof. by move=> * /=; rewrite !morphM ?morphV // ?groupM ?groupV. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphJ
morphXn : {in D, {morph f : x / x ^+ n}}. Proof. by elim: n => [|n IHn] x Dx; rewrite ?morph1 // !expgS morphM ?(groupX, IHn). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphX
morphR: {in D &, {morph f : x y / [~ x, y]}}. Proof. by move=> * /=; rewrite morphM ?(groupV, groupJ) // morphJ ?morphV. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphR
morphimEA : f @* A = f @: (D :&: A). Proof. by []. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphimE
morphpreER : f @*^-1 R = D :&: f @^-1: R. Proof. by []. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpreE
kerE: 'ker f = f @*^-1 1. Proof. by []. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
kerE
morphimEsubA : A \subset D -> f @* A = f @: A. Proof. by move=> sAD; rewrite /morphim (setIidPr sAD). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphimEsub
morphimEdom: f @* D = f @: D. Proof. exact: morphimEsub. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphimEdom
morphimIdomA : f @* (D :&: A) = f @* A. Proof. by rewrite /morphim setIA setIid. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphimIdom
morphpreIdomR : D :&: f @*^-1 R = f @*^-1 R. Proof. by rewrite /morphim setIA setIid. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpreIdom
morphpreIimR : f @*^-1 (f @* D :&: R) = f @*^-1 R. Proof. apply/setP=> x; rewrite morphimEdom !inE. by case Dx: (x \in D); rewrite // imset_f. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpreIim
morphimIimA : f @* D :&: f @* A = f @* A. Proof. by apply/setIidPr; rewrite imsetS // setIid subsetIl. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphimIim
mem_morphimA x : x \in D -> x \in A -> f x \in f @* A. Proof. by move=> Dx Ax; apply/morphimP; exists x. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
mem_morphim
mem_morphpreR x : x \in D -> f x \in R -> x \in f @*^-1 R. Proof. by move=> Dx Rfx; apply/morphpreP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
mem_morphpre
morphimSA B : A \subset B -> f @* A \subset f @* B. Proof. by move=> sAB; rewrite imsetS ?setIS. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphimS
morphim_subA : f @* A \subset f @* D. Proof. by rewrite imsetS // setIid subsetIl. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_sub
leq_morphimA : #|f @* A| <= #|A|. Proof. by apply: (leq_trans (leq_imset_card _ _)); rewrite subset_leq_card ?subsetIr. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
leq_morphim
morphpreSR S : R \subset S -> f @*^-1 R \subset f @*^-1 S. Proof. by move=> sRS; rewrite setIS ?preimsetS. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpreS
morphpre_subR : f @*^-1 R \subset D. Proof. exact: subsetIl. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpre_sub
morphim_setIpreA R : f @* (A :&: f @*^-1 R) = f @* A :&: R. Proof. apply/setP=> fa; apply/morphimP/setIP=> [[a Da] | [/morphimP[a Da Aa ->] Rfa]]. by rewrite !inE Da /= => /andP[Aa Rfa] ->; rewrite mem_morphim. by exists a; rewrite // !inE Aa Da. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_setIpre
morphim0: f @* set0 = set0. Proof. by rewrite morphimE setI0 imset0. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim0
morphim_eq0A : A \subset D -> (f @* A == set0) = (A == set0). Proof. by rewrite imset_eq0 => /setIidPr->. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_eq0
morphim_set1x : x \in D -> f @* [set x] = [set f x]. Proof. by rewrite /morphim -sub1set => /setIidPr->; apply: imset_set1. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_set1
morphim1: f @* 1 = 1. Proof. by rewrite morphim_set1 ?morph1. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim1
morphimVA : f @* A^-1 = (f @* A)^-1. Proof. wlog suffices: A / f @* A^-1 \subset (f @* A)^-1. by move=> IH; apply/eqP; rewrite eqEsubset IH -invSg invgK -{1}(invgK A) IH. apply/subsetP=> _ /morphimP[x Dx Ax' ->]; rewrite !inE in Ax' *. by rewrite -morphV // imset_f // inE groupV Dx. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphimV
morphpreVR : f @*^-1 R^-1 = (f @*^-1 R)^-1. Proof. apply/setP=> x; rewrite !inE groupV; case Dx: (x \in D) => //=. by rewrite morphV. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpreV
morphimMlA B : A \subset D -> f @* (A * B) = f @* A * f @* B. Proof. move=> sAD; rewrite /morphim setIC -group_modl // (setIidPr sAD). apply/setP=> fxy; apply/idP/idP. case/imsetP=> _ /imset2P[x y Ax /setIP[Dy By] ->] ->{fxy}. by rewrite morphM // (subsetP sAD, imset2_f) // imset_f // inE By. case/imset2P=> _ _ /imsetP[x Ax ->] /morphimP[y Dy By ->] ->{fxy}. by rewrite -morphM // (subsetP sAD, imset_f) // mem_mulg // inE By. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphimMl
morphimMrA B : B \subset D -> f @* (A * B) = f @* A * f @* B. Proof. move=> sBD; apply: invg_inj. by rewrite invMg -!morphimV invMg morphimMl // -invGid invSg. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphimMr
morphpreMlR S : R \subset f @* D -> f @*^-1 (R * S) = f @*^-1 R * f @*^-1 S. Proof. move=> sRfD; apply/setP=> x; rewrite !inE. apply/andP/imset2P=> [[Dx] | [y z]]; last first. rewrite !inE => /andP[Dy Rfy] /andP[Dz Rfz] ->. by rewrite ?(groupM, morphM, imset2_f). case/imset2P=> fy fz Rfy Rfz def_fx. have /morphimP[y Dy _ def_fy]: fy \in f @* D := subsetP sRfD fy Rfy. exists y (y^-1 * x); last by rewrite mulKVg. by rewrite !inE Dy -def_fy. by rewrite !inE groupM ?(morphM, morphV, groupV) // def_fx -def_fy mulKg. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpreMl
morphimJA x : x \in D -> f @* (A :^ x) = f @* A :^ f x. Proof. move=> Dx; rewrite !conjsgE morphimMl ?(morphimMr, sub1set, groupV) //. by rewrite !(morphim_set1, groupV, morphV). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphimJ
morphpreJR x : x \in D -> f @*^-1 (R :^ f x) = f @*^-1 R :^ x. Proof. move=> Dx; apply/setP=> y; rewrite conjIg !inE conjGid // !mem_conjg inE. by case Dy: (y \in D); rewrite // morphJ ?(morphV, groupV). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpreJ
morphim_classx A : x \in D -> A \subset D -> f @* (x ^: A) = f x ^: f @* A. Proof. move=> Dx sAD; rewrite !morphimEsub ?class_subG // /class -!imset_comp. by apply: eq_in_imset => y Ay /=; rewrite morphJ // (subsetP sAD). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_class
classes_morphimA : A \subset D -> classes (f @* A) = [set f @* xA | xA in classes A]. Proof. move=> sAD; rewrite morphimEsub // /classes -!imset_comp. apply: eq_in_imset => x /(subsetP sAD) Dx /=. by rewrite morphim_class ?morphimEsub. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
classes_morphim
morphimT: f @* setT = f @* D. Proof. by rewrite -morphimIdom setIT. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphimT
morphimUA B : f @* (A :|: B) = f @* A :|: f @* B. Proof. by rewrite -imsetU -setIUr. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphimU
morphimIA B : f @* (A :&: B) \subset f @* A :&: f @* B. Proof. by rewrite subsetI // ?morphimS ?(subsetIl, subsetIr). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphimI
morphpre0: f @*^-1 set0 = set0. Proof. by rewrite morphpreE preimset0 setI0. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpre0
morphpreT: f @*^-1 setT = D. Proof. by rewrite morphpreE preimsetT setIT. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpreT
morphpreUR S : f @*^-1 (R :|: S) = f @*^-1 R :|: f @*^-1 S. Proof. by rewrite -setIUr -preimsetU. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpreU
morphpreIR S : f @*^-1 (R :&: S) = f @*^-1 R :&: f @*^-1 S. Proof. by rewrite -setIIr -preimsetI. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpreI
morphpreDR S : f @*^-1 (R :\: S) = f @*^-1 R :\: f @*^-1 S. Proof. by apply/setP=> x /[!inE]; case: (x \in D). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpreD
kerPx : x \in D -> reflect (f x = 1) (x \in 'ker f). Proof. by move=> Dx; rewrite 2!inE Dx; apply: set1P. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
kerP
dom_ker: {subset 'ker f <= D}. Proof. by move=> x /morphpreP[]. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
dom_ker
mkerx : x \in 'ker f -> f x = 1. Proof. by move=> Kx; apply/kerP=> //; apply: dom_ker. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
mker
mkerlx y : x \in 'ker f -> y \in D -> f (x * y) = f y. Proof. by move=> Kx Dy; rewrite morphM // ?(dom_ker, mker Kx, mul1g). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
mkerl
mkerrx y : x \in D -> y \in 'ker f -> f (x * y) = f x. Proof. by move=> Dx Ky; rewrite morphM // ?(dom_ker, mker Ky, mulg1). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
mkerr
rcoset_kerPx y : x \in D -> y \in D -> reflect (f x = f y) (x \in 'ker f :* y). Proof. move=> Dx Dy; rewrite mem_rcoset !inE groupM ?morphM ?groupV //=. by rewrite morphV // -eq_mulgV1; apply: eqP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
rcoset_kerP
ker_rcosetx y : x \in D -> y \in D -> f x = f y -> exists2 z, z \in 'ker f & x = z * y. Proof. by move=> Dx Dy eqfxy; apply/rcosetP; apply/rcoset_kerP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
ker_rcoset
ker_norm: D \subset 'N('ker f). Proof. apply/subsetP=> x Dx /[1!inE]; apply/subsetP=> _ /imsetP[y Ky ->]. by rewrite !inE groupJ ?morphJ // ?dom_ker //= mker ?conj1g. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
ker_norm
ker_normal: 'ker f <| D. Proof. by rewrite /(_ <| D) subsetIl ker_norm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
ker_normal
morphimGIG A : 'ker f \subset G -> f @* (G :&: A) = f @* G :&: f @* A. Proof. move=> sKG; apply/eqP; rewrite eqEsubset morphimI setIC. apply/subsetP=> _ /setIP[/morphimP[x Dx Ax ->] /morphimP[z Dz Gz]]. case/ker_rcoset=> {Dz}// y Ky def_x. have{z Gz y Ky def_x} Gx: x \in G by rewrite def_x groupMl // (subsetP sKG). by rewrite imset_f ?inE // Dx Gx Ax. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphimGI
morphimIGA G : 'ker f \subset G -> f @* (A :&: G) = f @* A :&: f @* G. Proof. by move=> sKG; rewrite setIC morphimGI // setIC. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphimIG
morphimDA B : f @* A :\: f @* B \subset f @* (A :\: B). Proof. rewrite subDset -morphimU morphimS //. by rewrite setDE setUIr setUCr setIT subsetUr. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphimD
morphimDGA G : 'ker f \subset G -> f @* (A :\: G) = f @* A :\: f @* G. Proof. move=> sKG; apply/eqP; rewrite eqEsubset morphimD andbT !setDE subsetI. rewrite morphimS ?subsetIl // -[~: f @* G]setU0 -subDset setDE setCK. by rewrite -morphimIG //= setIAC -setIA setICr setI0 morphim0. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphimDG
morphimD1A : (f @* A)^# \subset f @* A^#. Proof. by rewrite -!set1gE -morphim1 morphimD. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphimD1
morphpre_groupsetM : group_set (f @*^-1 M). Proof. apply/group_setP; split=> [|x y]; rewrite !inE ?(morph1, group1) //. by case/andP=> Dx Mfx /andP[Dy Mfy]; rewrite morphM ?groupM. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpre_groupset
morphim_groupsetG : group_set (f @* G). Proof. apply/group_setP; split=> [|_ _ /morphimP[x Dx Gx ->] /morphimP[y Dy Gy ->]]. by rewrite -morph1 imset_f ?group1. by rewrite -morphM ?imset_f ?inE ?groupM. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_groupset
morphpre_groupfPh M := @group _ (morphpre fPh M) (morphpre_groupset M).
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpre_group
morphim_groupfPh G := @group _ (morphim fPh G) (morphim_groupset G).
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_group
ker_groupfPh : {group aT} := Eval hnf in [group of ker fPh].
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
ker_group
morph_dom_groupset: group_set (f @: D). Proof. by rewrite -morphimEdom groupP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morph_dom_groupset
morph_dom_group:= group morph_dom_groupset.
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morph_dom_group
morphpreMrR S : S \subset f @* D -> f @*^-1 (R * S) = f @*^-1 R * f @*^-1 S. Proof. move=> sSfD; apply: invg_inj. by rewrite invMg -!morphpreV invMg morphpreMl // -invSg invgK invGid. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpreMr
morphimKA : A \subset D -> f @*^-1 (f @* A) = 'ker f * A. Proof. move=> sAD; apply/setP=> x; rewrite !inE. apply/idP/idP=> [/andP[Dx /morphimP[y Dy Ay eqxy]] | /imset2P[z y Kz Ay ->{x}]]. rewrite -(mulgKV y x) mem_mulg // !inE !(groupM, morphM, groupV) //. by rewrite morphV //= eqxy mulgV. have [Dy Dz]: y \in D /\ z \in D by rewrite (subsetP sAD) // dom_ker. by rewrite groupM // morphM // mker // mul1g imset_f // inE Dy. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphimK
morphimGKG : 'ker f \subset G -> G \subset D -> f @*^-1 (f @* G) = G. Proof. by move=> sKG sGD; rewrite morphimK // mulSGid. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphimGK
morphpre_set1x : x \in D -> f @*^-1 [set f x] = 'ker f :* x. Proof. by move=> Dx; rewrite -morphim_set1 // morphimK ?sub1set. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpre_set1
morphpreKR : R \subset f @* D -> f @* (f @*^-1 R) = R. Proof. move=> sRfD; apply/setP=> y; apply/morphimP/idP=> [[x _] | Ry]. by rewrite !inE; case/andP=> _ Rfx ->. have /morphimP[x Dx _ defy]: y \in f @* D := subsetP sRfD y Ry. by exists x; rewrite // !inE Dx -defy. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpreK
morphim_ker: f @* 'ker f = 1. Proof. by rewrite morphpreK ?sub1G. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_ker
ker_sub_preM : 'ker f \subset f @*^-1 M. Proof. by rewrite morphpreS ?sub1G. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
ker_sub_pre