fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
ker_normal_preM : 'ker f <| f @*^-1 M. Proof. by rewrite /normal ker_sub_pre subIset ?ker_norm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
ker_normal_pre
morphpreSKR S : R \subset f @* D -> (f @*^-1 R \subset f @*^-1 S) = (R \subset S). Proof. move=> sRfD; apply/idP/idP=> [sf'RS|]; last exact: morphpreS. suffices: R \subset f @* D :&: S by rewrite subsetI sRfD. rewrite -(morphpreK sRfD) -[_ :&: S]morphpreK (morphimS, subsetIl) //. by rewrite morphpreI morphimGK ?subsetIl // setIA setIid. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpreSK
sub_morphim_preA R : A \subset D -> (f @* A \subset R) = (A \subset f @*^-1 R). Proof. move=> sAD; rewrite -morphpreSK (morphimS, morphimK) //. apply/idP/idP; first by apply: subset_trans; apply: mulG_subr. by move/(mulgS ('ker f)); rewrite -morphpreMl ?(sub1G, mul1g). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
sub_morphim_pre
morphpre_properR S : R \subset f @* D -> S \subset f @* D -> (f @*^-1 R \proper f @*^-1 S) = (R \proper S). Proof. by move=> dQ dR; rewrite /proper !morphpreSK. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpre_proper
sub_morphpre_imR G : 'ker f \subset G -> G \subset D -> R \subset f @* D -> (f @*^-1 R \subset G) = (R \subset f @* G). Proof. by symmetry; rewrite -morphpreSK ?morphimGK. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
sub_morphpre_im
ker_trivg_morphimA : (A \subset 'ker f) = (A \subset D) && (f @* A \subset [1]). Proof. case sAD: (A \subset D); first by rewrite sub_morphim_pre. by rewrite subsetI sAD. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
ker_trivg_morphim
morphimSKA B : A \subset D -> (f @* A \subset f @* B) = (A \subset 'ker f * B). Proof. move=> sAD; transitivity (A \subset 'ker f * (D :&: B)). by rewrite -morphimK ?subsetIl // -sub_morphim_pre // /morphim setIA setIid. by rewrite setIC group_modl (subsetIl, subsetI) // andbC sAD. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphimSK
morphimSGKA G : A \subset D -> 'ker f \subset G -> (f @* A \subset f @* G) = (A \subset G). Proof. by move=> sGD skfK; rewrite morphimSK // mulSGid. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphimSGK
ltn_morphimA : [1] \proper 'ker_A f -> #|f @* A| < #|A|. Proof. case/properP; rewrite sub1set => /setIP[A1 _] [x /setIP[Ax kx] x1]. rewrite (cardsD1 1 A) A1 ltnS -{1}(setD1K A1) morphimU morphim1. rewrite (setUidPr _) ?sub1set; last first. by rewrite -(mker kx) mem_morphim ?(dom_ker kx) // inE x1. by rewrite (leq_trans (leq_imset_card _ _)) ?subset_leq_card ?subsetIr. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
ltn_morphim
morphpre_inj: {in [pred R : {set rT} | R \subset f @* D] &, injective (fun R => f @*^-1 R)}. Proof. exact: can_in_inj morphpreK. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpre_inj
morphim_injG: {in [pred G : {group aT} | 'ker f \subset G & G \subset D] &, injective (fun G => f @* G)}. Proof. move=> G H /andP[sKG sGD] /andP[sKH sHD] eqfGH. by apply: val_inj; rewrite /= -(morphimGK sKG sGD) eqfGH morphimGK. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_injG
morphim_injG H : ('ker f \subset G) && (G \subset D) -> ('ker f \subset H) && (H \subset D) -> f @* G = f @* H -> G :=: H. Proof. by move=> nsGf nsHf /morphim_injG->. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_inj
morphim_genA : A \subset D -> f @* <<A>> = <<f @* A>>. Proof. move=> sAD; apply/eqP. rewrite eqEsubset andbC gen_subG morphimS; last exact: subset_gen. by rewrite sub_morphim_pre gen_subG // -sub_morphim_pre // subset_gen. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_gen
morphim_cyclex : x \in D -> f @* <[x]> = <[f x]>. Proof. by move=> Dx; rewrite morphim_gen (sub1set, morphim_set1). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_cycle
morphimYA B : A \subset D -> B \subset D -> f @* (A <*> B) = f @* A <*> f @* B. Proof. by move=> sAD sBD; rewrite morphim_gen ?morphimU // subUset sAD. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphimY
morphpre_genR : 1 \in R -> R \subset f @* D -> f @*^-1 <<R>> = <<f @*^-1 R>>. Proof. move=> R1 sRfD; apply/eqP. rewrite eqEsubset andbC gen_subG morphpreS; last exact: subset_gen. rewrite -{1}(morphpreK sRfD) -morphim_gen ?subsetIl // morphimGK //=. by rewrite sub_gen // setIS // preimsetS ?sub1set. by rewrite gen_subG subsetIl. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpre_gen
morphimRA B : A \subset D -> B \subset D -> f @* [~: A, B] = [~: f @* A, f @* B]. Proof. move/subsetP=> sAD /subsetP sBD. rewrite morphim_gen; last first; last congr <<_>>. by apply/subsetP=> _ /imset2P[x y Ax By ->]; rewrite groupR; auto. apply/setP=> fz; apply/morphimP/imset2P=> [[z _] | [fx fy]]. case/imset2P=> x y Ax By -> -> {z fz}. have Dx := sAD x Ax; have Dy := sBD y By. by exists (f x) (f y); rewrite ?(imset_f, morphR) // ?(inE, Dx, Dy). case/morphimP=> x Dx Ax ->{fx}; case/morphimP=> y Dy By ->{fy} -> {fz}. by exists [~ x, y]; rewrite ?(inE, morphR, groupR, imset2_f). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphimR
morphim_normA : f @* 'N(A) \subset 'N(f @* A). Proof. apply/subsetP=> fx /morphimP[x Dx Nx -> {fx}]. by rewrite inE -morphimJ ?(normP Nx). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_norm
morphim_normsA B : A \subset 'N(B) -> f @* A \subset 'N(f @* B). Proof. by move=> nBA; apply: subset_trans (morphim_norm B); apply: morphimS. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_norms
morphim_subnormA B : f @* 'N_A(B) \subset 'N_(f @* A)(f @* B). Proof. exact: subset_trans (morphimI A _) (setIS _ (morphim_norm B)). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_subnorm
morphim_normalA B : A <| B -> f @* A <| f @* B. Proof. by case/andP=> sAB nAB; rewrite /(_ <| _) morphimS // morphim_norms. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_normal
morphim_cent1x : x \in D -> f @* 'C[x] \subset 'C[f x]. Proof. by move=> Dx; rewrite -(morphim_set1 Dx) morphim_norm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_cent1
morphim_cent1sA x : x \in D -> A \subset 'C[x] -> f @* A \subset 'C[f x]. Proof. by move=> Dx cAx; apply: subset_trans (morphim_cent1 Dx); apply: morphimS. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_cent1s
morphim_subcent1A x : x \in D -> f @* 'C_A[x] \subset 'C_(f @* A)[f x]. Proof. by move=> Dx; rewrite -(morphim_set1 Dx) morphim_subnorm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_subcent1
morphim_centA : f @* 'C(A) \subset 'C(f @* A). Proof. apply/bigcapsP=> fx; case/morphimP=> x Dx Ax ->{fx}. by apply: subset_trans (morphim_cent1 Dx); apply: morphimS; apply: bigcap_inf. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_cent
morphim_centsA B : A \subset 'C(B) -> f @* A \subset 'C(f @* B). Proof. by move=> cBA; apply: subset_trans (morphim_cent B); apply: morphimS. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_cents
morphim_subcentA B : f @* 'C_A(B) \subset 'C_(f @* A)(f @* B). Proof. exact: subset_trans (morphimI A _) (setIS _ (morphim_cent B)). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_subcent
morphim_abelianA : abelian A -> abelian (f @* A). Proof. exact: morphim_cents. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_abelian
morphpre_normR : f @*^-1 'N(R) \subset 'N(f @*^-1 R). Proof. by apply/subsetP=> x /[!inE] /andP[Dx Nfx]; rewrite -morphpreJ ?morphpreS. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpre_norm
morphpre_normsR S : R \subset 'N(S) -> f @*^-1 R \subset 'N(f @*^-1 S). Proof. by move=> nSR; apply: subset_trans (morphpre_norm S); apply: morphpreS. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpre_norms
morphpre_normalR S : R \subset f @* D -> S \subset f @* D -> (f @*^-1 R <| f @*^-1 S) = (R <| S). Proof. move=> sRfD sSfD; apply/idP/andP=> [|[sRS nSR]]. by move/morphim_normal; rewrite !morphpreK //; case/andP. by rewrite /(_ <| _) (subset_trans _ (morphpre_norm _)) morphpreS. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpre_normal
morphpre_subnormR S : f @*^-1 'N_R(S) \subset 'N_(f @*^-1 R)(f @*^-1 S). Proof. by rewrite morphpreI setIS ?morphpre_norm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpre_subnorm
morphim_normGG : 'ker f \subset G -> G \subset D -> f @* 'N(G) = 'N_(f @* D)(f @* G). Proof. move=> sKG sGD; apply/eqP; rewrite eqEsubset -{1}morphimIdom morphim_subnorm. rewrite -(morphpreK (subsetIl _ _)) morphimS //= morphpreI subIset // orbC. by rewrite -{2}(morphimGK sKG sGD) morphpre_norm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_normG
morphim_subnormGA G : 'ker f \subset G -> G \subset D -> f @* 'N_A(G) = 'N_(f @* A)(f @* G). Proof. move=> sKB sBD; rewrite morphimIG ?normsG // morphim_normG //. by rewrite setICA setIA morphimIim. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_subnormG
morphpre_cent1x : x \in D -> 'C_D[x] \subset f @*^-1 'C[f x]. Proof. move=> Dx; rewrite -sub_morphim_pre ?subsetIl //. by apply: subset_trans (morphim_cent1 Dx); rewrite morphimS ?subsetIr. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpre_cent1
morphpre_cent1sR x : x \in D -> R \subset f @* D -> f @*^-1 R \subset 'C[x] -> R \subset 'C[f x]. Proof. by move=> Dx sRfD; move/(morphim_cent1s Dx); rewrite morphpreK. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpre_cent1s
morphpre_subcent1R x : x \in D -> 'C_(f @*^-1 R)[x] \subset f @*^-1 'C_R[f x]. Proof. move=> Dx; rewrite -morphpreIdom -setIA setICA morphpreI setIS //. exact: morphpre_cent1. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpre_subcent1
morphpre_centA : 'C_D(A) \subset f @*^-1 'C(f @* A). Proof. rewrite -sub_morphim_pre ?subsetIl // morphimGI ?(subsetIl, subIset) // orbC. by rewrite (subset_trans (morphim_cent _)). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpre_cent
morphpre_centsA R : R \subset f @* D -> f @*^-1 R \subset 'C(A) -> R \subset 'C(f @* A). Proof. by move=> sRfD; move/morphim_cents; rewrite morphpreK. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpre_cents
morphpre_subcentR A : 'C_(f @*^-1 R)(A) \subset f @*^-1 'C_R(f @* A). Proof. by rewrite -morphpreIdom -setIA setICA morphpreI setIS //; apply: morphpre_cent. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpre_subcent
injmP: reflect {in D &, injective f} ('injm f). Proof. apply: (iffP subsetP) => [injf x y Dx Dy | injf x /= Kx]. by case/ker_rcoset=> // z /injf/set1P->; rewrite mul1g. have Dx := dom_ker Kx; apply/set1P/injf => //. by apply/rcoset_kerP; rewrite // mulg1. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
injmP
card_im_injm: (#|f @* D| == #|D|) = 'injm f. Proof. by rewrite morphimEdom (sameP imset_injP injmP). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
card_im_injm
ker_injm: 'ker f = 1. Proof. exact/trivgP. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
ker_injm
injmKA : A \subset D -> f @*^-1 (f @* A) = A. Proof. by move=> sAD; rewrite morphimK // ker_injm // mul1g. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
injmK
injm_morphim_injA B : A \subset D -> B \subset D -> f @* A = f @* B -> A = B. Proof. by move=> sAD sBD eqAB; rewrite -(injmK sAD) eqAB injmK. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
injm_morphim_inj
card_injmA : A \subset D -> #|f @* A| = #|A|. Proof. move=> sAD; rewrite morphimEsub // card_in_imset //. exact: (sub_in2 (subsetP sAD) (injmP injf)). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
card_injm
order_injmx : x \in D -> #[f x] = #[x]. Proof. by move=> Dx; rewrite orderE -morphim_cycle // card_injm ?cycle_subG. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
order_injm
injm1x : x \in D -> f x = 1 -> x = 1. Proof. by move=> Dx; move/(kerP Dx); rewrite ker_injm; move/set1P. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
injm1
morph_injm_eq1x : x \in D -> (f x == 1) = (x == 1). Proof. by move=> Dx; rewrite -morph1 (inj_in_eq (injmP injf)) ?group1. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morph_injm_eq1
injmSKA B : A \subset D -> (f @* A \subset f @* B) = (A \subset B). Proof. by move=> sAD; rewrite morphimSK // ker_injm mul1g. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
injmSK
sub_morphpre_injmR A : A \subset D -> R \subset f @* D -> (f @*^-1 R \subset A) = (R \subset f @* A). Proof. by move=> sAD sRfD; rewrite -morphpreSK ?injmK. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
sub_morphpre_injm
injm_eqA B : A \subset D -> B \subset D -> (f @* A == f @* B) = (A == B). Proof. by move=> sAD sBD; rewrite !eqEsubset !injmSK. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
injm_eq
morphim_injm_eq1A : A \subset D -> (f @* A == 1) = (A == 1). Proof. by move=> sAD; rewrite -morphim1 injm_eq ?sub1G. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_injm_eq1
injmIA B : f @* (A :&: B) = f @* A :&: f @* B. Proof. rewrite -morphimIdom setIIr -4!(injmK (subsetIl D _), =^~ morphimIdom). by rewrite -morphpreI morphpreK // subIset ?morphim_sub. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
injmI
injmD1A : f @* A^# = (f @* A)^#. Proof. by have:= morphimDG A injf; rewrite morphim1. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
injmD1
nclasses_injmA : A \subset D -> #|classes (f @* A)| = #|classes A|. Proof. move=> sAD; rewrite classes_morphim // card_in_imset //. move=> _ _ /imsetP[x Ax ->] /imsetP[y Ay ->]. by apply: injm_morphim_inj; rewrite // class_subG ?(subsetP sAD). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
nclasses_injm
injm_normA : A \subset D -> f @* 'N(A) = 'N_(f @* D)(f @* A). Proof. move=> sAD; apply/eqP; rewrite -morphimIdom eqEsubset morphim_subnorm. rewrite -sub_morphpre_injm ?subsetIl // morphpreI injmK // setIS //. by rewrite -{2}(injmK sAD) morphpre_norm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
injm_norm
injm_normsA B : A \subset D -> B \subset D -> (f @* A \subset 'N(f @* B)) = (A \subset 'N(B)). Proof. by move=> sAD sBD; rewrite -injmSK // injm_norm // subsetI morphimS. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
injm_norms
injm_normalA B : A \subset D -> B \subset D -> (f @* A <| f @* B) = (A <| B). Proof. by move=> sAD sBD; rewrite /normal injmSK ?injm_norms. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
injm_normal
injm_subnormA B : B \subset D -> f @* 'N_A(B) = 'N_(f @* A)(f @* B). Proof. by move=> sBD; rewrite injmI injm_norm // setICA setIA morphimIim. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
injm_subnorm
injm_cent1x : x \in D -> f @* 'C[x] = 'C_(f @* D)[f x]. Proof. by move=> Dx; rewrite injm_norm ?morphim_set1 ?sub1set. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
injm_cent1
injm_subcent1A x : x \in D -> f @* 'C_A[x] = 'C_(f @* A)[f x]. Proof. by move=> Dx; rewrite injm_subnorm ?morphim_set1 ?sub1set. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
injm_subcent1
injm_centA : A \subset D -> f @* 'C(A) = 'C_(f @* D)(f @* A). Proof. move=> sAD; apply/eqP; rewrite -morphimIdom eqEsubset morphim_subcent. apply/subsetP=> fx; case/setIP; case/morphimP=> x Dx _ ->{fx} cAfx. rewrite mem_morphim // inE Dx -sub1set centsC cent_set1 -injmSK //. by rewrite injm_cent1 // subsetI morphimS // -cent_set1 centsC sub1set. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
injm_cent
injm_centsA B : A \subset D -> B \subset D -> (f @* A \subset 'C(f @* B)) = (A \subset 'C(B)). Proof. by move=> sAD sBD; rewrite -injmSK // injm_cent // subsetI morphimS. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
injm_cents
injm_subcentA B : B \subset D -> f @* 'C_A(B) = 'C_(f @* A)(f @* B). Proof. by move=> sBD; rewrite injmI injm_cent // setICA setIA morphimIim. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
injm_subcent
injm_abelianA : A \subset D -> abelian (f @* A) = abelian A. Proof. by move=> sAD; rewrite /abelian -subsetIidl -injm_subcent // injmSK ?subsetIidl. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
injm_abelian
eq_morphim(g : {morphism D >-> rT}): {in D, f =1 g} -> forall A, f @* A = g @* A. Proof. by move=> efg A; apply: eq_in_imset; apply: sub_in1 efg => x /setIP[]. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
eq_morphim
eq_in_morphimB A (g : {morphism B >-> rT}) : D :&: A = B :&: A -> {in A, f =1 g} -> f @* A = g @* A. Proof. move=> eqDBA eqAfg; rewrite /morphim /= eqDBA. by apply: eq_in_imset => x /setIP[_]/eqAfg. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
eq_in_morphim
idmof {set gT} := fun x : gT => x : FinGroup.sort gT.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
idm
idm_morphMA : {in A & , {morph idm A : x y / x * y}}. Proof. by []. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
idm_morphM
idm_morphismA := Morphism (@idm_morphM A).
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
idm_morphism
injm_idmG : 'injm (idm G). Proof. by apply/injmP=> x y _ _. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
injm_idm
ker_idmG : 'ker (idm G) = 1. Proof. by apply/trivgP; apply: injm_idm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
ker_idm
morphim_idmA B : B \subset A -> idm A @* B = B. Proof. rewrite /morphim /= /idm => /setIidPr->. by apply/setP=> x; apply/imsetP/idP=> [[y By ->]|Bx]; last exists x. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_idm
morphpre_idmA B : idm A @*^-1 B = A :&: B. Proof. by apply/setP=> x; rewrite !inE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpre_idm
im_idmA : idm A @* A = A. Proof. exact: morphim_idm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
im_idm
restrmof A \subset D := @id (aT -> FinGroup.sort rT).
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
restrm
restrm_morphism:= @Morphism aT rT A fA (sub_in2 (subsetP sAD) (morphM f)).
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
restrm_morphism
morphim_restrmB : fA @* B = f @* (A :&: B). Proof. by rewrite {2}/morphim setIA (setIidPr sAD). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_restrm
restrmEsubB : B \subset A -> fA @* B = f @* B. Proof. by rewrite morphim_restrm => /setIidPr->. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
restrmEsub
im_restrm: fA @* A = f @* A. Proof. exact: restrmEsub. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
im_restrm
morphpre_restrmR : fA @*^-1 R = A :&: f @*^-1 R. Proof. by rewrite setIA (setIidPl sAD). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpre_restrm
ker_restrm: 'ker fA = 'ker_A f. Proof. exact: morphpre_restrm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
ker_restrm
injm_restrm: 'injm f -> 'injm fA. Proof. by apply: subset_trans; rewrite ker_restrm subsetIr. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
injm_restrm
restrmP(f : {morphism D >-> rT}) : A \subset 'dom f -> {g : {morphism A >-> rT} | [/\ g = f :> (aT -> rT), 'ker g = 'ker_A f, forall R, g @*^-1 R = A :&: f @*^-1 R & forall B, B \subset A -> g @* B = f @* B]}. Proof. move=> sAD; exists (restrm_morphism sAD f). split=> // [|R|B sBA]; first 1 [exact: ker_restrm | exact: morphpre_restrm]. by rewrite morphim_restrm (setIidPr sBA). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
restrmP
domP(f : {morphism D >-> rT}) : 'dom f = A -> {g : {morphism A >-> rT} | [/\ g = f :> (aT -> rT), 'ker g = 'ker f, forall R, g @*^-1 R = f @*^-1 R & forall B, g @* B = f @* B]}. Proof. by move <-; exists f. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
domP
trivmof {set aT} & aT := 1 : FinGroup.sort rT.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
trivm
trivm_morphM(A : {set aT}) : {in A &, {morph trivm A : x y / x * y}}. Proof. by move=> x y /=; rewrite mulg1. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
trivm_morphM
triv_morphA := Morphism (@trivm_morphM A).
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
triv_morph
morphim_trivm(G H : {group aT}) : trivm G @* H = 1. Proof. apply/setP=> /= y; rewrite inE; apply/idP/eqP=> [|->]; first by case/morphimP. by apply/morphimP; exists (1 : aT); rewrite /= ?group1. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_trivm
ker_trivm(G : {group aT}) : 'ker (trivm G) = G. Proof. by apply/setIidPl/subsetP=> x _; rewrite !inE /=. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
ker_trivm
comp_morphM: {in f @*^-1 H &, {morph gof: x y / x * y}}. Proof. by move=> x y; rewrite /= !inE => /andP[? ?] /andP[? ?]; rewrite !morphM. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
comp_morphM
comp_morphism:= Morphism comp_morphM.
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
comp_morphism
ker_comp: 'ker gof = f @*^-1 'ker g. Proof. by apply/setP=> x; rewrite !inE andbA. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
ker_comp
injm_comp: 'injm f -> 'injm g -> 'injm gof. Proof. by move=> injf; rewrite ker_comp; move/trivgP=> ->. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
injm_comp
morphim_comp(A : {set gT}) : gof @* A = g @* (f @* A). Proof. apply/setP=> z; apply/morphimP/morphimP=> [[x]|[y Hy fAy ->{z}]]. rewrite !inE => /andP[Gx Hfx]; exists (f x) => //. by apply/morphimP; exists x. by case/morphimP: fAy Hy => x Gx Ax ->{y} Hfx; exists x; rewrite ?inE ?Gx. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphim_comp
morphpre_comp(C : {set rT}) : gof @*^-1 C = f @*^-1 (g @*^-1 C). Proof. by apply/setP=> z; rewrite !inE andbA. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
morphpre_comp
factmof 'ker q \subset 'ker f & G \subset H := fun x => f (repr (q @*^-1 [set x])). Hypothesis sKqKf : 'ker q \subset 'ker f. Hypothesis sGH : G \subset H.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
factm
ff:= (factm sKqKf sGH).
Notation
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
ff
factmEx : x \in G -> ff (q x) = f x. Proof. rewrite /ff => Gx; have Hx := subsetP sGH x Gx. have /mem_repr: x \in q @*^-1 [set q x] by rewrite !inE Hx /=. case/morphpreP; move: (repr _) => y Hy /set1P. by case/ker_rcoset=> // z Kz ->; rewrite mkerl ?(subsetP sKqKf). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import fintype finfun bigop finset fingroup" ]
fingroup/morphism.v
factmE