fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
dffun_morphismi := @Morphism _ _ setT _ (in2W (@dffunM i)).
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
dffun_morphism
injm_dfung1i : 'injm (@dfung1 i). Proof. apply/subsetP => x /morphpreP[_ /set1P /ffunP/=/(_ i)]. by rewrite !(ffunE, dfung1_id) => ->; apply: set11. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
injm_dfung1
group_set_dfwithH i (G : {group gT i}) j : group_set (dfwith (H : forall k, {set gT k}) (G : {set _}) j). Proof. have [<-|ij] := eqVneq i j; first by rewrite !dfwith_in// groupP. by rewrite !dfwith_out // groupP. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
group_set_dfwith
group_dfwithH i G j := Group (@group_set_dfwith H i G j).
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
group_dfwith
group_dfwithEH i G j : @group_dfwith H i G j = dfwith H G j. Proof. by apply/val_inj; have [<-|nij]/= := eqVneq i j; [rewrite !dfwith_in|rewrite !dfwith_out]. Qed. Fact set1gXn_key : unit. Proof. by []. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
group_dfwithE
set1gXn{i} (H : {set gT i}) : {set {dffun forall i : I, gT i}} := locked_with set1gXn_key (setXn (dfwith (fun i0 : I => [1 gT _]%g) H)).
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
set1gXn
set1gXnE{i} (H : {set gT i}) : set1gXn H = setXn (dfwith (fun i0 : I => [1 gT _]%g) H). Proof. by rewrite /set1gXn unlock. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
set1gXnE
set1gXnP{i} (H : {set gT i}) x : reflect (exists2 h, h \in H & x = dfung1 h) (x \in set1gXn H). Proof. rewrite set1gXnE/=; apply: (iffP setXnP) => [xP|[h hH ->] j]; last first. by rewrite ffunE; case: dfwithP => [|k ?]; rewrite (dfwith_in, dfwith_out). exists (x i); first by have := xP i; rewrite dfwith_in. apply/ffunP => j; have := xP j; rewrite ffunE. case: dfwithP => // [xiH|k neq_ik]; first by rewrite dfwith_in. by move=> /set1gP->; rewrite dfwith_out. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
set1gXnP
morphim_dfung1i (G : {set gT i}) : @dfung1 i @* G = set1gXn G. Proof. by rewrite morphimEsub//=; apply/setP=> /= x; apply/imsetP/set1gXnP. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
morphim_dfung1
morphim_dffunXni H : dffun_morphism i @* setXn H = H i. Proof. apply/eqP; rewrite eqEsubset morphimE setTI /=. apply/andP; split; apply/subsetP=> x. by case/imsetP => x0 /[1!inE] /forallP/(_ i)/= ? ->. move=> Hx1; apply/imsetP; exists (dfung1 x); last by rewrite dfung1_id. by rewrite in_setXn; apply/forallP => j /[!ffunE]; case: dfwithP. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
morphim_dffunXn
set1gXn_group_set{i} (H : {group gT i}) : group_set (set1gXn H). Proof. by rewrite set1gXnE; exact: group_setXn. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
set1gXn_group_set
groupXn1{i} (H : {group gT i}) := Group (set1gXn_group_set H).
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
groupXn1
setXn_prodH : \prod_i set1gXn (H i) = setXn H. Proof. apply/setP => /= x; apply/prodsgP /setXnP => [[/= f fH {x}-> i]|xH /=]. rewrite prodg_ffun group_prod// => j _. by have /set1gXnP[x xH ->] := fH j isT; rewrite ffunE; case: dfwithP. exists (fun i => dfung1 (x i)) => [i _|]; first by apply/set1gXnP; exists (x i). apply/ffunP => i; rewrite prodg_ffun (big_only1 i) ?dfung1_id//. by move=> j ij _; rewrite dfung1_dflt. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
setXn_prod
set1gXn_commute(H : forall i, {group gT i}) i j : commute (set1gXn (H i)) (set1gXn (H j)). Proof. have [-> //|neqij] := eqVneq j i. apply/centC/centsP => _ /set1gXnP [hi hiH ->] _ /set1gXnP [hj hjH ->]. apply/ffunP => k; rewrite !ffunE. by case: dfwithP => [|?]; rewrite ?mulg1 ?mul1g// dfwith_out// mulg1 mul1g. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
set1gXn_commute
setXn_dprodH : \big[dprod/1]_i set1gXn (H i) = setXn H. Proof. rewrite -setXn_prod//=. suff -> : \big[dprod/1]_i groupXn1 (H i) = (\prod_i groupXn1 (H i))%G. by rewrite comm_prodG//=; apply: in2W; apply: set1gXn_commute. apply/eqP; apply/bigdprodYP => i //= _; rewrite subsetD. apply/andP; split. rewrite comm_prodG; last by apply: in2W; apply: set1gXn_commute. apply/centsP => _ /prodsgP[/= h_ h_P ->] _ /set1gXnP [h hH ->]. apply/ffunP => j; rewrite !ffunE/=. rewrite (big_morph _ (@dffunM j) (_ : _ = 1)) ?ffunE//. case: dfwithP => {j} [|? ?]; last by rewrite mulg1 mul1g. rewrite big1 ?mulg1 ?mul1g// => j neq_ji. by have /set1gXnP[? _ ->] := h_P j neq_ji; rewrite ffunE dfwith_out. rewrite -setI_eq0 -subset0; apply/subsetP => /= x; rewrite !inE. rewrite comm_prodG; last by apply: in2W; apply: set1gXn_commute. move=> /and3P[+ + /set1gXnP [h _ x_h]]; rewrite {x}x_h. move=> /prodsgP[x_ x_P /ffunP/(_ i)]; rewrite ffunE dfwith_in => {h}->. apply: contra_neqT => _; apply/ffunP => j; rewrite !ffunE/=. case: dfwithP => // {j}; rewrite (big_morph _ (@dffunM i) (_ : _ = 1)) ?ffunE//. rewrite big1// => j neq_ji. by have /set1gXnP[g gH /ffunP->] := x_P _ neq_ji; rewrite ffunE dfwith_out. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
setXn_dprod
isog_setXni (G : {group gT i}) : G \isog set1gXn G. Proof. apply/(@isogP _ _ G); exists [morphism of restrm (subsetT G) (@dfung1 i)]. by rewrite injm_restrm ?injm_dfung1. by rewrite morphim_restrm morphim_dfung1 setIid. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
isog_setXn
setXn_genH : (forall i, 1 \in H i) -> <<setXn H>> = setXn (fun i => <<H i>>). Proof. move=> H1; apply/eqP; rewrite eqEsubset gen_subG setXnS/=; last first. by move=> ?; rewrite subset_gen. rewrite -[in X in X \subset _]setXn_prod; under eq_bigr do rewrite -morphim_dfung1 morphim_gen ?subsetT// morphim_dfung1. rewrite prod_subG// => i; rewrite genS // set1gXnE setXnS // => j. by case: dfwithP => // k _; rewrite sub1set. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
setXn_gen
groupX0(gT : 'I_0 -> finGroupType) (G : forall i, {group gT i}) : setXn G = 1%g. Proof. by apply/setP => ?; apply/setXnP/set1P => [_|_ []//]; apply/ffunP => -[]. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
groupX0
sdprod_by(to : groupAction D R) : predArgType := SdPair (ax : aT * rT) of ax \in setX D R.
Inductive
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdprod_by
pair_of_sdto (u : sdprod_by to) := let: SdPair ax _ := u in ax. Variable to : groupAction D R.
Coercion
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
pair_of_sd
sdT:= (sdprod_by to).
Notation
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdT
sdval:= (@pair_of_sd to). HB.instance Definition _ := [isSub for sdval]. #[hnf] HB.instance Definition _ := [Finite of sdT by <:].
Notation
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdval
sdprod_one:= SdPair to (group1 _).
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdprod_one
sdprod_inv_proof(u : sdT) : (u.1^-1, to u.2^-1 u.1^-1) \in setX D R. Proof. by case: u => [[a x]] /= /setXP[Da Rx]; rewrite inE gact_stable !groupV ?Da. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdprod_inv_proof
sdprod_invu := SdPair to (sdprod_inv_proof u).
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdprod_inv
sdprod_mul_proof(u v : sdT) : (u.1 * v.1, to u.2 v.1 * v.2) \in setX D R. Proof. case: u v => [[a x] /= /setXP[Da Rx]] [[b y] /= /setXP[Db Ry]]. by rewrite inE !groupM //= gact_stable. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdprod_mul_proof
sdprod_mulu v := SdPair to (sdprod_mul_proof u v).
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdprod_mul
sdprod_mul1g: left_id sdprod_one sdprod_mul. Proof. move=> u; apply: val_inj; case: u => [[a x] /=]; case/setXP=> Da _. by rewrite gact1 // !mul1g. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdprod_mul1g
sdprod_mulVg: left_inverse sdprod_one sdprod_inv sdprod_mul. Proof. move=> u; apply: val_inj; case: u => [[a x] /=]; case/setXP=> Da _. by rewrite actKVin ?mulVg. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdprod_mulVg
sdprod_mulgA: associative sdprod_mul. Proof. move=> u v w; apply: val_inj; case: u => [[a x]] /=; case/setXP=> Da Rx. case: v w => [[b y]] /=; case/setXP=> Db Ry [[c z]] /=; case/setXP=> Dc Rz. by rewrite !(actMin to) // gactM ?gact_stable // !mulgA. Qed. HB.instance Definition _ := Finite_isGroup.Build sdT sdprod_mulgA sdprod_mul1g sdprod_mulVg.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdprod_mulgA
sdprod_groupType: finGroupType := sdT.
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdprod_groupType
sdpair1x := insubd sdprod_one (1, x) : sdT.
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdpair1
sdpair2a := insubd sdprod_one (a, 1) : sdT.
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdpair2
sdpair1_morphM: {in R &, {morph sdpair1 : x y / x * y}}. Proof. move=> x y Rx Ry; apply: val_inj. by rewrite /= !val_insubd !inE !group1 !groupM ?Rx ?Ry //= mulg1 act1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdpair1_morphM
sdpair2_morphM: {in D &, {morph sdpair2 : a b / a * b}}. Proof. move=> a b Da Db; apply: val_inj. by rewrite /= !val_insubd !inE !group1 !groupM ?Da ?Db //= mulg1 gact1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdpair2_morphM
sdpair1_morphism:= Morphism sdpair1_morphM.
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdpair1_morphism
sdpair2_morphism:= Morphism sdpair2_morphM.
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdpair2_morphism
injm_sdpair1: 'injm sdpair1. Proof. apply/subsetP=> x /setIP[Rx]. by rewrite !inE -val_eqE val_insubd inE Rx group1 /=; case/andP. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
injm_sdpair1
injm_sdpair2: 'injm sdpair2. Proof. apply/subsetP=> a /setIP[Da]. by rewrite !inE -val_eqE val_insubd inE Da group1 /=; case/andP. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
injm_sdpair2
sdpairE(u : sdT) : u = sdpair2 u.1 * sdpair1 u.2. Proof. apply: val_inj; case: u => [[a x] /= /setXP[Da Rx]]. by rewrite !val_insubd !inE Da Rx !(group1, gact1) // mulg1 mul1g. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdpairE
sdpair_act: {in R & D, forall x a, sdpair1 (to x a) = sdpair1 x ^ sdpair2 a}. Proof. move=> x a Rx Da; apply: val_inj. rewrite /= !val_insubd !inE !group1 gact_stable ?Da ?Rx //=. by rewrite !mul1g mulVg invg1 mulg1 actKVin ?mul1g. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdpair_act
sdpair_setact(G : {set rT}) a : G \subset R -> a \in D -> sdpair1 @* (to^~ a @: G) = (sdpair1 @* G) :^ sdpair2 a. Proof. move=> sGR Da; have GtoR := subsetP sGR; apply/eqP. rewrite eqEcard cardJg !(card_injm injm_sdpair1) //; last first. by apply/subsetP=> _ /imsetP[x Gx ->]; rewrite gact_stable ?GtoR. rewrite (card_imset _ (act_inj _ _)) leqnn andbT. apply/subsetP=> _ /morphimP[xa Rxa /imsetP[x Gx def_xa ->]]. rewrite mem_conjg -morphV // -sdpair_act ?groupV // def_xa actKin //. by rewrite mem_morphim ?GtoR. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdpair_setact
im_sdpair_norm: sdpair2 @* D \subset 'N(sdpair1 @* R). Proof. apply/subsetP=> _ /morphimP[a _ Da ->]. rewrite inE -sdpair_setact // morphimS //. by apply/subsetP=> _ /imsetP[x Rx ->]; rewrite gact_stable. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
im_sdpair_norm
im_sdpair_TI: (sdpair1 @* R) :&: (sdpair2 @* D) = 1. Proof. apply/trivgP; apply/subsetP=> _ /setIP[/morphimP[x _ Rx ->]]. case/morphimP=> a _ Da /eqP; rewrite inE -!val_eqE. by rewrite !val_insubd !inE Da Rx !group1 /eq_op /= eqxx; case/andP. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
im_sdpair_TI
im_sdpair: (sdpair1 @* R) * (sdpair2 @* D) = setT. Proof. apply/eqP; rewrite -subTset -(normC im_sdpair_norm). apply/subsetP=> /= u _; rewrite [u]sdpairE. by case: u => [[a x] /= /setXP[Da Rx]]; rewrite mem_mulg ?mem_morphim. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
im_sdpair
sdprod_sdpair: sdpair1 @* R ><| sdpair2 @* D = setT. Proof. by rewrite sdprodE ?(im_sdpair_norm, im_sdpair, im_sdpair_TI). Qed. Variables (A : {set aT}) (G : {set rT}).
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdprod_sdpair
gacentEsd: 'C_(|to)(A) = sdpair1 @*^-1 'C(sdpair2 @* A). Proof. apply/setP=> x; apply/idP/idP. case/setIP=> Rx /afixP cDAx; rewrite mem_morphpre //. apply/centP=> _ /morphimP[a Da Aa ->]; red. by rewrite conjgC -sdpair_act // cDAx // inE Da. case/morphpreP=> Rx cAx; rewrite inE Rx; apply/afixP=> a /setIP[Da Aa]. apply: (injmP injm_sdpair1); rewrite ?gact_stable /= ?sdpair_act //=. by rewrite /conjg (centP cAx) ?mulKg ?mem_morphim. Qed. Hypotheses (sAD : A \subset D) (sGR : G \subset R).
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
gacentEsd
astabEsd: 'C(G | to) = sdpair2 @*^-1 'C(sdpair1 @* G). Proof. have ssGR := subsetP sGR; apply/setP=> a; apply/idP/idP=> [cGa|]. rewrite mem_morphpre ?(astab_dom cGa) //. apply/centP=> _ /morphimP[x Rx Gx ->]; symmetry. by rewrite conjgC -sdpair_act ?(astab_act cGa) ?(astab_dom cGa). case/morphpreP=> Da cGa; rewrite !inE Da; apply/subsetP=> x Gx; rewrite inE. apply/eqP; apply: (injmP injm_sdpair1); rewrite ?gact_stable ?ssGR //=. by rewrite sdpair_act ?ssGR // /conjg -(centP cGa) ?mulKg ?mem_morphim ?ssGR. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
astabEsd
astabsEsd: 'N(G | to) = sdpair2 @*^-1 'N(sdpair1 @* G). Proof. apply/setP=> a; apply/idP/idP=> [nGa|]. have Da := astabs_dom nGa; rewrite mem_morphpre // inE sub_conjg. apply/subsetP=> _ /morphimP[x Rx Gx ->]. by rewrite mem_conjgV -sdpair_act // mem_morphim ?gact_stable ?astabs_act. case/morphpreP=> Da nGa; rewrite !inE Da; apply/subsetP=> x Gx. have Rx := subsetP sGR _ Gx; have Rxa: to x a \in R by rewrite gact_stable. rewrite inE -sub1set -(injmSK injm_sdpair1) ?morphim_set1 ?sub1set //=. by rewrite sdpair_act ?memJ_norm ?mem_morphim. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
astabsEsd
actsEsd: [acts A, on G | to] = (sdpair2 @* A \subset 'N(sdpair1 @* G)). Proof. by rewrite sub_morphim_pre -?astabsEsd. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
actsEsd
pprodmof B \subset 'N(A) & {in A & B, morph_act 'J 'J fA fB} & {in A :&: B, fA =1 fB} := fun x => fA (divgr A B x) * fB (remgr A B x).
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
pprodm
pprodmEx a : x \in H -> a \in K -> f (x * a) = fH x * fK a. Proof. move=> Hx Ka; have: x * a \in H * K by rewrite mem_mulg. rewrite -remgrP inE /f rcoset_sym mem_rcoset /divgr -mulgA groupMl //. case/andP; move: (remgr H K _) => b Hab Kb; rewrite morphM // -mulgA. have Kab: a * b^-1 \in K by rewrite groupM ?groupV. by congr (_ * _); rewrite eqfHK 1?inE ?Hab // -morphM // mulgKV. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
pprodmE
pprodmEl: {in H, f =1 fH}. Proof. by move=> x Hx; rewrite -(mulg1 x) pprodmE // morph1 !mulg1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
pprodmEl
pprodmEr: {in K, f =1 fK}. Proof. by move=> a Ka; rewrite -(mul1g a) pprodmE // morph1 !mul1g. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
pprodmEr
pprodmM: {in H <*> K &, {morph f: x y / x * y}}. Proof. move=> xa yb; rewrite norm_joinEr //. move=> /imset2P[x a Ha Ka ->{xa}] /imset2P[y b Hy Kb ->{yb}]. have Hya: y ^ a^-1 \in H by rewrite -mem_conjg (normsP nHK). rewrite mulgA -(mulgA x) (conjgCV a y) (mulgA x) -mulgA !pprodmE 1?groupMl //. by rewrite morphM // actf ?groupV ?morphV // morphM // !mulgA mulgKV invgK. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
pprodmM
pprodm_morphism:= Morphism pprodmM.
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
pprodm_morphism
morphim_pprodmA B : A \subset H -> B \subset K -> f @* (A * B) = fH @* A * fK @* B. Proof. move=> sAH sBK; rewrite [f @* _]morphimEsub /=; last first. by rewrite norm_joinEr // mulgSS. apply/setP=> y; apply/imsetP/idP=> [[_ /mulsgP[x a Ax Ba ->] ->{y}] |]. have Hx := subsetP sAH x Ax; have Ka := subsetP sBK a Ba. by rewrite pprodmE // imset2_f ?mem_morphim. case/mulsgP=> _ _ /morphimP[x Hx Ax ->] /morphimP[a Ka Ba ->] ->{y}. by exists (x * a); rewrite ?mem_mulg ?pprodmE. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
morphim_pprodm
morphim_pprodmlA : A \subset H -> f @* A = fH @* A. Proof. by move=> sAH; rewrite -{1}(mulg1 A) morphim_pprodm ?sub1G // morphim1 mulg1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
morphim_pprodml
morphim_pprodmrB : B \subset K -> f @* B = fK @* B. Proof. by move=> sBK; rewrite -{1}(mul1g B) morphim_pprodm ?sub1G // morphim1 mul1g. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
morphim_pprodmr
ker_pprodm: 'ker f = [set x * a^-1 | x in H, a in K & fH x == fK a]. Proof. apply/setP=> y; rewrite 3!inE {1}norm_joinEr //=. apply/andP/imset2P=> [[/mulsgP[x a Hx Ka ->{y}]]|[x a Hx]]. rewrite pprodmE // => fxa1. by exists x a^-1; rewrite ?invgK // inE groupVr ?morphV // eq_mulgV1 invgK. case/setIdP=> Kx /eqP fx ->{y}. by rewrite imset2_f ?pprodmE ?groupV ?morphV // fx mulgV. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
ker_pprodm
injm_pprodm: 'injm f = [&& 'injm fH, 'injm fK & fH @* H :&: fK @* K == fH @* K]. Proof. apply/idP/and3P=> [injf | [injfH injfK]]. rewrite eq_sym -{1}morphimIdom -(morphim_pprodml (subsetIl _ _)) injmI //. rewrite morphim_pprodml // morphim_pprodmr //=; split=> //. apply/injmP=> x y Hx Hy /=; rewrite -!pprodmEl //. by apply: (injmP injf); rewrite ?mem_gen ?inE ?Hx ?Hy. apply/injmP=> a b Ka Kb /=; rewrite -!pprodmEr //. by apply: (injmP injf); rewrite ?mem_gen //; apply/setUP; right. move/eqP=> fHK; rewrite ker_pprodm; apply/subsetP=> y. case/imset2P=> x a Hx /setIdP[Ka /eqP fxa] ->. have: fH x \in fH @* K by rewrite -fHK inE {2}fxa !mem_morphim. case/morphimP=> z Hz Kz /(injmP injfH) def_x. rewrite def_x // eqfHK ?inE ?Hz // in fxa. by rewrite def_x // (injmP injfK _ _ Kz Ka fxa) mulgV set11. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
injm_pprodm
sdprodm_norm: K \subset 'N(H). Proof. by case/sdprodP: eqHK_G. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdprodm_norm
sdprodm_sub: G \subset H <*> K. Proof. by case/sdprodP: eqHK_G => _ <- nHK _; rewrite norm_joinEr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdprodm_sub
sdprodm_eqf: {in H :&: K, fH =1 fK}. Proof. by case/sdprodP: eqHK_G => _ _ _ -> _ /set1P->; rewrite !morph1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdprodm_eqf
sdprodm:= restrm sdprodm_sub (pprodm sdprodm_norm actf sdprodm_eqf).
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdprodm
sdprodm_morphism:= Eval hnf in [morphism of sdprodm].
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdprodm_morphism
sdprodmEa b : a \in H -> b \in K -> sdprodm (a * b) = fH a * fK b. Proof. exact: pprodmE. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdprodmE
sdprodmEla : a \in H -> sdprodm a = fH a. Proof. exact: pprodmEl. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdprodmEl
sdprodmErb : b \in K -> sdprodm b = fK b. Proof. exact: pprodmEr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
sdprodmEr
morphim_sdprodmA B : A \subset H -> B \subset K -> sdprodm @* (A * B) = fH @* A * fK @* B. Proof. move=> sAH sBK; rewrite /sdprodm morphim_restrm /= (setIidPr _) ?morphim_pprodm //. by case/sdprodP: eqHK_G => _ <- _ _; apply: mulgSS. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
morphim_sdprodm
im_sdprodm: sdprodm @* G = fH @* H * fK @* K. Proof. by rewrite -morphim_sdprodm //; case/sdprodP: eqHK_G => _ ->. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
im_sdprodm
morphim_sdprodmlA : A \subset H -> sdprodm @* A = fH @* A. Proof. by move=> sHA; rewrite -{1}(mulg1 A) morphim_sdprodm ?sub1G // morphim1 mulg1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
morphim_sdprodml
morphim_sdprodmrB : B \subset K -> sdprodm @* B = fK @* B. Proof. by move=> sBK; rewrite -{1}(mul1g B) morphim_sdprodm ?sub1G // morphim1 mul1g. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
morphim_sdprodmr
ker_sdprodm: 'ker sdprodm = [set a * b^-1 | a in H, b in K & fH a == fK b]. Proof. rewrite ker_restrm (setIidPr _) ?subIset ?ker_pprodm //; apply/orP; left. by case/sdprodP: eqHK_G => _ <- nHK _; rewrite norm_joinEr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
ker_sdprodm
injm_sdprodm: 'injm sdprodm = [&& 'injm fH, 'injm fK & fH @* H :&: fK @* K == 1]. Proof. rewrite ker_sdprodm -(ker_pprodm sdprodm_norm actf sdprodm_eqf) injm_pprodm. congr [&& _, _ & _ == _]; have [_ _ _ tiHK] := sdprodP eqHK_G. by rewrite -morphimIdom tiHK morphim1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
injm_sdprodm
cprodm_norm: K \subset 'N(H). Proof. by rewrite cents_norm //; case/cprodP: eqHK_G. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
cprodm_norm
cprodm_sub: G \subset H <*> K. Proof. by case/cprodP: eqHK_G => _ <- cHK; rewrite cent_joinEr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
cprodm_sub
cprodm_actf: {in H & K, morph_act 'J 'J fH fK}. Proof. case/cprodP: eqHK_G => _ _ cHK a b Ha Kb /=. by rewrite /conjg -(centsP cHK b) // -(centsP cfHK (fK b)) ?mulKg ?mem_morphim. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
cprodm_actf
cprodm:= restrm cprodm_sub (pprodm cprodm_norm cprodm_actf eqfHK).
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
cprodm
cprodm_morphism:= Eval hnf in [morphism of cprodm].
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
cprodm_morphism
cprodmEa b : a \in H -> b \in K -> cprodm (a * b) = fH a * fK b. Proof. exact: pprodmE. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
cprodmE
cprodmEla : a \in H -> cprodm a = fH a. Proof. exact: pprodmEl. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
cprodmEl
cprodmErb : b \in K -> cprodm b = fK b. Proof. exact: pprodmEr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
cprodmEr
morphim_cprodmA B : A \subset H -> B \subset K -> cprodm @* (A * B) = fH @* A * fK @* B. Proof. move=> sAH sBK; rewrite [LHS]morphim_restrm /= (setIidPr _) ?morphim_pprodm //. by case/cprodP: eqHK_G => _ <- _; apply: mulgSS. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
morphim_cprodm
im_cprodm: cprodm @* G = fH @* H * fK @* K. Proof. by have [_ defHK _] := cprodP eqHK_G; rewrite -{2}defHK morphim_cprodm. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
im_cprodm
morphim_cprodmlA : A \subset H -> cprodm @* A = fH @* A. Proof. by move=> sHA; rewrite -{1}(mulg1 A) morphim_cprodm ?sub1G // morphim1 mulg1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
morphim_cprodml
morphim_cprodmrB : B \subset K -> cprodm @* B = fK @* B. Proof. by move=> sBK; rewrite -{1}(mul1g B) morphim_cprodm ?sub1G // morphim1 mul1g. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
morphim_cprodmr
ker_cprodm: 'ker cprodm = [set a * b^-1 | a in H, b in K & fH a == fK b]. Proof. rewrite ker_restrm (setIidPr _) ?subIset ?ker_pprodm //; apply/orP; left. by case/cprodP: eqHK_G => _ <- cHK; rewrite cent_joinEr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
ker_cprodm
injm_cprodm: 'injm cprodm = [&& 'injm fH, 'injm fK & fH @* H :&: fK @* K == fH @* K]. Proof. by rewrite ker_cprodm -(ker_pprodm cprodm_norm cprodm_actf eqfHK) injm_pprodm. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
injm_cprodm
dprodm_cprod: H \* K = G. Proof. by rewrite -eqHK_G /dprod; case/dprodP: eqHK_G => _ _ _ ->; rewrite subxx. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
dprodm_cprod
dprodm_eqf: {in H :&: K, fH =1 fK}. Proof. by case/dprodP: eqHK_G => _ _ _ -> _ /set1P->; rewrite !morph1. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
dprodm_eqf
dprodm:= cprodm dprodm_cprod cfHK dprodm_eqf.
Definition
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
dprodm
dprodm_morphism:= Eval hnf in [morphism of dprodm].
Canonical
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
dprodm_morphism
dprodmEa b : a \in H -> b \in K -> dprodm (a * b) = fH a * fK b. Proof. exact: pprodmE. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
dprodmE
dprodmEla : a \in H -> dprodm a = fH a. Proof. exact: pprodmEl. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
dprodmEl
dprodmErb : b \in K -> dprodm b = fK b. Proof. exact: pprodmEr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
dprodmEr
morphim_dprodmA B : A \subset H -> B \subset K -> dprodm @* (A * B) = fH @* A * fK @* B. Proof. exact: morphim_cprodm. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
morphim_dprodm
im_dprodm: dprodm @* G = fH @* H * fK @* K. Proof. exact: im_cprodm. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
im_dprodm
morphim_dprodmlA : A \subset H -> dprodm @* A = fH @* A. Proof. exact: morphim_cprodml. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
morphim_dprodml
morphim_dprodmrB : B \subset K -> dprodm @* B = fK @* B. Proof. exact: morphim_cprodmr. Qed.
Lemma
fingroup
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype bigop finset fingroup morphism", "From mathcomp Require Import quotient action finfun" ]
fingroup/gproduct.v
morphim_dprodmr