fact
stringlengths 8
1.54k
| type
stringclasses 19
values | library
stringclasses 8
values | imports
listlengths 1
10
| filename
stringclasses 98
values | symbolic_name
stringlengths 1
42
| docstring
stringclasses 1
value |
|---|---|---|---|---|---|---|
RecordPOrder_MeetJoin_isLattice d T of POrder d T := {
meet : T -> T -> T;
join : T -> T -> T;
meetP : forall x y z, (x <= meet y z) = (x <= y) && (x <= z);
joinP : forall x y z, (join x y <= z) = (x <= z) && (y <= z);
}.
HB.builders Context d T of POrder_MeetJoin_isLattice d T.
HB.instance Definition _ := @POrder_isMeetSemilattice.Build d T meet meetP.
HB.instance Definition _ := @POrder_isJoinSemilattice.Build d T join joinP.
HB.end.
HB.factory Record POrder_isLattice d T of POrder d T := {
meet : T -> T -> T;
join : T -> T -> T;
meetC : commutative meet;
joinC : commutative join;
meetA : associative meet;
joinA : associative join;
joinKI : forall y x, meet x (join x y) = x;
meetKU : forall y x, join x (meet x y) = x;
leEmeet : forall x y, (x <= y) = (meet x y == x);
}.
HB.builders Context d T of POrder_isLattice d T.
Fact leEjoin x y : (y <= x) = (join x y == x).
Proof.
rewrite leEmeet; apply/eqP/eqP => <-.
by rewrite meetC meetKU.
by rewrite joinC joinKI.
Qed.
Fact meetxx : idempotent_op meet.
Proof. by move=> x; apply/eqP; rewrite -leEmeet. Qed.
Fact lexI x y z : (x <= meet y z) = (x <= y) && (x <= z).
Proof.
rewrite !leEmeet; apply/eqP/andP => [<-|[/eqP<- /eqP<-]].
split; apply/eqP; last by rewrite meetA -meetA meetxx.
|
HB.factory
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Record
| |
RecordLattice_Meet_isDistrLattice d T of Lattice d T := {
meetUl : @left_distributive T T meet join;
}.
HB.builders Context d T of Lattice_Meet_isDistrLattice d T.
Let meetUr : right_distributive (@meet _ T) (@join _ T).
Proof. by move=> x y z; rewrite ![x `&` _]meetC meetUl. Qed.
Let joinIl : left_distributive (@join _ T) (@meet _ T).
Proof. by move=> x y z; rewrite meetUr joinIK meetUl -joinA meetUKC. Qed.
HB.instance Definition _ := Lattice_isDistributive.Build d T meetUl joinIl.
HB.end.
HB.factory Record POrder_Meet_isDistrLattice d T of POrder d T := {
meet : T -> T -> T;
join : T -> T -> T;
meetC : commutative meet;
joinC : commutative join;
meetA : associative meet;
joinA : associative join;
joinKI : forall y x, meet x (join x y) = x;
meetKU : forall y x, join x (meet x y) = x;
leEmeet : forall x y, (x <= y) = (meet x y == x);
meetUl : left_distributive meet join;
}.
HB.builders Context d T of POrder_Meet_isDistrLattice d T.
HB.instance Definition _ := @POrder_isLattice.Build d T
meet join meetC joinC meetA joinA joinKI meetKU leEmeet.
HB.instance Definition _ :=
Lattice_Meet_isDistrLattice.Build d T meetUl.
HB.end.
HB.factory Record isMeetJoinDistrLattice (d : disp_t) T of Choice T := {
le : rel T;
|
HB.factory
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Record
| |
RecordBDistrLattice_hasSectionalComplement d T
of BDistrLattice d T := {
diff : T -> T -> T;
diffKI : forall x y, y `&` diff x y = \bot;
joinIB : forall x y, (x `&` y) `|` diff x y = x;
}.
|
HB.factory
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Record
| |
Buildd T :=
(BDistrLattice_hasSectionalComplement.Build d T) (only parsing).
|
Notation
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Build
| |
hasRelativeComplementd T :=
(BDistrLattice_hasSectionalComplement d T) (only parsing).
HB.builders Context d T of BDistrLattice_hasSectionalComplement d T.
|
Notation
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
hasRelativeComplement
| |
rcomplx y z := (x `&` y) `|` diff (y `|` x) z.
Fact rcomplPmeet x y z : ((x `&` y) `|` z) `&` rcompl x y z = x `&` y.
Proof. by rewrite meetUr joinIKC meetUl diffKI joinx0 meetKU. Qed.
Fact rcomplPjoin x y z : ((y `|` x) `&` z) `|` rcompl x y z = y `|` x.
Proof. by rewrite joinCA joinIB joinA meetUK joinC. Qed.
HB.instance Definition _ :=
@DistrLattice_hasRelativeComplement.Build d T rcompl rcomplPmeet rcomplPjoin.
Fact diffErcompl x y : diff x y = rcompl \bot x y.
Proof. by rewrite /rcompl meet0x join0x joinx0. Qed.
HB.instance Definition _ :=
@CDistrLattice_hasSectionalComplement.Build d T diff diffErcompl.
HB.end.
HB.factory Record TDistrLattice_hasDualSectionalComplement d T
of TDistrLattice d T := {
codiff : T -> T -> T;
codiffKU : forall x y, y `|` codiff x y = \top;
meetUB : forall x y, (x `|` y) `&` codiff x y = x;
}.
HB.builders Context d T of TDistrLattice_hasDualSectionalComplement d T.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
rcompl
| |
rcomplx y z := (y `|` x) `&` codiff (x `&` y) z.
Fact rcomplPmeet x y z : ((x `&` y) `|` z) `&` rcompl x y z = x `&` y.
Proof. by rewrite meetCA meetUB meetA joinIK. Qed.
Fact rcomplPjoin x y z : ((y `|` x) `&` z) `|` rcompl x y z = y `|` x.
Proof. by rewrite joinIr meetUKC joinIl codiffKU meetx1 joinKI. Qed.
HB.instance Definition _ :=
@DistrLattice_hasRelativeComplement.Build d T rcompl rcomplPmeet rcomplPjoin.
Fact codiffErcompl x y : codiff x y = rcompl x \top y.
Proof. by rewrite /rcompl join1x meet1x meetx1. Qed.
HB.instance Definition _ :=
@CDistrLattice_hasDualSectionalComplement.Build d T codiff codiffErcompl.
HB.end.
HB.factory Record CBDistrLattice_hasComplement d T
of CBDistrLattice d T & hasTop d T := {
compl : T -> T;
complEdiff : forall x, compl x = (\top : T) `\` x;
}.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
rcompl
| |
Buildd T := (CBDistrLattice_hasComplement.Build d T) (only parsing).
|
Notation
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Build
| |
hasComplementd T := (CBDistrLattice_hasComplement d T) (only parsing).
HB.builders Context d T of CBDistrLattice_hasComplement d T.
HB.instance Definition _ := @CDistrLattice_hasDualSectionalComplement.Build d T
(fun x y => rcompl x \top y) (fun _ _ => erefl).
Fact complEcodiff (x : T) : compl x = codiff (\bot : T) x.
Proof. by rewrite complEdiff diffErcompl. Qed.
HB.instance Definition _ :=
@CDistrLattice_hasComplement.Build d T compl complEdiff complEcodiff.
HB.end.
HB.factory Record CTDistrLattice_hasComplement d T
of CTDistrLattice d T & hasBottom d T := {
compl : T -> T;
complEcodiff : forall x, compl x = codiff (\bot : T) x;
}.
HB.builders Context d T of CTDistrLattice_hasComplement d T.
HB.instance Definition _ := @CDistrLattice_hasSectionalComplement.Build d T
(fun x y => rcompl (\bot : T) x y) (fun _ _ => erefl).
Fact complEdiff (x : T) : compl x = (\top : T) `\` x.
Proof. by rewrite complEcodiff codiffErcompl. Qed.
HB.instance Definition _ :=
@CDistrLattice_hasComplement.Build d T compl complEdiff complEcodiff.
HB.end.
HB.factory Record TBDistrLattice_hasComplement d T of TBDistrLattice d T := {
compl : T -> T;
joinxC : forall x, x `|` compl x = \top;
meetxC : forall x, x `&` compl x = \bot;
}.
|
Notation
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
hasComplement
| |
diffx y := x `&` compl y.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
diff
| |
codiffx y := x `|` compl y.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
codiff
| |
rcomplx y z := (x `&` y) `|` diff (y `|` x) z.
Fact diffKI x y : y `&` diff x y = \bot.
Proof. by rewrite meetCA meetxC meetx0. Qed.
Fact joinIB x y : (x `&` y) `|` diff x y = x.
Proof. by rewrite -meetUr joinxC meetx1. Qed.
HB.instance Definition _ :=
@BDistrLattice_hasSectionalComplement.Build d T diff diffKI joinIB.
Fact codiffErcompl x y : codiff x y = rcompl x \top y.
Proof. by rewrite /rcompl /diff join1x meetx1 meet1x. Qed.
HB.instance Definition _ :=
@CDistrLattice_hasDualSectionalComplement.Build d T codiff codiffErcompl.
Fact complEdiff x : compl x = diff \top x. Proof. exact/esym/meet1x. Qed.
Fact complEcodiff x : compl x = codiff \bot x. Proof. exact/esym/join0x. Qed.
HB.instance Definition _ :=
@CDistrLattice_hasComplement.Build d T compl complEdiff complEcodiff.
HB.end.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
rcompl
| |
RecordLattice_isTotal d T of Lattice d T := {
le_total : total (<=%O : rel T)
}.
HB.builders Context d T of Lattice_isTotal d T.
Fact meetUl : @left_distributive T T meet join.
Proof.
pose leP x y := lcomparable_leP (le_total x y); move=> x y z; apply/esym.
by case: (leP x y) (leP x z) (leP y z) => [|/ltW] xy [|/ltW] xz [|/ltW] yz;
(apply/join_idPl || apply/join_idPr) => //; apply: le_trans xy.
Qed.
HB.instance Definition _ := Lattice_Meet_isDistrLattice.Build d T meetUl.
HB.instance Definition _ := DistrLattice_isTotal.Build d T le_total.
HB.end.
HB.factory Record POrder_isTotal d T of POrder d T := {
le_total : total (<=%O : rel T) }.
HB.builders Context d T of POrder_isTotal d T.
Implicit Types (x y z : T).
Let comparableT x y : x >=< y := le_total x y.
Fact ltgtP x y :
compare x y (min y x) (min x y) (max y x) (max x y)
(y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y).
Proof. exact: comparable_ltgtP. Qed.
Fact leP x y : le_xor_gt x y
(min y x) (min x y) (max y x) (max x y) (x <= y) (y < x).
Proof. exact: comparable_leP. Qed.
|
HB.factory
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Record
| |
meet:= @min _ T.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meet
| |
join:= @max _ T.
Fact meetC : commutative meet.
Proof. by move=> x y; rewrite /meet; have [] := ltgtP. Qed.
Fact joinC : commutative join.
Proof. by move=> x y; rewrite /join; have [] := ltgtP. Qed.
Fact meetA : associative meet.
Proof.
move=> x y z; rewrite /meet /min !(fun_if, if_arg).
case: (leP z y) (leP y x) (leP z x) => [] zy [] yx [] zx//=.
by have := le_lt_trans (le_trans zy yx) zx; rewrite ltxx.
by apply/eqP; rewrite eq_le zx ltW// (lt_trans yx).
Qed.
Fact joinA : associative join.
Proof.
move=> x y z; rewrite /meet /min !(fun_if, if_arg).
case: (leP z y) (leP y x) (leP z x) => [] zy [] yx [] zx//=.
by have := le_lt_trans (le_trans zy yx) zx; rewrite ltxx.
by apply/eqP; rewrite eq_le zx ltW// (lt_trans yx).
Qed.
Fact joinKI y x : meet x (join x y) = x.
Proof.
rewrite /meet /join /min /max !(fun_if, if_arg).
by have []// := ltgtP x y; rewrite ltxx.
Qed.
Fact meetKU y x : join x (meet x y) = x.
Proof.
rewrite /meet /join /min /max !(fun_if, if_arg).
by have []// := ltgtP x y; rewrite ltxx.
Qed.
Fact leEmeet x y : (x <= y) = (meet x y == x).
Proof. by rewrite /meet; case: leP => ?; rewrite ?eqxx ?lt_eqF. Qed.
HB.instance Definition _ := @POrder_isLattice.Build d T
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
join
| |
Definition_ := POrder.on T'.
HB.instance Definition _ := POrder_isTotal.Build d T' le_total.
Implicit Types (x y z : T').
Fact meetE x y : meet x y = x `&` y. Proof. by rewrite meet_def. Qed.
Fact joinE x y : join x y = x `|` y. Proof. by rewrite join_def. Qed.
Fact meetC : commutative meet.
Proof. by move=> *; rewrite !meetE meetC. Qed.
Fact joinC : commutative join.
Proof. by move=> *; rewrite !joinE joinC. Qed.
Fact meetA : associative meet.
Proof. by move=> *; rewrite !meetE meetA. Qed.
Fact joinA : associative join.
Proof. by move=> *; rewrite !joinE joinA. Qed.
Fact joinKI y x : meet x (join x y) = x.
Proof. by rewrite meetE joinE joinKI. Qed.
Fact meetKU y x : join x (meet x y) = x.
Proof. by rewrite meetE joinE meetKU. Qed.
Fact meetUl : left_distributive meet join.
Proof. by move=> *; rewrite !meetE !joinE meetUl. Qed.
Fact meetxx : idempotent_op meet.
Proof. by move=> *; rewrite meetE meetxx. Qed.
Fact le_def x y : x <= y = (meet x y == x).
Proof. by rewrite meetE (eq_meetl x y). Qed.
|
HB.instance
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Definition
| |
Definition_ := @POrder_Meet_isDistrLattice.Build d T
meet join meetC joinC meetA joinA joinKI meetKU le_def meetUl.
HB.instance Definition _ := DistrLattice_isTotal.Build d T le_total.
HB.end.
HB.factory Record LtOrder (d : disp_t) T of Choice T := {
le : rel T;
lt : rel T;
meet : T -> T -> T;
join : T -> T -> T;
le_def : forall x y, le x y = (x == y) || lt x y;
meet_def : forall x y, meet x y = if lt x y then x else y;
join_def : forall x y, join x y = if lt x y then y else x;
lt_irr : irreflexive lt;
lt_trans : transitive lt;
lt_total : forall x y, x != y -> lt x y || lt y x;
}.
HB.builders Context d T of LtOrder d T.
Fact lt_def x y : lt x y = (y != x) && le x y.
Proof. by rewrite le_def; case: eqVneq => //= ->; rewrite lt_irr. Qed.
Fact meet_def_le x y : meet x y = if lt x y then x else y.
Proof. by rewrite meet_def lt_def; case: eqP. Qed.
Fact join_def_le x y : join x y = if lt x y then y else x.
Proof. by rewrite join_def lt_def; case: eqP. Qed.
Fact le_anti : antisymmetric le.
Proof.
move=> x y; rewrite !le_def; case: eqVneq => //= _ /andP [] hxy.
by move/(lt_trans hxy); rewrite lt_irr.
Qed.
Fact le_trans : transitive le.
Proof.
move=> y x z; rewrite !le_def; case: eqVneq => [->|_] //=.
by case: eqVneq => [-> ->|_ hxy /(lt_trans hxy) ->]; rewrite orbT.
|
HB.instance
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Definition
| |
Pcan:= isPOrder.Build disp (Choice.Pack (Choice.class T))
lt_def (@refl T disp' T' f) anti (@trans T disp' T' f).
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Pcan
| |
Canf' (f_can : cancel f f') := Pcan (can_pcan f_can).
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Can
| |
PCanIsPartial:= CancelPartial.Pcan.
|
Notation
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
PCanIsPartial
| |
CanIsPartial:= CancelPartial.Can.
#[export]
HB.instance Definition _ (disp : disp_t) (T : choiceType)
(disp' : disp_t) (T' : porderType disp') (f : T -> T')
(f' : T' -> option T) (f_can : pcancel f f') :=
Preorder_isPOrder.Build disp (pcan_type f_can) (CancelPartial.anti f_can).
#[export]
HB.instance Definition _ (disp : disp_t) (T : choiceType)
(disp' : disp_t) (T' : porderType disp') (f : T -> T') (f' : T' -> T)
(f_can : cancel f f') :=
Preorder_isPOrder.Build disp (can_type f_can)
(CancelPartial.anti (can_pcan f_can)).
|
Notation
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
CanIsPartial
| |
Definition_ :=
MonoTotal.Build disp (pcan_type f_can) (fun _ _ => erefl).
|
HB.instance
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Definition
| |
PCanIsTotal: DistrLattice_isTotal _ (pcan_type f_can) :=
Total.on (pcan_type f_can).
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
PCanIsTotal
| |
Definition_ :=
MonoTotal.Build disp (can_type f_can) (fun _ _ => erefl).
|
HB.instance
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Definition
| |
CanIsTotal: DistrLattice_isTotal _ (can_type f_can) :=
Total.on (can_type f_can).
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
CanIsTotal
| |
RecordIsoLattice disp T of POrder disp T := {
disp' : disp_t;
T' : latticeType disp';
f : T -> T';
f' : T' -> T;
f_can : cancel f f';
f'_can : cancel f' f;
f_mono : {mono f : x y / x <= y};
}.
HB.builders Context disp T of IsoLattice disp T.
|
HB.factory
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Record
| |
meet(x y : T) := f' (meet (f x) (f y)).
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meet
| |
join(x y : T) := f' (join (f x) (f y)).
Fact meetC : commutative meet. Proof. by move=> x y; rewrite /meet meetC. Qed.
Fact joinC : commutative join. Proof. by move=> x y; rewrite /join joinC. Qed.
Fact meetA : associative meet.
Proof. by move=> y x z; rewrite /meet !f'_can meetA. Qed.
Fact joinA : associative join.
Proof. by move=> y x z; rewrite /join !f'_can joinA. Qed.
Fact joinKI y x : meet x (join x y) = x.
Proof. by rewrite /meet /join f'_can joinKI f_can. Qed.
Fact meetKI y x : join x (meet x y) = x.
Proof. by rewrite /join /meet f'_can meetKU f_can. Qed.
Fact meet_eql x y : (x <= y) = (meet x y == x).
Proof. by rewrite /meet -(can_eq f_can) f'_can eq_meetl f_mono. Qed.
HB.instance Definition _ := POrder_isLattice.Build _ T
meetC joinC meetA joinA joinKI meetKI meet_eql.
HB.end.
HB.factory Record IsoDistrLattice disp T of POrder disp T := {
disp' : disp_t;
T' : distrLatticeType disp';
f : T -> T';
f' : T' -> T;
f_can : cancel f f';
f'_can : cancel f' f;
f_mono : {mono f : x y / x <= y};
}.
HB.builders Context disp T of IsoDistrLattice disp T.
HB.instance Definition _ := IsoLattice.Build _ T f_can f'_can f_mono.
Fact meetUl : left_distributive (meet : T -> T -> T) join.
Proof. by move=> x y z; rewrite /meet /join /= !f'_can meetUl. Qed.
HB.instance Definition _ := Lattice_Meet_isDistrLattice.Build _ T meetUl.
HB.end.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
join
| |
omorph_lt(d : disp_t) (T : porderType d) (d' : disp_t) (T' : porderType d')
(f : {omorphism T -> T'}) : injective f -> {homo f : x y / x < y}.
Proof. by move/inj_homo_lt; apply; apply: omorph_le. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
omorph_lt
| |
meet_morphismd (T : latticeType d) d' (T' : latticeType d')
(f : T -> T') : Prop := {morph f : x y / x `&` y}.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meet_morphism
| |
join_morphismd (T : latticeType d) d' (T' : latticeType d')
(f : T -> T') : Prop := {morph f : x y / x `|` y}.
HB.mixin Record isMeetLatticeMorphism d (T : latticeType d)
d' (T' : latticeType d') (apply : T -> T') := {
omorphI_subproof : meet_morphism apply;
}.
HB.mixin Record isJoinLatticeMorphism d (T : latticeType d)
d' (T' : latticeType d') (apply : T -> T') := {
omorphU_subproof : join_morphism apply;
}.
HB.structure Definition MeetLatticeMorphism d (T : latticeType d)
d' (T' : latticeType d') :=
{f of isMeetLatticeMorphism d T d' T' f & @OrderMorphism d T d' T' f}.
HB.structure Definition JoinLatticeMorphism d (T : latticeType d)
d' (T' : latticeType d') :=
{f of isJoinLatticeMorphism d T d' T' f & @OrderMorphism d T d' T' f}.
HB.structure Definition LatticeMorphism d (T : latticeType d)
d' (T' : latticeType d') :=
{f of @MeetLatticeMorphism d T d' T' f & @JoinLatticeMorphism d T d' T' f}.
HB.factory Record isLatticeMorphism d (T : latticeType d)
d' (T' : latticeType d') (f : T -> T') of @OrderMorphism d T d' T' f := {
omorphI_subproof : meet_morphism f;
omorphU_subproof : join_morphism f;
}.
HB.builders Context d T d' T' f of isLatticeMorphism d T d' T' f.
HB.instance Definition _ := isMeetLatticeMorphism.Build d T d' T' f
omorphI_subproof.
HB.instance Definition _ := isJoinLatticeMorphism.Build d T d' T' f
omorphU_subproof.
HB.end.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
join_morphism
| |
omorphI(f : {mlmorphism T -> T'}) : {morph f : x y / x `&` y}.
Proof. exact: omorphI_subproof. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
omorphI
| |
omorphU(f : {jlmorphism T -> T'}) : {morph f : x y / x `|` y}.
Proof. exact: omorphU_subproof. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
omorphU
| |
Definition_ := isMeetLatticeMorphism.Build d T d T idfun
idfun_is_meet_morphism.
Fact comp_is_meet_morphism : meet_morphism (f \o g).
Proof. by move=> x y; rewrite /= !omorphI. Qed.
#[export]
HB.instance Definition _ := isMeetLatticeMorphism.Build d T d'' T'' (f \o g)
comp_is_meet_morphism.
|
HB.instance
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Definition
| |
Definition_ := isJoinLatticeMorphism.Build d T d T idfun
idfun_is_join_morphism.
Fact comp_is_join_morphism : join_morphism (f \o g).
Proof. by move=> x y; rewrite /= !omorphU. Qed.
#[export]
HB.instance Definition _ := isJoinLatticeMorphism.Build d T d'' T'' (f \o g)
comp_is_join_morphism.
|
HB.instance
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Definition
| |
RecordisBLatticeMorphism d (T : bLatticeType d)
d' (T' : bLatticeType d') (apply : T -> T') := {
omorph0_subproof : apply \bot = \bot;
}.
HB.mixin Record isTLatticeMorphism d (T : tLatticeType d)
d' (T' : tLatticeType d') (apply : T -> T') := {
omorph1_subproof : apply \top = \top;
}.
HB.structure Definition BLatticeMorphism d (T : bLatticeType d)
d' (T' : bLatticeType d') := {f of isBLatticeMorphism d T d' T' f}.
HB.structure Definition TLatticeMorphism d (T : tLatticeType d)
d' (T' : tLatticeType d') := {f of isTLatticeMorphism d T d' T' f}.
HB.structure Definition TBLatticeMorphism d (T : tbLatticeType d)
d' (T' : tbLatticeType d') :=
{f of @BLatticeMorphism d T d' T' f & @TLatticeMorphism d T d' T' f}.
|
HB.mixin
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Record
| |
omorph0: f \bot = \bot.
Proof. exact: omorph0_subproof. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
omorph0
| |
Definition_ := isBLatticeMorphism.Build d T d T idfun
idfun_is_bottom_morphism.
Fact comp_is_bottom_morphism : (f \o g) \bot = \bot.
Proof. by rewrite /= !omorph0. Qed.
#[export]
HB.instance Definition _ := isBLatticeMorphism.Build d T d'' T'' (f \o g)
comp_is_bottom_morphism.
|
HB.instance
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Definition
| |
omorph1: f \top = \top.
Proof. exact: omorph1_subproof. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
omorph1
| |
Definition_ := isTLatticeMorphism.Build d T d T idfun
idfun_is_top_morphism.
Fact comp_is_top_morphism : (f \o g) \top = \top.
Proof. by rewrite /= !omorph1. Qed.
#[export]
HB.instance Definition _ := isTLatticeMorphism.Build d T d'' T'' (f \o g)
comp_is_top_morphism.
|
HB.instance
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Definition
| |
meet_closed:= {in S &, forall u v, u `&` v \in S}.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meet_closed
| |
join_closed:= {in S &, forall u v, u `|` v \in S}.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
join_closed
| |
RecordisMeetLatticeClosed d (T : latticeType d) (S : {pred T}) := {
opredI : meet_closed S;
}.
HB.mixin Record isJoinLatticeClosed d (T : latticeType d) (S : {pred T}) := {
opredU : join_closed S;
}.
HB.mixin Record isBLatticeClosed d (T : bLatticeType d) (S : {pred T}) := {
opred0 : \bot \in S;
}.
HB.mixin Record isTLatticeClosed d (T : tLatticeType d) (S : {pred T}) := {
opred1 : \top \in S;
}.
|
HB.mixin
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Record
| |
DefinitionMeetLatticeClosed d T :=
{S of isMeetLatticeClosed d T S}.
#[short(type="joinLatticeClosed")]
HB.structure Definition JoinLatticeClosed d T :=
{S of isJoinLatticeClosed d T S}.
#[short(type="latticeClosed")]
HB.structure Definition LatticeClosed d T :=
{S of @MeetLatticeClosed d T S & @JoinLatticeClosed d T S}.
#[short(type="bLatticeClosed")]
HB.structure Definition BLatticeClosed d T := {S of isBLatticeClosed d T S}.
#[short(type="bJoinLatticeClosed")]
HB.structure Definition BJoinLatticeClosed d T :=
{S of isBLatticeClosed d T S & @JoinLatticeClosed d T S}.
#[short(type="tLatticeClosed")]
HB.structure Definition TLatticeClosed d T := {S of isTLatticeClosed d T S}.
#[short(type="tMeetLatticeClosed")]
HB.structure Definition TMeetLatticeClosed d T :=
{S of isTLatticeClosed d T S & @MeetLatticeClosed d T S}.
#[short(type="tbLatticeClosed")]
HB.structure Definition TBLatticeClosed d (T : tbLatticeType d) :=
{S of @BLatticeClosed d T S & @TLatticeClosed d T S}.
HB.factory Record isLatticeClosed d (T : latticeType d) (S : {pred T}) := {
opredI : meet_closed S;
opredU : join_closed S;
}.
HB.builders Context d T S of isLatticeClosed d T S.
HB.instance Definition _ := isMeetLatticeClosed.Build d T S opredI.
HB.instance Definition _ := isJoinLatticeClosed.Build d T S opredU.
HB.end.
HB.factory Record isTBLatticeClosed d (T : tbLatticeType d) (S : {pred T}) := {
|
HB.structure
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Definition
| |
opredI(S : meetLatticeClosed T) : {in S &, forall u v, u `&` v \in S}.
Proof. exact: opredI. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
opredI
| |
opredU(S : joinLatticeClosed T) : {in S &, forall u v, u `|` v \in S}.
Proof. exact: opredU. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
opredU
| |
opred0(S : bLatticeClosed T) : \bot \in S.
Proof. exact: opred0. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
opred0
| |
opred_joins(S : bJoinLatticeClosed T) I r (P : pred I) F :
(forall i, P i -> F i \in S) -> \join_(i <- r | P i) F i \in S.
Proof. by move=> FS; elim/big_ind: _; [exact: opred0 | exact: opredU |]. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
opred_joins
| |
opred1(S : tLatticeClosed T) : \top \in S.
Proof. exact: opred1. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
opred1
| |
opred_meets(S : tMeetLatticeClosed T) I r (P : pred I) F :
(forall i, P i -> F i \in S) -> \meet_(i <- r | P i) F i \in S.
Proof. by move=> FS; elim/big_ind: _; [exact: opred1 | exact: opredI |]. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
opred_meets
| |
DefinitionSubPOrder d (T : porderType d) S d' :=
{ U of SubEquality T S U & POrder d' U & isSubPreorder d T S d' U }.
HB.factory Record SubChoice_isSubPOrder d (T : porderType d) S (d' : disp_t) U
of SubChoice T S U := {}.
HB.builders Context d T S d' U of SubChoice_isSubPOrder d T S d' U.
HB.instance Definition _ := SubChoice_isSubPreorder.Build d T S d' U.
HB.instance Definition _ := Preorder_isPOrder.Build d' U
(@CancelPartial.anti U d T _ _ (@valK _ _ U)).
HB.end.
#[export]
HB.instance Definition _ d (T : porderType d) (S : pred T) (d' : disp_t)
(U : subType S) := SubChoice_isSubPOrder.Build d T S d' (sub_type U).
HB.mixin Record isMeetSubLattice d (T : latticeType d) (S : pred T) d' U
of SubType T S U & Lattice d' U := {
valI_subproof : {morph (val : U -> T) : x y / x `&` y};
}.
HB.mixin Record isJoinSubLattice d (T : latticeType d) (S : pred T) d' U
of SubType T S U & Lattice d' U := {
valU_subproof : {morph (val : U -> T) : x y / x `|` y};
}.
#[short(type="subPOrderLattice")]
HB.structure Definition SubPOrderLattice d (T : latticeType d) S d' :=
{ U of @SubPOrder d T S d' U & Lattice d' U }.
#[short(type="subPOrderBLattice")]
HB.structure Definition SubPOrderBLattice d (T : latticeType d) S d' :=
{ U of @SubPOrderLattice d T S d' U & BLattice d' U }.
#[short(type="subPOrderTLattice")]
HB.structure Definition SubPOrderTLattice d (T : latticeType d) S d' :=
{ U of @SubPOrderLattice d T S d' U & TLattice d' U }.
#[short(type="subPOrderTBLattice")]
HB.st
...
|
HB.structure
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Definition
| |
joinUKIy x : meetU x (joinU x y) = x.
Proof. by apply: val_inj; rewrite !SubK joinKI. Qed.
Let meetUKU y x : joinU x (meetU x y) = x.
Proof. by apply: val_inj; rewrite !SubK meetKU. Qed.
Let le_meetU x y : (x <= y) = (meetU x y == x).
Proof. by rewrite -le_val -(inj_eq val_inj) SubK leEmeet. Qed.
HB.instance Definition _ := POrder_isLattice.Build d' U
meetUC joinUC meetUA joinUA joinUKI meetUKU le_meetU.
Fact valI : meet_morphism (val : U -> T).
Proof. by move=> x y; rewrite !SubK. Qed.
Fact valU : join_morphism (val : U -> T).
Proof. by move=> x y; rewrite !SubK. Qed.
HB.instance Definition _ := isMeetSubLattice.Build d T S d' U valI.
HB.instance Definition _ := isJoinSubLattice.Build d T S d' U valU.
HB.end.
HB.factory Record SubChoice_isSubLattice d (T : latticeType d) S (d' : disp_t) U
of SubChoice T S U := {
opredI_subproof : meet_closed S;
opredU_subproof : join_closed S;
}.
HB.builders Context d T S d' U of SubChoice_isSubLattice d T S d' U.
HB.instance Definition _ := SubChoice_isSubPOrder.Build d T S d' U.
HB.instance Definition _ := SubPOrder_isSubLattice.Build d T S d' U
opredI_subproof opredU_subproof.
HB.end.
HB.mixin Record isBSubLattice d (T : bLatticeType d) (S : pred T) d' U
of SubType T S U & BLattice d' U := {
val0_subproof : (val : U -> T) \bot = \bot;
}.
#[short(type="bJoinSubLattice")]
HB.structure Definition BJoinSubLattice d (T : bLatticeType d) S d' :=
{ U of @JoinSubLattice d T S d' U & BLattice d' U & isBSubLattice d T S d' U }.
#[short
...
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinUKI
| |
totalU: total (<=%O : rel U).
Proof. by move=> x y; rewrite -!le_val le_total. Qed.
HB.instance Definition _ := Lattice_isTotal.Build d' U totalU.
HB.end.
HB.factory Record SubPOrder_isSubOrder d (T : orderType d) S d' U
of @SubPOrder d T S d' U := {}.
HB.builders Context d T S d' U of SubPOrder_isSubOrder d T S d' U.
Fact opredI : meet_closed S.
Proof. by move=> x y Sx Sy; rewrite meetEtotal; case: leP. Qed.
Fact opredU : join_closed S.
Proof. by move=> x y Sx Sy; rewrite joinEtotal; case: leP. Qed.
HB.instance Definition _ := SubPOrder_isSubLattice.Build d T S d' U opredI opredU.
HB.instance Definition _ := SubLattice_isSubOrder.Build d T S d' U.
HB.end.
HB.factory Record SubChoice_isSubOrder d (T : orderType d) S (d' : disp_t) U
of @SubChoice T S U := {}.
HB.builders Context d T S d' U of SubChoice_isSubOrder d T S d' U.
HB.instance Definition _ := SubChoice_isSubPOrder.Build d T S d' U.
HB.instance Definition _ := SubPOrder_isSubOrder.Build d T S d' U.
HB.end.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
totalU
| |
Definition_ :=
SubPOrder_isSubOrder.Build disp T P disp (sub_type sT).
|
HB.instance
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Definition
| |
Definition_ :=
Preorder_isPOrder.Build nat_display nat anti_leq.
#[export]
HB.instance Definition _ :=
POrder_isTotal.Build nat_display nat leq_total.
|
HB.instance
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Definition
| |
incn_inP: {in D, forall i, i.+1 \in D -> f i < f i.+1} ->
{in D &, {mono f : i j / i <= j}}.
Proof. by move=> f_inc; apply/le_mono_in/homo_ltn_lt_in. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
incn_inP
| |
decn_inP: {in D, forall i, i.+1 \in D -> f i > f i.+1} ->
{in D &, {mono f : i j /~ i <= j}}.
Proof. by move=> f_dec; apply/le_nmono_in/nhomo_ltn_lt_in. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
decn_inP
| |
incnP: (forall i, f i < f i.+1) -> {mono f : i j / i <= j}.
Proof. by move=> f_inc; apply/le_mono/homo_ltn_lt. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
incnP
| |
decnP: (forall i, f i > f i.+1) -> {mono f : i j /~ i <= j}.
Proof. by move=> f_dec; apply/le_nmono/nhomo_ltn_lt. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
decnP
| |
gcd:= (@meet dvd_display _).
|
Notation
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
gcd
| |
lcm:= (@join dvd_display _).
|
Notation
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
lcm
| |
lcmnnn : lcmn n n = n.
Proof. by case: n => // n; rewrite /lcmn gcdnn mulnK. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
lcmnn
| |
le_defm n : m %| n = (gcdn m n == m)%N.
Proof. by apply/gcdn_idPl/eqP. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
le_def
| |
joinKIn m : gcdn m (lcmn m n) = m.
Proof. by rewrite (gcdn_idPl _)// dvdn_lcml. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinKI
| |
meetKUn m : lcmn m (gcdn m n) = m.
Proof. by rewrite (lcmn_idPl _)// dvdn_gcdl. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetKU
| |
meetUl: left_distributive gcdn lcmn.
Proof.
move=> [|m'] [|n'] [|p'] //=; rewrite ?lcmnn ?lcm0n ?lcmn0 ?gcd0n ?gcdn0//.
- by rewrite gcdnC meetKU.
- by rewrite lcmnC gcdnC meetKU.
apply: eqn_from_log; rewrite ?(gcdn_gt0, lcmn_gt0)//= => p.
by rewrite !(logn_gcd, logn_lcm) ?(gcdn_gt0, lcmn_gt0)// minn_maxl.
Qed.
Fact dvdn_anti : antisymmetric dvdn.
Proof. by move=> a b => /andP[] /gcdn_idPl + /gcdn_idPr => ->. Qed.
#[export]
HB.instance Definition _ := Preorder_isPOrder.Build dvd_display t dvdn_anti.
#[export]
HB.instance Definition _ := @POrder_Meet_isDistrLattice.Build dvd_display t
gcdn lcmn gcdnC lcmnC gcdnA lcmnA joinKI meetKU le_def meetUl.
Import DvdSyntax.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetUl
| |
sdvdE(m n : t) : m %<| n = (n != m) && (m %| n).
Proof. exact/lt_def. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
sdvdE
| |
gcdE: gcd = gcdn :> (t -> t -> t). Proof. by []. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
gcdE
| |
lcmE: lcm = lcmn :> (t -> t -> t). Proof. by []. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
lcmE
| |
sdvdEnat:= sdvdE.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
sdvdEnat
| |
gcdEnat:= gcdE.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
gcdEnat
| |
lcmEnat:= lcmE.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
lcmEnat
| |
Definition_ (n : nat) :=
[SubChoice_isSubOrder of 'I_n by <: with ord_display].
|
HB.instance
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Definition
| |
andEbool: meet = andb. Proof. by []. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
andEbool
| |
orEbool: meet = andb. Proof. by []. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
orEbool
| |
subEboolx y : x `\` y = x && ~~ y. Proof. by []. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
subEbool
| |
complEbool: compl = negb. Proof. by []. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
complEbool
| |
leEbool:= leEbool.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
leEbool
| |
ltEbool:= ltEbool.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
ltEbool
| |
andEbool:= andEbool.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
andEbool
| |
orEbool:= orEbool.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
orEbool
| |
subEbool:= subEbool.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
subEbool
| |
complEbool:= complEbool.
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
complEbool
| |
meetlexi:= (@meet (lexi_display _ _) _).
|
Notation
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetlexi
| |
joinlexi:= (@join (lexi_display _ _) _).
|
Notation
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinlexi
| |
meetlexi:= (@meet (seqlexi_display _) _).
|
Notation
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetlexi
| |
joinlexi:= (@join (seqlexi_display _) _).
|
Notation
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinlexi
| |
Definition_ := POrder.on T1'.
Let T2' : Type := T2.
HB.instance Definition _ := POrder.on T2'.
#[export]
HB.instance Definition _ :=
Preorder_isDuallyPOrder.Build disp3 (T1 * T2)
(@anti _ _ T1' T2') (@anti _ _ T1^d T2^d).
|
HB.instance
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Definition
| |
ltEprodx y : (x < y) = [&& x != y, x.1 <= y.1 & x.2 <= y.2].
Proof. by rewrite lt_neqAle. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
ltEprod
| |
lt_pair(x1 y1 : T1) (x2 y2 : T2) : (x1, x2) < (y1, y2) :> T1 * T2 =
[&& (x1 != y1) || (x2 != y2), x1 <= y1 & x2 <= y2].
Proof. by rewrite ltEprod negb_and. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
lt_pair
| |
Definition_ := MeetSemilattice.on T1'.
Let T2' : Type := T2.
HB.instance Definition _ := MeetSemilattice.on T2'.
|
HB.instance
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Definition
| |
meetx y := (x.1 `&` y.1, x.2 `&` y.2).
#[export]
HB.instance Definition _ :=
@POrder_isMeetSemilattice.Build disp3 (T1 * T2) meet (@lexI _ _ T1' T2').
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meet
| |
meetEprodx y : x `&` y = (x.1 `&` y.1, x.2 `&` y.2). Proof. by []. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
meetEprod
| |
joinx y := (x.1 `|` y.1, x.2 `|` y.2).
#[export]
HB.instance Definition _ :=
@POrder_isJoinSemilattice.Build disp3 (T1 * T2) join
(fun x y z => @lexI _ _ T1^d T2^d z x y).
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
join
| |
joinEprodx y : x `|` y = (x.1 `|` y.1, x.2 `|` y.2). Proof. by []. Qed.
|
Lemma
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
joinEprod
| |
Definition_ (disp1 disp2 disp3 : disp_t)
(T1 : bPOrderType disp1) (T2 : bPOrderType disp2) :=
POrder.on (type disp3 T1 T2).
#[export]
HB.instance Definition _ (disp1 disp2 disp3 : disp_t)
(T1 : tPOrderType disp1) (T2 : tPOrderType disp2) :=
POrder.on (type disp3 T1 T2).
#[export]
HB.instance Definition _ (disp1 disp2 disp3 : disp_t)
(T1 : tbPOrderType disp1) (T2 : tbPOrderType disp2) :=
POrder.on (type disp3 T1 T2).
#[export]
HB.instance Definition _ (disp1 disp2 disp3 : disp_t)
(T1 : bMeetSemilatticeType disp1) (T2 : bMeetSemilatticeType disp2) :=
POrder.on (type disp3 T1 T2).
#[export]
HB.instance Definition _ (disp1 disp2 disp3 : disp_t)
(T1 : tMeetSemilatticeType disp1) (T2 : tMeetSemilatticeType disp2) :=
POrder.on (type disp3 T1 T2).
#[export]
HB.instance Definition _ (disp1 disp2 disp3 : disp_t)
(T1 : tbMeetSemilatticeType disp1) (T2 : tbMeetSemilatticeType disp2) :=
POrder.on (type disp3 T1 T2).
#[export]
HB.instance Definition _ (disp1 disp2 disp3 : disp_t)
(T1 : bJoinSemilatticeType disp1) (T2 : bJoinSemilatticeType disp2) :=
POrder.on (type disp3 T1 T2).
#[export]
HB.instance Definition _ (disp1 disp2 disp3 : disp_t)
(T1 : tJoinSemilatticeType disp1) (T2 : tJoinSemilatticeType disp2) :=
POrder.on (type disp3 T1 T2).
#[export]
HB.instance Definition _ (disp1 disp2 disp3 : disp_t)
(T1 : tbJoinSemilatticeType disp1) (T2 : tbJoinSemilatticeType disp2) :=
POrder.on (type disp3 T1 T2).
#[export]
HB.instance Definition _ (disp1 disp2 disp3 : disp
...
|
HB.instance
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Definition
| |
Definition_ := DistrLattice.on T1'.
Let T2' : Type := T2.
HB.instance Definition _ := DistrLattice.on T2'.
#[export]
HB.instance Definition _ := Lattice_isDistributive.Build disp3 (T1 * T2)
(@meetUl _ _ T1' T2') (@meetUl _ _ T1^d T2^d).
|
HB.instance
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Definition
| |
Definition_ (disp1 disp2 disp3 : disp_t)
(T1 : bDistrLatticeType disp1) (T2 : bDistrLatticeType disp2) :=
POrder.on (type disp3 T1 T2).
#[export]
HB.instance Definition _ (disp1 disp2 disp3 : disp_t)
(T1 : tDistrLatticeType disp1) (T2 : tDistrLatticeType disp2) :=
POrder.on (type disp3 T1 T2).
#[export]
HB.instance Definition _ (disp1 disp2 disp3 : disp_t)
(T1 : tbDistrLatticeType disp1) (T2 : tbDistrLatticeType disp2) :=
POrder.on (type disp3 T1 T2).
|
HB.instance
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Definition
| |
Definition_ := CDistrLattice.on T1'.
Let T2' : Type := T2.
HB.instance Definition _ := CDistrLattice.on T2'.
|
HB.instance
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
Definition
| |
rcomplx y z := (rcompl x.1 y.1 z.1, rcompl x.2 y.2 z.2).
#[export]
HB.instance Definition _ :=
@DistrLattice_hasRelativeComplement.Build disp3 (T1 * T2)
rcompl (@rcomplPmeet _ _ T1' T2')
(fun x y => @rcomplPmeet _ _ T1^d T2^d y x).
|
Definition
|
order
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq",
"From mathcomp Require Import path fintype tuple bigop finset div prime finfun",
"From mathcomp Require Import finset",
"From mathcomp Require Export preorder"
] |
order/order.v
|
rcompl
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.