fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
enum_valP:= enum_valP.
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_valP
enum_val_nth:= enum_val_nth.
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_val_nth
nth_enum_rank_in:= nth_enum_rank_in.
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
nth_enum_rank_in
nth_enum_rank:= nth_enum_rank.
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
nth_enum_rank
enum_rankK_in:= enum_rankK_in.
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_rankK_in
enum_rankK:= enum_rankK.
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_rankK
enum_valK_in:= enum_valK_in.
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_valK_in
enum_valK:= enum_valK.
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_valK
enum_rank_inj:= enum_rank_inj.
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_rank_inj
enum_val_inj:= enum_val_inj.
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_val_inj
enum_val_bij_in:= enum_val_bij_in.
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_val_bij_in
eq_enum_rank_in:= eq_enum_rank_in.
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
eq_enum_rank_in
enum_rank_in_inj:= enum_rank_in_inj.
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_rank_in_inj
enum_rank_bij:= enum_rank_bij.
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_rank_bij
enum_val_bij:= enum_val_bij.
Notation
order
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import path fintype tuple bigop finset div prime finfun", "From mathcomp Require Import finset" ]
order/preorder.v
enum_val_bij
Ldivn := [set x : gT | x ^+ n == 1].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
Ldiv
exponentA := \big[lcmn/1%N]_(x in A) #[x].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
exponent
abelemp A := [&& p.-group A, abelian A & exponent A %| p].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
abelem
is_abelemA := abelem (pdiv #|A|) A.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
is_abelem
pElemp A := [set E : {group gT} | E \subset A & abelem p E].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
pElem
pnElemp n A := [set E in pElem p A | logn p #|E| == n].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
pnElem
nElemn A := \bigcup_(0 <= p < #|A|.+1) pnElem p n A.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
nElem
pmaxElemp A := [set E | [max E | E \in pElem p A]].
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
pmaxElem
p_rankp A := \max_(E in pElem p A) logn p #|E|.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
p_rank
rankA := \max_(0 <= p < #|A|.+1) p_rank p A.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
rank
gen_rankA := #|[arg min_(B < A | <<B>> == A) #|B|]|.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
gen_rank
Ohm:= <<[set x in A | x ^+ (pdiv #[x] ^ n) == 1]>>.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
Ohm
Mho:= <<[set x ^+ (pdiv #[x] ^ n) | x in A & (pdiv #[x]).-elt x]>>.
Definition
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
Mho
Ohm_group: {group gT} := Eval hnf in [group of Ohm].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
Ohm_group
Mho_group: {group gT} := Eval hnf in [group of Mho].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
Mho_group
pdiv_p_elt(p : nat) (x : gT) : p.-elt x -> x != 1 -> pdiv #[x] = p. Proof. move=> p_x; rewrite /order -cycle_eq1. by case/(pgroup_pdiv p_x)=> p_pr _ [k ->]; rewrite pdiv_pfactor. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
pdiv_p_elt
OhmPredP(x : gT) : reflect (exists2 p, prime p & x ^+ (p ^ n) = 1) (x ^+ (pdiv #[x] ^ n) == 1). Proof. have [-> | nt_x] := eqVneq x 1. by rewrite expg1n eqxx; left; exists 2; rewrite ?expg1n. apply: (iffP idP) => [/eqP | [p p_pr /eqP x_pn]]. by exists (pdiv #[x]); rewrite ?pdiv_prime ?order_gt1. rewrite (@pdiv_p_elt p) //; rewrite -order_dvdn in x_pn. by rewrite [p_elt _ _](pnat_dvd x_pn) // pnatX pnat_id. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
OhmPredP
Mho_p_elt(p : nat) x : x \in A -> p.-elt x -> x ^+ (p ^ n) \in Mho. Proof. move=> Ax p_x; have [-> | ntx] := eqVneq x 1; first by rewrite groupX. by apply/mem_gen/imsetP; exists x; rewrite ?inE ?Ax (pdiv_p_elt p_x). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
Mho_p_elt
LdivPA n x : reflect (x \in A /\ x ^+ n = 1) (x \in 'Ldiv_n(A)). Proof. by rewrite !inE; apply: (iffP andP) => [] [-> /eqP]. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
LdivP
dvdn_exponentx A : x \in A -> #[x] %| exponent A. Proof. by move=> Ax; rewrite (biglcmn_sup x). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
dvdn_exponent
expg_exponentx A : x \in A -> x ^+ exponent A = 1. Proof. by move=> Ax; apply/eqP; rewrite -order_dvdn dvdn_exponent. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
expg_exponent
exponentSA B : A \subset B -> exponent A %| exponent B. Proof. by move=> sAB; apply/dvdn_biglcmP=> x Ax; rewrite dvdn_exponent ?(subsetP sAB). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
exponentS
exponentPA n : reflect (forall x, x \in A -> x ^+ n = 1) (exponent A %| n). Proof. apply: (iffP (dvdn_biglcmP _ _ _)) => eAn x Ax. by apply/eqP; rewrite -order_dvdn eAn. by rewrite order_dvdn eAn. Qed. Arguments exponentP {A n}.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
exponentP
trivg_exponentG : (G :==: 1) = (exponent G %| 1). Proof. rewrite -subG1. by apply/subsetP/exponentP=> trG x /trG; rewrite expg1 => /set1P. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
trivg_exponent
exponent1: exponent [1 gT] = 1%N. Proof. by apply/eqP; rewrite -dvdn1 -trivg_exponent eqxx. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
exponent1
exponent_dvdnG : exponent G %| #|G|. Proof. by apply/dvdn_biglcmP=> x Gx; apply: order_dvdG. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
exponent_dvdn
exponent_gt0G : 0 < exponent G. Proof. exact: dvdn_gt0 (exponent_dvdn G). Qed. Hint Resolve exponent_gt0 : core.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
exponent_gt0
pnat_exponentpi G : pi.-nat (exponent G) = pi.-group G. Proof. congr (_ && _); first by rewrite cardG_gt0 exponent_gt0. apply: eq_all_r => p; rewrite !mem_primes cardG_gt0 exponent_gt0 /=. apply: andb_id2l => p_pr; apply/idP/idP=> pG. exact: dvdn_trans pG (exponent_dvdn G). by case/Cauchy: pG => // x Gx <-; apply: dvdn_exponent. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
pnat_exponent
exponentJA x : exponent (A :^ x) = exponent A. Proof. rewrite /exponent (reindex_inj (conjg_inj x)). by apply: eq_big => [y | y _]; rewrite ?orderJ ?memJ_conjg. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
exponentJ
exponent_witnessG : nilpotent G -> {x | x \in G & exponent G = #[x]}. Proof. move=> nilG; have [//=| /= x Gx max_x] := @arg_maxnP _ 1 [in G] order. exists x => //; apply/eqP; rewrite eqn_dvd dvdn_exponent // andbT. apply/dvdn_biglcmP=> y Gy; apply/dvdn_partP=> //= p. rewrite mem_primes => /andP[p_pr _]; have p_gt1: p > 1 := prime_gt1 p_pr. rewrite p_part pfactor_dvdn // -(leq_exp2l _ _ p_gt1) -!p_part. rewrite -(leq_pmul2r (part_gt0 p^' #[x])) partnC // -!order_constt. rewrite -orderM ?order_constt ?coprime_partC // ?max_x ?groupM ?groupX //. case/dprodP: (nilpotent_pcoreC p nilG) => _ _ cGpGp' _. have inGp := mem_normal_Hall (nilpotent_pcore_Hall _ nilG) (pcore_normal _ _). by red; rewrite -(centsP cGpGp') // inGp ?p_elt_constt ?groupX. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
exponent_witness
exponent_cyclex : exponent <[x]> = #[x]. Proof. by apply/eqP; rewrite eqn_dvd exponent_dvdn dvdn_exponent ?cycle_id. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
exponent_cycle
exponent_cyclicX : cyclic X -> exponent X = #|X|. Proof. by case/cyclicP=> x ->; apply: exponent_cycle. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
exponent_cyclic
primes_exponentG : primes (exponent G) = primes (#|G|). Proof. apply/eq_primes => p; rewrite !mem_primes exponent_gt0 cardG_gt0 /=. by apply: andb_id2l => p_pr; apply: negb_inj; rewrite -!p'natE // pnat_exponent. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
primes_exponent
pi_of_exponentG : \pi(exponent G) = \pi(G). Proof. by rewrite /pi_of primes_exponent. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
pi_of_exponent
partn_exponentSpi H G : H \subset G -> #|G|`_pi %| #|H| -> ((exponent H)`_pi = (exponent G)`_pi)%N. Proof. move=> sHG Gpi_dvd_H; apply/eqP; rewrite eqn_dvd. rewrite partn_dvd ?exponentS ?exponent_gt0 //=; apply/dvdn_partP=> // p. rewrite pi_of_part ?exponent_gt0 // => /andP[_ /= pi_p]. have sppi: {subset (p : nat_pred) <= pi} by move=> q /eqnP->. have [P sylP] := Sylow_exists p H; have sPH := pHall_sub sylP. have{} sylP: p.-Sylow(G) P. rewrite pHallE (subset_trans sPH) //= (card_Hall sylP) eqn_dvd andbC. by rewrite -{1}(partn_part _ sppi) !partn_dvd ?cardSg ?cardG_gt0. rewrite partn_part ?partn_biglcm //. apply: (@big_ind _ (dvdn^~ _)) => [|m n|x Gx]; first exact: dvd1n. by rewrite dvdn_lcm => ->. rewrite -order_constt; have p_y := p_elt_constt p x; set y := x.`_p in p_y *. have sYG: <[y]> \subset G by rewrite cycle_subG groupX. have [z _ Pyz] := Sylow_Jsub sylP sYG p_y. rewrite (bigD1 (y ^ z)) ?(subsetP sPH) -?cycle_subG ?cycleJ //=. by rewrite orderJ part_pnat_id ?dvdn_lcml // (pi_pnat p_y). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
partn_exponentS
exponent_Hallpi G H : pi.-Hall(G) H -> exponent H = ((exponent G)`_pi)%N. Proof. move=> hallH; have [sHG piH _] := and3P hallH. rewrite -(partn_exponentS sHG) -?(card_Hall hallH) ?part_pnat_id //. by apply: pnat_dvd piH; apply: exponent_dvdn. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
exponent_Hall
exponent_ZgroupG : Zgroup G -> exponent G = #|G|. Proof. move/forall_inP=> ZgG; apply/eqP; rewrite eqn_dvd exponent_dvdn. apply/(dvdn_partP _ (cardG_gt0 _)) => p _. have [S sylS] := Sylow_exists p G; rewrite -(card_Hall sylS). have /cyclicP[x defS]: cyclic S by rewrite ZgG ?(p_Sylow sylS). by rewrite defS dvdn_exponent // -cycle_subG -defS (pHall_sub sylS). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
exponent_Zgroup
cprod_exponentA B G : A \* B = G -> lcmn (exponent A) (exponent B) = (exponent G). Proof. case/cprodP=> [[K H -> ->{A B}] <- cKH]. apply/eqP; rewrite eqn_dvd dvdn_lcm !exponentS ?mulG_subl ?mulG_subr //=. apply/exponentP=> _ /imset2P[x y Kx Hy ->]. rewrite -[1]mulg1 expgMn; last by red; rewrite -(centsP cKH). congr (_ * _); apply/eqP; rewrite -order_dvdn. by rewrite (dvdn_trans (dvdn_exponent Kx)) ?dvdn_lcml. by rewrite (dvdn_trans (dvdn_exponent Hy)) ?dvdn_lcmr. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
cprod_exponent
dprod_exponentA B G : A \x B = G -> lcmn (exponent A) (exponent B) = (exponent G). Proof. case/dprodP=> [[K H -> ->{A B}] defG cKH _]. by apply: cprod_exponent; rewrite cprodE. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
dprod_exponent
sub_LdivTA n : (A \subset 'Ldiv_n()) = (exponent A %| n). Proof. by apply/subsetP/exponentP=> eAn x /eAn /[1!inE] /eqP. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
sub_LdivT
LdivT_Jn x : 'Ldiv_n() :^ x = 'Ldiv_n(). Proof. apply/setP=> y; rewrite !inE mem_conjg inE -conjXg. by rewrite (canF_eq (conjgKV x)) conj1g. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
LdivT_J
LdivJn A x : 'Ldiv_n(A :^ x) = 'Ldiv_n(A) :^ x. Proof. by rewrite conjIg LdivT_J. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
LdivJ
sub_LdivA n : (A \subset 'Ldiv_n(A)) = (exponent A %| n). Proof. by rewrite subsetI subxx sub_LdivT. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
sub_Ldiv
group_LdivG n : abelian G -> group_set 'Ldiv_n(G). Proof. move=> cGG; apply/group_setP. split=> [|x y]; rewrite !inE ?group1 ?expg1n //=. case/andP=> Gx /eqP xn /andP[Gy /eqP yn]. by rewrite groupM //= expgMn ?xn ?yn ?mulg1 //; apply: (centsP cGG). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
group_Ldiv
abelian_exponent_genA : abelian A -> exponent <<A>> = exponent A. Proof. rewrite -abelian_gen; set n := exponent A; set G := <<A>> => cGG. apply/eqP; rewrite eqn_dvd andbC exponentS ?subset_gen //= -sub_Ldiv. rewrite -(gen_set_id (group_Ldiv n cGG)) genS // subsetI subset_gen /=. by rewrite sub_LdivT. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
abelian_exponent_gen
abelem_pgroupp A : p.-abelem A -> p.-group A. Proof. by case/andP. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
abelem_pgroup
abelem_abelianp A : p.-abelem A -> abelian A. Proof. by case/and3P. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
abelem_abelian
abelem1p : p.-abelem [1 gT]. Proof. by rewrite /abelem pgroup1 abelian1 exponent1 dvd1n. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
abelem1
abelemEp G : prime p -> p.-abelem G = abelian G && (exponent G %| p). Proof. move=> p_pr; rewrite /abelem -pnat_exponent andbA -!(andbC (_ %| _)). by case: (dvdn_pfactor _ 1 p_pr) => // [[k _ ->]]; rewrite pnatX pnat_id. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
abelemE
abelemPp G : prime p -> reflect (abelian G /\ forall x, x \in G -> x ^+ p = 1) (p.-abelem G). Proof. by move=> p_pr; rewrite abelemE //; apply: (iffP andP) => [] [-> /exponentP]. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
abelemP
abelem_order_pp G x : p.-abelem G -> x \in G -> x != 1 -> #[x] = p. Proof. case/and3P=> pG _ eG Gx; rewrite -cycle_eq1 => ntX. have{ntX} [p_pr p_x _] := pgroup_pdiv (mem_p_elt pG Gx) ntX. by apply/eqP; rewrite eqn_dvd p_x andbT order_dvdn (exponentP eG). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
abelem_order_p
cyclic_abelem_primep X : p.-abelem X -> cyclic X -> X :!=: 1 -> #|X| = p. Proof. move=> abelX cycX; case/cyclicP: cycX => x -> in abelX *. by rewrite cycle_eq1; apply: abelem_order_p abelX (cycle_id x). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
cyclic_abelem_prime
cycle_abelemp x : p.-elt x || prime p -> p.-abelem <[x]> = (#[x] %| p). Proof. move=> p_xVpr; rewrite /abelem cycle_abelian /=. apply/andP/idP=> [[_ xp1] | x_dvd_p]. by rewrite order_dvdn (exponentP xp1) ?cycle_id. split; last exact: dvdn_trans (exponent_dvdn _) x_dvd_p. by case/orP: p_xVpr => // /pnat_id; apply: pnat_dvd. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
cycle_abelem
exponent2_abelemG : exponent G %| 2 -> 2.-abelem G. Proof. move/exponentP=> expG; apply/abelemP=> //; split=> //. apply/centsP=> x Gx y Gy; apply: (mulIg x); apply: (mulgI y). by rewrite -!mulgA !(mulgA y) -!(expgS _ 1) !expG ?mulg1 ?groupM. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
exponent2_abelem
prime_abelemp G : prime p -> #|G| = p -> p.-abelem G. Proof. move=> p_pr oG; rewrite /abelem -oG exponent_dvdn. by rewrite /pgroup cyclic_abelian ?prime_cyclic ?oG ?pnat_id. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
prime_abelem
abelem_cyclicp G : p.-abelem G -> cyclic G = (logn p #|G| <= 1). Proof. move=> abelG; have [pG _ expGp] := and3P abelG. case: (eqsVneq G 1) => [-> | ntG]; first by rewrite cyclic1 cards1 logn1. have [p_pr _ [e oG]] := pgroup_pdiv pG ntG; apply/idP/idP. case/cyclicP=> x defG; rewrite -(pfactorK 1 p_pr) dvdn_leq_log ?prime_gt0 //. by rewrite defG order_dvdn (exponentP expGp) // defG cycle_id. by rewrite oG pfactorK // ltnS leqn0 => e0; rewrite prime_cyclic // oG (eqP e0). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
abelem_cyclic
abelemSp H G : H \subset G -> p.-abelem G -> p.-abelem H. Proof. move=> sHG /and3P[cGG pG Gp1]; rewrite /abelem. by rewrite (pgroupS sHG) // (abelianS sHG) // (dvdn_trans (exponentS sHG)). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
abelemS
abelemJp G x : p.-abelem (G :^ x) = p.-abelem G. Proof. by rewrite /abelem pgroupJ abelianJ exponentJ. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
abelemJ
cprod_abelemp A B G : A \* B = G -> p.-abelem G = p.-abelem A && p.-abelem B. Proof. case/cprodP=> [[H K -> ->{A B}] defG cHK]. apply/idP/andP=> [abelG | []]. by rewrite !(abelemS _ abelG) // -defG (mulG_subl, mulG_subr). case/and3P=> pH cHH expHp; case/and3P=> pK cKK expKp. rewrite -defG /abelem pgroupM pH pK abelianM cHH cKK cHK /=. apply/exponentP=> _ /imset2P[x y Hx Ky ->]. rewrite expgMn; last by red; rewrite -(centsP cHK). by rewrite (exponentP expHp) // (exponentP expKp) // mul1g. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
cprod_abelem
dprod_abelemp A B G : A \x B = G -> p.-abelem G = p.-abelem A && p.-abelem B. Proof. move=> defG; case/dprodP: (defG) => _ _ _ tiHK. by apply: cprod_abelem; rewrite -dprodEcp. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
dprod_abelem
is_abelem_pgroupp G : p.-group G -> is_abelem G = p.-abelem G. Proof. rewrite /is_abelem => pG. case: (eqsVneq G 1) => [-> | ntG]; first by rewrite !abelem1. by have [p_pr _ [k ->]] := pgroup_pdiv pG ntG; rewrite pdiv_pfactor. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
is_abelem_pgroup
is_abelemPG : reflect (exists2 p, prime p & p.-abelem G) (is_abelem G). Proof. apply: (iffP idP) => [abelG | [p p_pr abelG]]. case: (eqsVneq G 1) => [-> | ntG]; first by exists 2; rewrite ?abelem1. by exists (pdiv #|G|); rewrite ?pdiv_prime // ltnNge -trivg_card_le1. by rewrite (is_abelem_pgroup (abelem_pgroup abelG)). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
is_abelemP
pElemPp A E : reflect (E \subset A /\ p.-abelem E) (E \in 'E_p(A)). Proof. by rewrite inE; apply: andP. Qed. Arguments pElemP {p A E}.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
pElemP
pElemSp A B : A \subset B -> 'E_p(A) \subset 'E_p(B). Proof. by move=> sAB; apply/subsetP=> E /[!inE] /andP[/subset_trans->]. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
pElemS
pElemIp A B : 'E_p(A :&: B) = 'E_p(A) :&: subgroups B. Proof. by apply/setP=> E; rewrite !inE subsetI andbAC. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
pElemI
pElemJx p A E : ((E :^ x)%G \in 'E_p(A :^ x)) = (E \in 'E_p(A)). Proof. by rewrite !inE conjSg abelemJ. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
pElemJ
pnElemPp n A E : reflect [/\ E \subset A, p.-abelem E & logn p #|E| = n] (E \in 'E_p^n(A)). Proof. by rewrite !inE -andbA; apply: (iffP and3P) => [] [-> -> /eqP]. Qed. Arguments pnElemP {p n A E}.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
pnElemP
pnElemPcardp n A E : E \in 'E_p^n(A) -> [/\ E \subset A, p.-abelem E & #|E| = p ^ n]%N. Proof. by case/pnElemP=> -> abelE <-; rewrite -card_pgroup // abelem_pgroup. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
pnElemPcard
card_pnElemp n A E : E \in 'E_p^n(A) -> #|E| = (p ^ n)%N. Proof. by case/pnElemPcard. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
card_pnElem
pnElem0p G : 'E_p^0(G) = [set 1%G]. Proof. apply/setP=> E; rewrite !inE -andbA; apply/and3P/idP=> [[_ pE] | /eqP->]. apply: contraLR; case/(pgroup_pdiv (abelem_pgroup pE)) => p_pr _ [k ->]. by rewrite pfactorK. by rewrite sub1G abelem1 cards1 logn1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
pnElem0
pnElem_primep n A E : E \in 'E_p^n.+1(A) -> prime p. Proof. by case/pnElemP=> _ _; rewrite lognE; case: prime. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
pnElem_prime
pnElemEp n A : prime p -> 'E_p^n(A) = [set E in 'E_p(A) | #|E| == (p ^ n)%N]. Proof. move/pfactorK=> pnK; apply/setP=> E; rewrite 3!inE. case: (@andP (E \subset A)) => //= [[_]] /andP[/p_natP[k ->] _]. by rewrite pnK (can_eq pnK). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
pnElemE
pnElemSp n A B : A \subset B -> 'E_p^n(A) \subset 'E_p^n(B). Proof. move=> sAB; apply/subsetP=> E. by rewrite !inE -!andbA => /andP[/subset_trans->]. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
pnElemS
pnElemIp n A B : 'E_p^n(A :&: B) = 'E_p^n(A) :&: subgroups B. Proof. by apply/setP=> E; rewrite !inE subsetI -!andbA; do !bool_congr. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
pnElemI
pnElemJx p n A E : ((E :^ x)%G \in 'E_p^n(A :^ x)) = (E \in 'E_p^n(A)). Proof. by rewrite inE pElemJ cardJg !inE. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
pnElemJ
abelem_pnElemp n G : p.-abelem G -> n <= logn p #|G| -> exists E, E \in 'E_p^n(G). Proof. case: n => [|n] abelG lt_nG; first by exists 1%G; rewrite pnElem0 set11. have p_pr: prime p by move: lt_nG; rewrite lognE; case: prime. case/(normal_pgroup (abelem_pgroup abelG)): lt_nG => // E [sEG _ oE]. by exists E; rewrite pnElemE // !inE oE sEG (abelemS sEG) /=. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
abelem_pnElem
card_p1Elemp A X : X \in 'E_p^1(A) -> #|X| = p. Proof. exact: card_pnElem. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
card_p1Elem
p1ElemEp A : prime p -> 'E_p^1(A) = [set X in subgroups A | #|X| == p]. Proof. move=> p_pr; apply/setP=> X; rewrite pnElemE // !inE -andbA; congr (_ && _). by apply: andb_idl => /eqP oX; rewrite prime_abelem ?oX. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
p1ElemE
TIp1ElemPp A X Y : X \in 'E_p^1(A) -> Y \in 'E_p^1(A) -> reflect (X :&: Y = 1) (X :!=: Y). Proof. move=> EpX EpY; have p_pr := pnElem_prime EpX. have [oX oY] := (card_p1Elem EpX, card_p1Elem EpY). have [<-|] := eqVneq. by right=> X1; rewrite -oX -(setIid X) X1 cards1 in p_pr. by rewrite eqEcard oX oY leqnn andbT; left; rewrite prime_TIg ?oX. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
TIp1ElemP
card_p1Elem_pnElemp n A E : E \in 'E_p^n(A) -> #|'E_p^1(E)| = (\sum_(i < n) p ^ i)%N. Proof. case/pnElemP=> _ {A} abelE dimE; have [pE cEE _] := and3P abelE. have [E1 | ntE] := eqsVneq E 1. rewrite -dimE E1 cards1 logn1 big_ord0 eq_card0 // => X. by rewrite !inE subG1 trivg_card1; case: eqP => // ->; rewrite logn1 andbF. have [p_pr _ _] := pgroup_pdiv pE ntE; have p_gt1 := prime_gt1 p_pr. apply/eqP; rewrite -(@eqn_pmul2l (p - 1)) ?subn_gt0 // subn1 -predn_exp. have groupD1_inj: injective (fun X => (gval X)^#). apply: can_inj (@generated_group _) _ => X. by apply: val_inj; rewrite /= genD1 ?group1 ?genGid. rewrite -dimE -card_pgroup // (cardsD1 1 E) group1 /= mulnC. rewrite -(card_imset _ groupD1_inj) eq_sym. apply/eqP; apply: card_uniform_partition => [X'|]. case/imsetP=> X; rewrite pnElemE // expn1 => /setIdP[_ /eqP <-] ->. by rewrite (cardsD1 1 X) group1. apply/and3P; split; last 1 first. - apply/imsetP=> [[X /card_p1Elem oX X'0]]. by rewrite -oX (cardsD1 1) -X'0 group1 cards0 in p_pr. - rewrite eqEsubset; apply/andP; split. by apply/bigcupsP=> _ /imsetP[X /pnElemP[sXE _ _] ->]; apply: setSD. apply/subsetP=> x /setD1P[ntx Ex]. apply/bigcupP; exists <[x]>^#; last by rewrite !inE ntx cycle_id. apply/imsetP; exists <[x]>%G; rewrite ?p1ElemE // !inE cycle_subG Ex /=. by rewrite -orderE (abelem_order_p abelE). apply/trivIsetP=> _ _ /imsetP[X EpX ->] /imsetP[Y EpY ->]; apply/implyP. rewrite (inj_eq groupD1_inj) -setI_eq0 -setDIl setD_eq0 subG1. by rewrite (sameP eqP (TI ...
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
card_p1Elem_pnElem
card_p1Elem_p2Elemp A E : E \in 'E_p^2(A) -> #|'E_p^1(E)| = p.+1. Proof. by move/card_p1Elem_pnElem->; rewrite big_ord_recl big_ord1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
card_p1Elem_p2Elem
p2Elem_dprodPp A E X Y : E \in 'E_p^2(A) -> X \in 'E_p^1(E) -> Y \in 'E_p^1(E) -> reflect (X \x Y = E) (X :!=: Y). Proof. move=> Ep2E EpX EpY; have [_ abelE oE] := pnElemPcard Ep2E. apply: (iffP (TIp1ElemP EpX EpY)) => [tiXY|]; last by case/dprodP. have [[sXE _ oX] [sYE _ oY]] := (pnElemPcard EpX, pnElemPcard EpY). rewrite dprodE ?(sub_abelian_cent2 (abelem_abelian abelE)) //. by apply/eqP; rewrite eqEcard mul_subG //= TI_cardMg // oX oY oE. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
p2Elem_dprodP
nElemPn G E : reflect (exists p, E \in 'E_p^n(G)) (E \in 'E^n(G)). Proof. rewrite ['E^n(G)]big_mkord. apply: (iffP bigcupP) => [[[p /= _] _] | [p]]; first by exists p. case: n => [|n EpnE]; first by rewrite pnElem0; exists ord0; rewrite ?pnElem0. suffices lepG: p < #|G|.+1 by exists (Ordinal lepG). have:= EpnE; rewrite pnElemE ?(pnElem_prime EpnE) // !inE -andbA ltnS. case/and3P=> sEG _ oE; rewrite dvdn_leq // (dvdn_trans _ (cardSg sEG)) //. by rewrite (eqP oE) dvdn_exp. Qed. Arguments nElemP {n G E}.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
nElemP
nElem0G : 'E^0(G) = [set 1%G]. Proof. apply/setP=> E; apply/nElemP/idP=> [[p] |]; first by rewrite pnElem0. by exists 2; rewrite pnElem0. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
nElem0
nElem1PG E : reflect (E \subset G /\ exists2 p, prime p & #|E| = p) (E \in 'E^1(G)). Proof. apply: (iffP nElemP) => [[p pE] | [sEG [p p_pr oE]]]. have p_pr := pnElem_prime pE; rewrite pnElemE // !inE -andbA in pE. by case/and3P: pE => -> _ /eqP; split; last exists p. exists p; rewrite pnElemE // !inE sEG oE eqxx abelemE // -oE exponent_dvdn. by rewrite cyclic_abelian // prime_cyclic // oE. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
nElem1P