fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
nElemSn G H : G \subset H -> 'E^n(G) \subset 'E^n(H). Proof. move=> sGH; apply/subsetP=> E /nElemP[p EpnG_E]. by apply/nElemP; exists p; rewrite // (subsetP (pnElemS _ _ sGH)). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
nElemS
nElemIn G H : 'E^n(G :&: H) = 'E^n(G) :&: subgroups H. Proof. apply/setP=> E; apply/nElemP/setIP=> [[p] | []]. by rewrite pnElemI; case/setIP; split=> //; apply/nElemP; exists p. by case/nElemP=> p EpnG_E sHE; exists p; rewrite pnElemI inE EpnG_E. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
nElemI
def_pnElemp n G : 'E_p^n(G) = 'E_p(G) :&: 'E^n(G). Proof. apply/setP=> E; rewrite inE in_setI; apply: andb_id2l => /pElemP[sEG abelE]. apply/idP/nElemP=> [|[q]]; first by exists p; rewrite !inE sEG abelE. rewrite !inE -2!andbA => /and4P[_ /pgroupP qE _]. have [->|] := eqVneq E 1%G; first by rewrite cards1 !logn1. case/(pgroup_pdiv (abelem_pgroup abelE)) => p_pr pE _. by rewrite (eqnP (qE p p_pr pE)). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
def_pnElem
pmaxElemPp A E : reflect (E \in 'E_p(A) /\ forall H, H \in 'E_p(A) -> E \subset H -> H :=: E) (E \in 'E*_p(A)). Proof. by rewrite [E \in 'E*_p(A)]inE; apply: (iffP maxgroupP). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
pmaxElemP
pmaxElem_existsp A D : D \in 'E_p(A) -> {E | E \in 'E*_p(A) & D \subset E}. Proof. move=> EpD; have [E maxE sDE] := maxgroup_exists (EpD : mem 'E_p(A) D). by exists E; rewrite // inE. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
pmaxElem_exists
pmaxElem_LdivPp G E : prime p -> reflect ('Ldiv_p('C_G(E)) = E) (E \in 'E*_p(G)). Proof. move=> p_pr; apply: (iffP (pmaxElemP p G E)) => [[] | defE]. case/pElemP=> sEG abelE maxE; have [_ cEE eE] := and3P abelE. apply/setP=> x; rewrite !inE -andbA; apply/and3P/idP=> [[Gx cEx xp] | Ex]. rewrite -(maxE (<[x]> <*> E)%G) ?joing_subr //. by rewrite -cycle_subG joing_subl. rewrite inE join_subG cycle_subG Gx sEG /=. rewrite (cprod_abelem _ (cprodEY _)); last by rewrite centsC cycle_subG. by rewrite cycle_abelem ?p_pr ?orbT // order_dvdn xp. by rewrite (subsetP sEG) // (subsetP cEE) // (exponentP eE). split=> [|H]; last first. case/pElemP=> sHG /abelemP[// | cHH Hp1] sEH. apply/eqP; rewrite eqEsubset sEH andbC /= -defE; apply/subsetP=> x Hx. by rewrite 3!inE (subsetP sHG) // Hp1 ?(subsetP (centsS _ cHH)) /=. apply/pElemP; split; first by rewrite -defE -setIA subsetIl. apply/abelemP=> //; rewrite /abelian -{1 3}defE setIAC subsetIr. by split=> //; apply/exponentP; rewrite -sub_LdivT setIAC subsetIr. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
pmaxElem_LdivP
pmaxElemSp A B : A \subset B -> 'E*_p(B) :&: subgroups A \subset 'E*_p(A). Proof. move=> sAB; apply/subsetP=> E /[!inE]. case/andP=> /maxgroupP[/pElemP[_ abelE] maxE] sEA. apply/maxgroupP; rewrite inE sEA; split=> // D EpD. by apply: maxE; apply: subsetP EpD; apply: pElemS. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
pmaxElemS
pmaxElemJp A E x : ((E :^ x)%G \in 'E*_p(A :^ x)) = (E \in 'E*_p(A)). Proof. apply/pmaxElemP/pmaxElemP=> [] [EpE maxE]. rewrite pElemJ in EpE; split=> //= H EpH sEH; apply: (act_inj 'Js x). by apply: maxE; rewrite ?conjSg ?pElemJ. rewrite pElemJ; split=> // H; rewrite -(actKV 'JG x H) pElemJ conjSg => EpHx'. by move/maxE=> /= ->. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
pmaxElemJ
grank_minB : 'm(<<B>>) <= #|B|. Proof. by rewrite /gen_rank; case: arg_minnP => [|_ _ -> //]; rewrite genGid. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
grank_min
grank_witnessG : {B | <<B>> = G & #|B| = 'm(G)}. Proof. rewrite /gen_rank; case: arg_minnP => [|B defG _]; first by rewrite genGid. by exists B; first apply/eqP. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
grank_witness
p_rank_witnessp G : {E | E \in 'E_p^('r_p(G))(G)}. Proof. have [E EG_E mE]: {E | E \in 'E_p(G) & 'r_p(G) = logn p #|E| }. by apply: eq_bigmax_cond; rewrite (cardD1 1%G) inE sub1G abelem1. by exists E; rewrite inE EG_E -mE /=. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
p_rank_witness
p_rank_gePp n G : reflect (exists E, E \in 'E_p^n(G)) (n <= 'r_p(G)). Proof. apply: (iffP idP) => [|[E]]; last first. by rewrite inE => /andP[Ep_E /eqP <-]; rewrite (bigmax_sup E). have [D /pnElemP[sDG abelD <-]] := p_rank_witness p G. by case/abelem_pnElem=> // E; exists E; apply: (subsetP (pnElemS _ _ sDG)). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
p_rank_geP
p_rank_gt0p H : ('r_p(H) > 0) = (p \in \pi(H)). Proof. rewrite mem_primes cardG_gt0 /=; apply/p_rank_geP/andP=> [[E] | [p_pr]]. case/pnElemP=> sEG _; rewrite lognE; case: and3P => // [[-> _ pE] _]. by rewrite (dvdn_trans _ (cardSg sEG)). case/Cauchy=> // x Hx ox; exists <[x]>%G; rewrite 2!inE [#|_|]ox cycle_subG. by rewrite Hx (pfactorK 1) ?abelemE // cycle_abelian -ox exponent_dvdn. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
p_rank_gt0
p_rank1p : 'r_p([1 gT]) = 0. Proof. by apply/eqP; rewrite eqn0Ngt p_rank_gt0 /= cards1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
p_rank1
logn_le_p_rankp A E : E \in 'E_p(A) -> logn p #|E| <= 'r_p(A). Proof. by move=> EpA_E; rewrite (bigmax_sup E). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
logn_le_p_rank
p_rank_le_lognp G : 'r_p(G) <= logn p #|G|. Proof. have [E EpE] := p_rank_witness p G. by have [sEG _ <-] := pnElemP EpE; apply: lognSg. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
p_rank_le_logn
p_rank_abelemp G : p.-abelem G -> 'r_p(G) = logn p #|G|. Proof. move=> abelG; apply/eqP; rewrite eqn_leq andbC (bigmax_sup G)//. by apply/bigmax_leqP=> E /[1!inE] /andP[/lognSg->]. by rewrite inE subxx. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
p_rank_abelem
p_rankSp A B : A \subset B -> 'r_p(A) <= 'r_p(B). Proof. move=> sAB; apply/bigmax_leqP=> E /(subsetP (pElemS p sAB)) EpB_E. by rewrite (bigmax_sup E). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
p_rankS
p_rankElem_maxp A : 'E_p^('r_p(A))(A) \subset 'E*_p(A). Proof. apply/subsetP=> E /setIdP[EpE dimE]. apply/pmaxElemP; split=> // F EpF sEF; apply/eqP. have pF: p.-group F by case/pElemP: EpF => _ /and3P[]. have pE: p.-group E by case/pElemP: EpE => _ /and3P[]. rewrite eq_sym eqEcard sEF dvdn_leq // (card_pgroup pE) (card_pgroup pF). by rewrite (eqP dimE) dvdn_exp2l // logn_le_p_rank. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
p_rankElem_max
p_rankJp A x : 'r_p(A :^ x) = 'r_p(A). Proof. rewrite /p_rank (reindex_inj (act_inj 'JG x)). by apply: eq_big => [E | E _]; rewrite ?cardJg ?pElemJ. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
p_rankJ
p_rank_Sylowp G H : p.-Sylow(G) H -> 'r_p(H) = 'r_p(G). Proof. move=> sylH; apply/eqP; rewrite eqn_leq (p_rankS _ (pHall_sub sylH)) /=. apply/bigmax_leqP=> E /[1!inE] /andP[sEG abelE]. have [P sylP sEP] := Sylow_superset sEG (abelem_pgroup abelE). have [x _ ->] := Sylow_trans sylP sylH. by rewrite p_rankJ -(p_rank_abelem abelE) (p_rankS _ sEP). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
p_rank_Sylow
p_rank_Hallpi p G H : pi.-Hall(G) H -> p \in pi -> 'r_p(H) = 'r_p(G). Proof. move=> hallH pi_p; have [P sylP] := Sylow_exists p H. by rewrite -(p_rank_Sylow sylP) (p_rank_Sylow (subHall_Sylow hallH pi_p sylP)). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
p_rank_Hall
p_rank_pmaxElem_existsp r G : 'r_p(G) >= r -> exists2 E, E \in 'E*_p(G) & 'r_p(E) >= r. Proof. case/p_rank_geP=> D /setIdP[EpD /eqP <- {r}]. have [E EpE sDE] := pmaxElem_exists EpD; exists E => //. case/pmaxElemP: EpE => /setIdP[_ abelE] _. by rewrite (p_rank_abelem abelE) lognSg. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
p_rank_pmaxElem_exists
rank1: 'r([1 gT]) = 0. Proof. by rewrite ['r(1)]big1_seq // => p _; rewrite p_rank1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
rank1
p_rank_le_rankp G : 'r_p(G) <= 'r(G). Proof. case: (posnP 'r_p(G)) => [-> //|]; rewrite p_rank_gt0 mem_primes. case/and3P=> p_pr _ pG; have lepg: p < #|G|.+1 by rewrite ltnS dvdn_leq. by rewrite ['r(G)]big_mkord (bigmax_sup (Ordinal lepg)). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
p_rank_le_rank
rank_gt0G : ('r(G) > 0) = (G :!=: 1). Proof. case: (eqsVneq G 1) => [-> |]; first by rewrite rank1. case: (trivgVpdiv G) => [/eqP->// | [p p_pr]]. case/Cauchy=> // x Gx oxp _; apply: leq_trans (p_rank_le_rank p G). have EpGx: <[x]>%G \in 'E_p(G). by rewrite inE cycle_subG Gx abelemE // cycle_abelian -oxp exponent_dvdn. by apply: leq_trans (logn_le_p_rank EpGx); rewrite -orderE oxp logn_prime ?eqxx. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
rank_gt0
rank_witnessG : {p | prime p & 'r(G) = 'r_p(G)}. Proof. have [p _ defmG]: {p : 'I_(#|G|.+1) | true & 'r(G) = 'r_p(G)}. by rewrite ['r(G)]big_mkord; apply: eq_bigmax_cond; rewrite card_ord. case: (eqsVneq G 1) => [-> | ]; first by exists 2; rewrite // rank1 p_rank1. by rewrite -rank_gt0 defmG p_rank_gt0 mem_primes; case/andP; exists p. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
rank_witness
rank_pgroupp G : p.-group G -> 'r(G) = 'r_p(G). Proof. move=> pG; apply/eqP; rewrite eqn_leq p_rank_le_rank andbT. rewrite ['r(G)]big_mkord; apply/bigmax_leqP=> [[q /= _] _]. case: (posnP 'r_q(G)) => [-> // |]; rewrite p_rank_gt0 mem_primes. by case/and3P=> q_pr _ qG; rewrite (eqnP (pgroupP pG q q_pr qG)). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
rank_pgroup
rank_Sylowp G P : p.-Sylow(G) P -> 'r(P) = 'r_p(G). Proof. move=> sylP; have pP := pHall_pgroup sylP. by rewrite -(p_rank_Sylow sylP) -(rank_pgroup pP). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
rank_Sylow
rank_abelemp G : p.-abelem G -> 'r(G) = logn p #|G|. Proof. by move=> abelG; rewrite (rank_pgroup (abelem_pgroup abelG)) p_rank_abelem. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
rank_abelem
nt_pnElemp n E A : E \in 'E_p^n(A) -> n > 0 -> E :!=: 1. Proof. by case/pnElemP=> _ /rank_abelem <- <-; rewrite rank_gt0. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
nt_pnElem
rankJA x : 'r(A :^ x) = 'r(A). Proof. by rewrite /rank cardJg; apply: eq_bigr => p _; rewrite p_rankJ. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
rankJ
rankSA B : A \subset B -> 'r(A) <= 'r(B). Proof. move=> sAB; rewrite /rank !big_mkord; apply/bigmax_leqP=> p _. have leAB: #|A| < #|B|.+1 by rewrite ltnS subset_leq_card. by rewrite (bigmax_sup (widen_ord leAB p)) ?p_rankS. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
rankS
rank_gePn G : reflect (exists E, E \in 'E^n(G)) (n <= 'r(G)). Proof. apply: (iffP idP) => [|[E]]. have [p _ ->] := rank_witness G; case/p_rank_geP=> E. by rewrite def_pnElem; case/setIP; exists E. case/nElemP=> p /[1!inE] /andP[EpG_E /eqP <-]. by rewrite (leq_trans (logn_le_p_rank EpG_E)) ?p_rank_le_rank. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
rank_geP
exponent_morphimG : exponent (f @* G) %| exponent G. Proof. apply/exponentP=> _ /morphimP[x Dx Gx ->]. by rewrite -morphX // expg_exponent // morph1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
exponent_morphim
morphim_LdivTn : f @* 'Ldiv_n() \subset 'Ldiv_n(). Proof. apply/subsetP=> _ /morphimP[x Dx xn ->]; rewrite inE in xn. by rewrite inE -morphX // (eqP xn) morph1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
morphim_LdivT
morphim_Ldivn A : f @* 'Ldiv_n(A) \subset 'Ldiv_n(f @* A). Proof. by apply: subset_trans (morphimI f A _) (setIS _ _); apply: morphim_LdivT. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
morphim_Ldiv
morphim_abelemp G : p.-abelem G -> p.-abelem (f @* G). Proof. case: (eqsVneq G 1) => [-> | ntG] abelG; first by rewrite morphim1 abelem1. have [p_pr _ _] := pgroup_pdiv (abelem_pgroup abelG) ntG. case/abelemP: abelG => // abG elemG; apply/abelemP; rewrite ?morphim_abelian //. by split=> // _ /morphimP[x Dx Gx ->]; rewrite -morphX // elemG ?morph1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
morphim_abelem
morphim_pElemp G E : E \in 'E_p(G) -> (f @* E)%G \in 'E_p(f @* G). Proof. by rewrite !inE => /andP[sEG abelE]; rewrite morphimS // morphim_abelem. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
morphim_pElem
morphim_pnElemp n G E : E \in 'E_p^n(G) -> {m | m <= n & (f @* E)%G \in 'E_p^m(f @* G)}. Proof. rewrite inE => /andP[EpE /eqP <-]. by exists (logn p #|f @* E|); rewrite ?logn_morphim // inE morphim_pElem /=. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
morphim_pnElem
morphim_grankG : G \subset D -> 'm(f @* G) <= 'm(G). Proof. have [B defG <-] := grank_witness G; rewrite -defG gen_subG => sBD. by rewrite morphim_gen ?morphimEsub ?(leq_trans (grank_min _)) ?leq_imset_card. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
morphim_grank
exponent_injm: exponent (f @* G) = exponent G. Proof. by apply/eqP; rewrite eqn_dvd -{3}defG !exponent_morphim. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
exponent_injm
injm_Ldivn A : f @* 'Ldiv_n(A) = 'Ldiv_n(f @* A). Proof. apply/eqP; rewrite eqEsubset morphim_Ldiv. rewrite -[f @* 'Ldiv_n(A)](morphpre_invm injf). rewrite -sub_morphim_pre; last by rewrite subIset ?morphim_sub. rewrite injmI ?injm_invm // setISS ?morphim_LdivT //. by rewrite sub_morphim_pre ?morphim_sub // morphpre_invm. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
injm_Ldiv
injm_abelemp : p.-abelem (f @* G) = p.-abelem G. Proof. by apply/idP/idP; first rewrite -{2}defG; apply: morphim_abelem. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
injm_abelem
injm_pElemp (E : {group aT}) : E \subset D -> ((f @* E)%G \in 'E_p(f @* G)) = (E \in 'E_p(G)). Proof. move=> sED; apply/idP/idP=> EpE; last exact: morphim_pElem. by rewrite -defG -(group_inj (morphim_invm injf sED)) morphim_pElem. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
injm_pElem
injm_pnElemp n (E : {group aT}) : E \subset D -> ((f @* E)%G \in 'E_p^n(f @* G)) = (E \in 'E_p^n(G)). Proof. by move=> sED; rewrite inE injm_pElem // card_injm ?inE. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
injm_pnElem
injm_nElemn (E : {group aT}) : E \subset D -> ((f @* E)%G \in 'E^n(f @* G)) = (E \in 'E^n(G)). Proof. move=> sED; apply/nElemP/nElemP=> [] [p EpE]; by exists p; rewrite injm_pnElem in EpE *. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
injm_nElem
injm_pmaxElemp (E : {group aT}) : E \subset D -> ((f @* E)%G \in 'E*_p(f @* G)) = (E \in 'E*_p(G)). Proof. move=> sED; have defE := morphim_invm injf sED. apply/pmaxElemP/pmaxElemP=> [] [EpE maxE]. split=> [|H EpH sEH]; first by rewrite injm_pElem in EpE. have sHD: H \subset D by apply: subset_trans (sGD); case/pElemP: EpH. by rewrite -(morphim_invm injf sHD) [f @* H]maxE ?morphimS ?injm_pElem. rewrite injm_pElem //; split=> // fH Ep_fH sfEH; have [sfHG _] := pElemP Ep_fH. have sfHD : fH \subset f @* D by rewrite (subset_trans sfHG) ?morphimS. rewrite -(morphpreK sfHD); congr (f @* _). rewrite [_ @*^-1 fH]maxE -?sub_morphim_pre //. by rewrite -injm_pElem ?subsetIl // (group_inj (morphpreK sfHD)). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
injm_pmaxElem
injm_grank: 'm(f @* G) = 'm(G). Proof. by apply/eqP; rewrite eqn_leq -{3}defG !morphim_grank ?morphimS. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
injm_grank
injm_p_rankp : 'r_p(f @* G) = 'r_p(G). Proof. apply/eqP; rewrite eqn_leq; apply/andP; split. have [fE] := p_rank_witness p (f @* G); move: 'r_p(_) => n Ep_fE. apply/p_rank_geP; exists (f @*^-1 fE)%G. rewrite -injm_pnElem ?subsetIl ?(group_inj (morphpreK _)) //. by case/pnElemP: Ep_fE => sfEG _ _; rewrite (subset_trans sfEG) ?morphimS. have [E] := p_rank_witness p G; move: 'r_p(_) => n EpE. apply/p_rank_geP; exists (f @* E)%G; rewrite injm_pnElem //. by case/pnElemP: EpE => sEG _ _; rewrite (subset_trans sEG). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
injm_p_rank
injm_rank: 'r(f @* G) = 'r(G). Proof. apply/eqP; rewrite eqn_leq; apply/andP; split. by have [p _ ->] := rank_witness (f @* G); rewrite injm_p_rank p_rank_le_rank. by have [p _ ->] := rank_witness G; rewrite -injm_p_rank p_rank_le_rank. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
injm_rank
exponent_isog: exponent G = exponent H. Proof. by case/isogP: isoGH => f injf <-; rewrite exponent_injm. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
exponent_isog
isog_abelemp : p.-abelem G = p.-abelem H. Proof. by case/isogP: isoGH => f injf <-; rewrite injm_abelem. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
isog_abelem
isog_grank: 'm(G) = 'm(H). Proof. by case/isogP: isoGH => f injf <-; rewrite [RHS]injm_grank. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
isog_grank
isog_p_rankp : 'r_p(G) = 'r_p(H). Proof. by case/isogP: isoGH => f injf <-; rewrite injm_p_rank. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
isog_p_rank
isog_rank: 'r(G) = 'r(H). Proof. by case/isogP: isoGH => f injf <-; rewrite injm_rank. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
isog_rank
exponent_quotientG H : exponent (G / H) %| exponent G. Proof. exact: exponent_morphim. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
exponent_quotient
quotient_LdivTn H : 'Ldiv_n() / H \subset 'Ldiv_n(). Proof. exact: morphim_LdivT. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
quotient_LdivT
quotient_Ldivn A H : 'Ldiv_n(A) / H \subset 'Ldiv_n(A / H). Proof. exact: morphim_Ldiv. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
quotient_Ldiv
quotient_abelemG H : p.-abelem G -> p.-abelem (G / H). Proof. exact: morphim_abelem. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
quotient_abelem
quotient_pElemG H E : E \in 'E_p(G) -> (E / H)%G \in 'E_p(G / H). Proof. exact: morphim_pElem. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
quotient_pElem
logn_quotientG H : logn p #|G / H| <= logn p #|G|. Proof. exact: logn_morphim. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
logn_quotient
quotient_pnElemG H n E : E \in 'E_p^n(G) -> {m | m <= n & (E / H)%G \in 'E_p^m(G / H)}. Proof. exact: morphim_pnElem. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
quotient_pnElem
quotient_grankG H : G \subset 'N(H) -> 'm(G / H) <= 'm(G). Proof. exact: morphim_grank. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
quotient_grank
p_rank_quotientG H : G \subset 'N(H) -> 'r_p(G) - 'r_p(H) <= 'r_p(G / H). Proof. move=> nHG; rewrite leq_subLR. have [E EpE] := p_rank_witness p G; have{EpE} [sEG abelE <-] := pnElemP EpE. rewrite -(LagrangeI E H) lognM ?cardG_gt0 //. rewrite -card_quotient ?(subset_trans sEG) // leq_add ?logn_le_p_rank // !inE. by rewrite subsetIr (abelemS (subsetIl E H)). by rewrite quotientS ?quotient_abelem. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
p_rank_quotient
p_rank_dprodK H G : K \x H = G -> 'r_p(K) + 'r_p(H) = 'r_p(G). Proof. move=> defG; apply/eqP; rewrite eqn_leq -leq_subLR andbC. have [_ defKH cKH tiKH] := dprodP defG; have nKH := cents_norm cKH. rewrite {1}(isog_p_rank (quotient_isog nKH tiKH)) /= -quotientMidl defKH. rewrite p_rank_quotient; last by rewrite -defKH mul_subG ?normG. have [[E EpE] [F EpF]] := (p_rank_witness p K, p_rank_witness p H). have [[sEK abelE <-] [sFH abelF <-]] := (pnElemP EpE, pnElemP EpF). have defEF: E \x F = E <*> F. by rewrite dprodEY ?(centSS sFH sEK) //; apply/trivgP; rewrite -tiKH setISS. apply/p_rank_geP; exists (E <*> F)%G; rewrite !inE (dprod_abelem p defEF). rewrite -lognM ?cargG_gt0 // (dprod_card defEF) abelE abelF eqxx. by rewrite -(genGid G) -defKH genM_join genS ?setUSS. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
p_rank_dprod
p_rank_p'quotientG H : (p : nat)^'.-group H -> G \subset 'N(H) -> 'r_p(G / H) = 'r_p(G). Proof. move=> p'H nHG; have [P sylP] := Sylow_exists p G. have [sPG pP _] := and3P sylP; have nHP := subset_trans sPG nHG. have tiHP: H :&: P = 1 := coprime_TIg (p'nat_coprime p'H pP). rewrite -(p_rank_Sylow sylP) -(p_rank_Sylow (quotient_pHall nHP sylP)). by rewrite (isog_p_rank (quotient_isog nHP tiHP)). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
p_rank_p'quotient
Ohm_subG : 'Ohm_n(G) \subset G. Proof. by rewrite gen_subG; apply/subsetP=> x /setIdP[]. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
Ohm_sub
Ohm1: 'Ohm_n([1 gT]) = 1. Proof. exact: (trivgP (Ohm_sub _)). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
Ohm1
Ohm_idG : 'Ohm_n('Ohm_n(G)) = 'Ohm_n(G). Proof. apply/eqP; rewrite eqEsubset Ohm_sub genS //. by apply/subsetP=> x /setIdP[Gx oxn]; rewrite inE mem_gen // inE Gx. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
Ohm_id
Ohm_contrT G (f : {morphism G >-> rT}) : f @* 'Ohm_n(G) \subset 'Ohm_n(f @* G). Proof. rewrite morphim_gen ?genS //; last by rewrite -gen_subG Ohm_sub. apply/subsetP=> fx /morphimP[x Gx]; rewrite inE Gx /=. case/OhmPredP=> p p_pr xpn_1 -> {fx}. rewrite inE morphimEdom imset_f //=; apply/OhmPredP; exists p => //. by rewrite -morphX // xpn_1 morph1. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
Ohm_cont
OhmSH G : H \subset G -> 'Ohm_n(H) \subset 'Ohm_n(G). Proof. move=> sHG; apply: genS; apply/subsetP=> x /[!inE] /andP[Hx ->]. by rewrite (subsetP sHG). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
OhmS
OhmEp G : p.-group G -> 'Ohm_n(G) = <<'Ldiv_(p ^ n)(G)>>. Proof. move=> pG; congr <<_>>; apply/setP=> x /[!inE]; apply: andb_id2l => Gx. have [-> | ntx] := eqVneq x 1; first by rewrite !expg1n. by rewrite (pdiv_p_elt (mem_p_elt pG Gx)). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
OhmE
OhmEabelianp G : p.-group G -> abelian 'Ohm_n(G) -> 'Ohm_n(G) = 'Ldiv_(p ^ n)(G). Proof. move=> pG; rewrite (OhmE pG) abelian_gen => cGGn; rewrite gen_set_id //. rewrite -(setIidPr (subset_gen 'Ldiv_(p ^ n)(G))) setIA. by rewrite [_ :&: G](setIidPl _) ?gen_subG ?subsetIl // group_Ldiv ?abelian_gen. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
OhmEabelian
Ohm_p_cyclep x : p.-elt x -> 'Ohm_n(<[x]>) = <[x ^+ (p ^ (logn p #[x] - n))]>. Proof. move=> p_x; apply/eqP; rewrite (OhmE p_x) eqEsubset cycle_subG mem_gen. rewrite gen_subG andbT; apply/subsetP=> y /LdivP[x_y ypn]. case: (leqP (logn p #[x]) n) => [|lt_n_x]. by rewrite -subn_eq0 => /eqP->. have p_pr: prime p by move: lt_n_x; rewrite lognE; case: (prime p). have def_y: <[y]> = <[x ^+ (#[x] %/ #[y])]>. apply: congr_group; apply/set1P. by rewrite -cycle_sub_group ?cardSg ?inE ?cycle_subG ?x_y /=. rewrite -cycle_subG def_y cycle_subG -{1}(part_pnat_id p_x) p_part. rewrite -{1}(subnK (ltnW lt_n_x)) expnD -muln_divA ?order_dvdn ?ypn //. by rewrite expgM mem_cycle. rewrite !inE mem_cycle -expgM -expnD addnC -maxnE -order_dvdn. by rewrite -{1}(part_pnat_id p_x) p_part dvdn_exp2l ?leq_maxr. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
Ohm_p_cycle
Ohm_dprodA B G : A \x B = G -> 'Ohm_n(A) \x 'Ohm_n(B) = 'Ohm_n(G). Proof. case/dprodP => [[H K -> ->{A B}]] <- cHK tiHK. rewrite dprodEY //; last first. - by apply/trivgP; rewrite -tiHK setISS ?Ohm_sub. - by rewrite (subset_trans (subset_trans _ cHK)) ?centS ?Ohm_sub. apply/eqP; rewrite -(cent_joinEr cHK) eqEsubset join_subG /=. rewrite !OhmS ?joing_subl ?joing_subr //= cent_joinEr //= -genM_join genS //. apply/subsetP=> _ /setIdP[/imset2P[x y Hx Ky ->] /OhmPredP[p p_pr /eqP]]. have cxy: commute x y by red; rewrite -(centsP cHK). rewrite ?expgMn // -eq_invg_mul => /eqP def_x. have ypn1: y ^+ (p ^ n) = 1. by apply/set1P; rewrite -[[set 1]]tiHK inE -{1}def_x groupV !groupX. have xpn1: x ^+ (p ^ n) = 1 by rewrite -[x ^+ _]invgK def_x ypn1 invg1. by rewrite mem_mulg ?mem_gen // inE (Hx, Ky); apply/OhmPredP; exists p. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
Ohm_dprod
Mho_subG : 'Mho^n(G) \subset G. Proof. rewrite gen_subG; apply/subsetP=> _ /imsetP[x /setIdP[Gx _] ->]. exact: groupX. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
Mho_sub
Mho1: 'Mho^n([1 gT]) = 1. Proof. exact: (trivgP (Mho_sub _)). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
Mho1
morphim_MhorT D G (f : {morphism D >-> rT}) : G \subset D -> f @* 'Mho^n(G) = 'Mho^n(f @* G). Proof. move=> sGD; have sGnD := subset_trans (Mho_sub G) sGD. apply/eqP; rewrite eqEsubset {1}morphim_gen -1?gen_subG // !gen_subG. apply/andP; split; apply/subsetP=> y. case/morphimP=> xpn _ /imsetP[x /setIdP[Gx]]. set p := pdiv _ => p_x -> -> {xpn y}; have Dx := subsetP sGD x Gx. by rewrite morphX // Mho_p_elt ?morph_p_elt ?mem_morphim. case/imsetP=> _ /setIdP[/morphimP[x Dx Gx ->]]. set p := pdiv _ => p_fx ->{y}; rewrite -(constt_p_elt p_fx) -morph_constt //. by rewrite -morphX ?mem_morphim ?Mho_p_elt ?groupX ?p_elt_constt. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
morphim_Mho
Mho_contrT G (f : {morphism G >-> rT}) : f @* 'Mho^n(G) \subset 'Mho^n(f @* G). Proof. by rewrite morphim_Mho. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
Mho_cont
MhoSH G : H \subset G -> 'Mho^n(H) \subset 'Mho^n(G). Proof. move=> sHG; apply: genS; apply: imsetS; apply/subsetP=> x. by rewrite !inE => /andP[Hx]; rewrite (subsetP sHG). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
MhoS
MhoEp G : p.-group G -> 'Mho^n(G) = <<[set x ^+ (p ^ n) | x in G]>>. Proof. move=> pG; apply/eqP; rewrite eqEsubset !gen_subG; apply/andP. do [split; apply/subsetP=> xpn; case/imsetP=> x] => [|Gx ->]; last first. by rewrite Mho_p_elt ?(mem_p_elt pG). case/setIdP=> Gx _ ->; have [-> | ntx] := eqVneq x 1; first by rewrite expg1n. by rewrite (pdiv_p_elt (mem_p_elt pG Gx) ntx) mem_gen //; apply: imset_f. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
MhoE
MhoEabelianp G : p.-group G -> abelian G -> 'Mho^n(G) = [set x ^+ (p ^ n) | x in G]. Proof. move=> pG cGG; rewrite (MhoE pG); rewrite gen_set_id //; apply/group_setP. split=> [|xn yn]; first by apply/imsetP; exists 1; rewrite ?expg1n. case/imsetP=> x Gx ->; case/imsetP=> y Gy ->. by rewrite -expgMn; [apply: imset_f; rewrite groupM | apply: (centsP cGG)]. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
MhoEabelian
trivg_MhoG : 'Mho^n(G) == 1 -> 'Ohm_n(G) == G. Proof. rewrite -subG1 gen_subG eqEsubset Ohm_sub /= => Gp1. rewrite -{1}(Sylow_gen G) genS //; apply/bigcupsP=> P. case/SylowP=> p p_pr /and3P[sPG pP _]; apply/subsetP=> x Px. have Gx := subsetP sPG x Px; rewrite inE Gx //=. rewrite (sameP eqP set1P) (subsetP Gp1) ?mem_gen //; apply: imset_f. by rewrite inE Gx; apply: pgroup_p (mem_p_elt pP Px). Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
trivg_Mho
Mho_p_cyclep x : p.-elt x -> 'Mho^n(<[x]>) = <[x ^+ (p ^ n)]>. Proof. move=> p_x. apply/eqP; rewrite (MhoE p_x) eqEsubset cycle_subG mem_gen; last first. by apply: imset_f; apply: cycle_id. rewrite gen_subG andbT; apply/subsetP=> _ /imsetP[_ /cycleP[k ->] ->]. by rewrite -expgM mulnC expgM mem_cycle. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
Mho_p_cycle
Mho_cprodA B G : A \* B = G -> 'Mho^n(A) \* 'Mho^n(B) = 'Mho^n(G). Proof. case/cprodP => [[H K -> ->{A B}]] <- cHK; rewrite cprodEY //; last first. by rewrite (subset_trans (subset_trans _ cHK)) ?centS ?Mho_sub. apply/eqP; rewrite -(cent_joinEr cHK) eqEsubset join_subG /=. rewrite !MhoS ?joing_subl ?joing_subr //= cent_joinEr // -genM_join. apply: genS; apply/subsetP=> xypn /imsetP[_ /setIdP[/imset2P[x y Hx Ky ->]]]. move/constt_p_elt; move: (pdiv _) => p <- ->. have cxy: commute x y by red; rewrite -(centsP cHK). rewrite consttM // expgMn; last exact: commuteX2. by rewrite mem_mulg ?Mho_p_elt ?groupX ?p_elt_constt. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
Mho_cprod
Mho_dprodA B G : A \x B = G -> 'Mho^n(A) \x 'Mho^n(B) = 'Mho^n(G). Proof. case/dprodP => [[H K -> ->{A B}]] defG cHK tiHK. rewrite dprodEcp; first by apply: Mho_cprod; rewrite cprodE. by apply/trivgP; rewrite -tiHK setISS ?Mho_sub. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
Mho_dprod
Ohm_igFuni := [igFun by Ohm_sub i & Ohm_cont i].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
Ohm_igFun
Ohm_gFuni := [gFun by Ohm_cont i].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
Ohm_gFun
Ohm_mgFuni := [mgFun by OhmS i].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
Ohm_mgFun
Mho_igFuni := [igFun by Mho_sub i & Mho_cont i].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
Mho_igFun
Mho_gFuni := [gFun by Mho_cont i].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
Mho_gFun
Mho_mgFuni := [mgFun by MhoS i].
Canonical
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
Mho_mgFun
Ohm_char: 'Ohm_n(G) \char G. Proof. exact: gFchar. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
Ohm_char
Ohm_normal: 'Ohm_n(G) <| G. Proof. exact: gFnormal. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
Ohm_normal
Mho_char: 'Mho^n(G) \char G. Proof. exact: gFchar. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
Mho_char
Mho_normal: 'Mho^n(G) <| G. Proof. exact: gFnormal. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
Mho_normal
morphim_Ohm(f : {morphism D >-> rT}) : G \subset D -> f @* 'Ohm_n(G) \subset 'Ohm_n(f @* G). Proof. exact: morphimF. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
morphim_Ohm
injm_Ohm(f : {morphism D >-> rT}) : 'injm f -> G \subset D -> f @* 'Ohm_n(G) = 'Ohm_n(f @* G). Proof. by move=> injf; apply: injmF. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
injm_Ohm
isog_Ohm(H : {group rT}) : G \isog H -> 'Ohm_n(G) \isog 'Ohm_n(H). Proof. exact: gFisog. Qed.
Lemma
solvable
[ "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path", "From mathcomp Require Import choice div fintype finfun bigop finset prime", "From mathcomp Require Import binomial fingroup morphism perm automorphism", "From mathcomp Require Import action quotient gfunctor gproduct ssralg countalg", "From mathcomp Require Import finalg zmodp cyclic pgroup gseries nilpotent sylow" ]
solvable/abelian.v
isog_Ohm