fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
solvable_AltF: 4 < #|T| -> solvable 'Alt_T = false. Proof. move=> card_T; apply/negP => Alt_solvable. have/simple_Alt5 Alt_simple := card_T. have := simple_sol_prime Alt_solvable Alt_simple. have lt_T n : n <= 4 -> n < #|T| by move/leq_ltn_trans; apply. have -> : #|('Alt_T)%G| = #|T|`! %/ 2 by rewrite -card_Alt ?mulKn ?lt_T. move/even_prime => [/eqP|]; apply/negP. rewrite neq_ltn leq_divRL // mulnC -[2 * 3]/(3`!). by apply/orP; right; apply/ltnW/ltn_fact/lt_T. by rewrite -dvdn2 dvdn_divRL dvdn_fact //=; apply/ltnW/lt_T. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype tuple tuple bigop prime finset ssralg", "From mathcomp Require Import zmodp fingroup morphism perm automorphism quotient", "From mathcomp Require Import action cyclic pgroup gseries sylow", "From mathcomp Require Import primitive_action nilpotent maximal" ]
solvable/alt.v
solvable_AltF
solvable_SymF: 4 < #|T| -> solvable 'Sym_T = false. Proof. by rewrite (series_sol (Alt_normal T)) => /solvable_AltF->. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice", "From mathcomp Require Import div fintype tuple tuple bigop prime finset ssralg", "From mathcomp Require Import zmodp fingroup morphism perm automorphism quotient", "From mathcomp Require Import action cyclic pgroup gseries sylow", "From mathcomp Require Import primitive_action nilpotent maximal" ]
solvable/alt.v
solvable_SymF
burnside_formula: forall (gT : finGroupType) s (G : {group gT}), uniq s -> s =i G -> forall (sT : finType) (to : {action gT &-> sT}), (#|orbit to G @: setT| * size s)%N = \sum_(p <- s) #|'Fix_to[p]|. Proof. move=> gT s G Us sG sT to. rewrite big_uniq // -(card_uniqP Us) (eq_card sG) -Frobenius_Cauchy. by apply: eq_big => // p _; rewrite setTI. by apply/actsP=> ? _ ?; rewrite !inE. Qed. Arguments burnside_formula {gT}.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
burnside_formula
colors:= 'I_n. HB.instance Definition _ := Finite.on colors.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
colors
square:= 'I_4. HB.instance Definition _ := SubType.on square. HB.instance Definition _ := Finite.on square.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
square
mksquarei : square := Sub (i %% _) (ltn_mod i 4).
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
mksquare
c0:= mksquare 0.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
c0
c1:= mksquare 1.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
c1
c2:= mksquare 2.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
c2
c3:= mksquare 3.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
c3
R1(sc : square) : square := tnth [tuple c1; c2; c3; c0] sc.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
R1
R2(sc : square) : square := tnth [tuple c2; c3; c0; c1] sc.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
R2
R3(sc : square) : square := tnth [tuple c3; c0; c1; c2] sc.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
R3
get_invelt l := match l with | (_, (elt, ?x)) => x | (elt, ?x) => x | (?x, _) => get_inv elt x end.
Ltac
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
get_inv
rot_inv:= ((R1, R3), (R2, R2), (R3, R1)).
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
rot_inv
inj_tac:= move: (erefl rot_inv); unfold rot_inv; match goal with |- ?X = _ -> injective ?Y => move=> _; let x := get_inv Y X in apply: (can_inj (g:=x)); move=> [val H1] end.
Ltac
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
inj_tac
R1_inj: injective R1. Proof. by inj_tac; repeat (destruct val => //=; first by apply/eqP). Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
R1_inj
R2_inj: injective R2. Proof. by inj_tac; repeat (destruct val => //=; first by apply/eqP). Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
R2_inj
R3_inj: injective R3. Proof. by inj_tac; repeat (destruct val => //=; first by apply/eqP). Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
R3_inj
r1:= (perm R1_inj).
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
r1
r2:= (perm R2_inj).
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
r2
r3:= (perm R3_inj).
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
r3
id1:= (1 : {perm square}).
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
id1
is_rot(r : {perm _}) := (r * r1 == r1 * r).
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
is_rot
rot:= [set r | is_rot r].
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
rot
group_set_rot: group_set rot. Proof. apply/group_setP; split; first by rewrite /rot inE /is_rot mulg1 mul1g. move=> x1 y; rewrite /rot !inE /= /is_rot; move/eqP => hx1; move/eqP => hy. by rewrite -mulgA hy !mulgA hx1. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
group_set_rot
rot_group:= Group group_set_rot.
Canonical
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
rot_group
rotations:= [set id1; r1; r2; r3].
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
rotations
rot_eq_c0: forall r s : {perm square}, is_rot r -> is_rot s -> r c0 = s c0 -> r = s. Proof. rewrite /is_rot => r s; move/eqP => hr; move/eqP=> hs hrs; apply/permP => a. have ->: a = (r1 ^+ a) c0 by apply/eqP; case: a; do 4?case=> //=; rewrite ?permM !permE. by rewrite -!permM -!commuteX // !permM hrs. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
rot_eq_c0
rot_r1: forall r, is_rot r -> r = r1 ^+ (r c0). Proof. move=> r hr; apply: rot_eq_c0 => //; apply/eqP. by symmetry; apply: commuteX. by case: (r c0); do 4?case=> //=; rewrite ?permM !permE /=. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
rot_r1
rotations_is_rot: forall r, r \in rotations -> is_rot r. Proof. move=> r Dr; apply/eqP; apply/permP => a; rewrite !inE -!orbA !permM in Dr *. by case/or4P: Dr; move/eqP->; rewrite !permE //; case: a; do 4?case. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
rotations_is_rot
rot_is_rot: rot = rotations. Proof. apply/setP=> r; apply/idP/idP => [|/rotations_is_rot] /[!inE]// h. have -> : r = r1 ^+ (r c0) by apply: rot_eq_c0; rewrite // -rot_r1. have e2: 2 = r2 c0 by rewrite permE /=. have e3: 3 = r3 c0 by rewrite permE /=. case (r c0); do 4?[case] => // ?; rewrite ?(expg1, eqxx, orbT) //. by rewrite [nat_of_ord _]/= e2 -rot_r1 ?(eqxx, orbT, rotations_is_rot, inE). by rewrite [nat_of_ord _]/= e3 -rot_r1 ?(eqxx, orbT, rotations_is_rot, inE). Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
rot_is_rot
Sh(sc : square) : square := tnth [tuple c1; c0; c3; c2] sc.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
Sh
Sh_inj: injective Sh. Proof. by apply: (can_inj (g:= Sh)); case; do 4?case=> //=; move=> H; apply/eqP. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
Sh_inj
sh:= (perm Sh_inj).
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
sh
sh_inv: sh^-1 = sh. Proof. apply: (mulIg sh); rewrite mulVg; apply/permP. by case; do 4?case=> //=; move=> H; rewrite !permE /= !permE; apply/eqP. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
sh_inv
Sv(sc : square) : square := tnth [tuple c3; c2; c1; c0] sc.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
Sv
Sv_inj: injective Sv. Proof. by apply: (can_inj (g:= Sv)); case; do 4?case=> //=; move=> H; apply/eqP. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
Sv_inj
sv:= (perm Sv_inj).
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
sv
sv_inv: sv^-1 = sv. Proof. apply: (mulIg sv); rewrite mulVg; apply/permP. by case; do 4?case=> //=; move=> H; rewrite !permE /= !permE; apply/eqP. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
sv_inv
Sd1(sc : square) : square := tnth [tuple c0; c3; c2; c1] sc.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
Sd1
Sd1_inj: injective Sd1. Proof. by apply: can_inj Sd1 _; case; do 4?case=> //=; move=> H; apply/eqP. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
Sd1_inj
sd1:= (perm Sd1_inj).
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
sd1
sd1_inv: sd1^-1 = sd1. Proof. apply: (mulIg sd1); rewrite mulVg; apply/permP. by case; do 4?case=> //=; move=> H; rewrite !permE /= !permE; apply/eqP. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
sd1_inv
Sd2(sc : square) : square := tnth [tuple c2; c1; c0; c3] sc.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
Sd2
Sd2_inj: injective Sd2. Proof. by apply: can_inj Sd2 _; case; do 4?case=> //=; move=> H; apply/eqP. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
Sd2_inj
sd2:= (perm Sd2_inj).
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
sd2
sd2_inv: sd2^-1 = sd2. Proof. apply: (mulIg sd2); rewrite mulVg; apply/permP. by case; do 4?case=> //=; move=> H; rewrite !permE /= !permE; apply/eqP. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
sd2_inv
ord_enum4: enum 'I_4 = [:: c0; c1; c2; c3]. Proof. by apply: (inj_map val_inj); rewrite val_enum_ord. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
ord_enum4
diff_id_sh: 1 != sh. Proof. by apply/eqP; move/(congr1 (fun p : {perm square} => p c0)); rewrite !permE. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
diff_id_sh
isometries2:= [set 1; sh].
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
isometries2
card_iso2: #|isometries2| = 2. Proof. by rewrite cards2 diff_id_sh. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
card_iso2
group_set_iso2: group_set isometries2. Proof. apply/group_setP; split => [|x y]; rewrite !inE ?eqxx //. do 2![case/orP; move/eqP->]; rewrite ?(mul1g, mulg1) ?eqxx ?orbT//. by rewrite -/sh -{1}sh_inv mulVg eqxx. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
group_set_iso2
iso2_group:= Group group_set_iso2.
Canonical
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
iso2_group
isometries:= [set p | [|| p == 1, p == r1, p == r2, p == r3, p == sh, p == sv, p == sd1 | p == sd2 ]].
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
isometries
opp(sc : square) := tnth [tuple c2; c3; c0; c1] sc.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
opp
is_iso(p : {perm square}) := forall ci, p (opp ci) = opp (p ci).
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
is_iso
isometries_iso: forall p, p \in isometries -> is_iso p. Proof. move=> p; rewrite inE. by do ?case/orP; move/eqP=> -> a; rewrite !permE; case: a; do 4?case. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
isometries_iso
non_injp a1 a2 heq1 heq2 := let h1:= fresh "h1" in (absurd (p a1 = p a2); first (by red => - h1; move: (perm_inj h1)); by rewrite heq1 heq2; apply/eqP).
Ltac
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
non_inj
is_isoPtacp f e0 e1 e2 e3 := suff ->: p = f by [rewrite inE eqxx ?orbT]; let e := fresh "e" in apply/permP; (do 5?[case] => // ?; [move: e0 | move: e1 | move: e2 | move: e3]) => e; apply: etrans (congr1 p _) (etrans e _); apply/eqP; rewrite // permE.
Ltac
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
is_isoPtac
is_isoP: forall p, reflect (is_iso p) (p \in isometries). Proof. move=> p; apply: (iffP idP) => [|iso_p]; first exact: isometries_iso. move e1: (p c1) (iso_p c1) => k1; move e0: (p c0) (iso_p c0) k1 e1 => k0. case: k0 e0; do 4?[case] => //= ? e0 e2; do 5?[case] => //= ? e1 e3; try by [non_inj p c0 c1 e0 e1 | non_inj p c0 c3 e0 e3]. by is_isoPtac p id1 e0 e1 e2 e3. by is_isoPtac p sd1 e0 e1 e2 e3. by is_isoPtac p sh e0 e1 e2 e3. by is_isoPtac p r1 e0 e1 e2 e3. by is_isoPtac p sd2 e0 e1 e2 e3. by is_isoPtac p r2 e0 e1 e2 e3. by is_isoPtac p r3 e0 e1 e2 e3. by is_isoPtac p sv e0 e1 e2 e3. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
is_isoP
group_set_iso: group_set isometries. Proof. apply/group_setP; split; first by rewrite inE eqxx /=. by move=> x y hx hy; apply/is_isoP => ci; rewrite !permM !isometries_iso. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
group_set_iso
iso_group:= Group group_set_iso.
Canonical
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
iso_group
card_rot: #|rot| = 4. Proof. rewrite -[4]/(size [:: id1; r1; r2; r3]) -(card_uniqP _). by apply: eq_card => x; rewrite rot_is_rot !inE -!orbA. by apply: map_uniq (fun p : {perm square} => p c0) _ _; rewrite /= !permE. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
card_rot
group_set_rotations: group_set rotations. Proof. by rewrite -rot_is_rot group_set_rot. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
group_set_rotations
rotations_group:= Group group_set_rotations.
Canonical
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
rotations_group
col_squares:= {ffun square -> colors}.
Notation
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
col_squares
act_f(sc : col_squares) (p : {perm square}) : col_squares := [ffun z => sc (p^-1 z)].
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
act_f
act_f_1: forall k, act_f k 1 = k. Proof. by move=> k; apply/ffunP=> a; rewrite ffunE invg1 permE. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
act_f_1
act_f_morph: forall k x y, act_f k (x * y) = act_f (act_f k x) y. Proof. by move=> k x y; apply/ffunP=> a; rewrite !ffunE invMg permE. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
act_f_morph
to:= TotalAction act_f_1 act_f_morph.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
to
square_coloring_number2:= #|orbit to isometries2 @: setT|.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
square_coloring_number2
square_coloring_number4:= #|orbit to rotations @: setT|.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
square_coloring_number4
square_coloring_number8:= #|orbit to isometries @: setT|.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
square_coloring_number8
Fid: 'Fix_to(1) = setT. Proof. by apply/setP=> x /=; rewrite in_setT; apply/afix1P; apply: act1. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
Fid
card_Fid: #|'Fix_to(1)| = (n ^ 4)%N. Proof. rewrite -[4]card_ord -[n]card_ord -card_ffun_on Fid cardsE. by symmetry; apply: eq_card => f; apply/ffun_onP. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
card_Fid
coin0(sc : col_squares) : colors := sc c0.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
coin0
coin1(sc : col_squares) : colors := sc c1.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
coin1
coin2(sc : col_squares) : colors := sc c2.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
coin2
coin3(sc : col_squares) : colors := sc c3.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
coin3
eqperm_map: forall p1 p2 : col_squares, (p1 == p2) = all (fun s => p1 s == p2 s) [:: c0; c1; c2; c3]. Proof. move=> p1 p2; apply/eqP/allP=> [-> // | Ep12]; apply/ffunP=> x. by apply/eqP; apply Ep12; case: x; do 4!case=> //. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
eqperm_map
F_Sh: 'Fix_to[sh] = [set x | (coin0 x == coin1 x) && (coin2 x == coin3 x)]. Proof. apply/setP=> x; rewrite (sameP afix1P eqP) !inE eqperm_map /=. rewrite /act_f sh_inv !ffunE !permE /=. by rewrite eq_sym (eq_sym (x c3)) andbT andbA !andbb. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
F_Sh
F_Sv: 'Fix_to[sv] = [set x | (coin0 x == coin3 x) && (coin2 x == coin1 x)]. Proof. apply/setP=> x; rewrite (sameP afix1P eqP) !inE eqperm_map /=. rewrite /act_f sv_inv !ffunE !permE /=. by rewrite eq_sym andbT andbC (eq_sym (x c1)) andbA -andbA !andbb andbC. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
F_Sv
inv_tac:= apply: esym (etrans _ (mul1g _)); apply: canRL (mulgK _) _; let a := fresh "a" in apply/permP => a; apply/eqP; rewrite permM !permE; case: a; do 4?case.
Ltac
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
inv_tac
r1_inv: r1^-1 = r3. Proof. by inv_tac. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
r1_inv
r2_inv: r2^-1 = r2. Proof. by inv_tac. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
r2_inv
r3_inv: r3^-1 = r1. Proof. by inv_tac. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
r3_inv
F_r2: 'Fix_to[r2] = [set x | (coin0 x == coin2 x) && (coin1 x == coin3 x)]. Proof. apply/setP=> x; rewrite (sameP afix1P eqP) !inE eqperm_map /=. rewrite /act_f r2_inv !ffunE !permE /=. by rewrite eq_sym andbT andbCA andbC (eq_sym (x c3)) andbA -andbA !andbb andbC. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
F_r2
F_r1: 'Fix_to[r1] = [set x | (coin0 x == coin1 x)&&(coin1 x == coin2 x)&&(coin2 x == coin3 x)]. Proof. apply/setP=> x; rewrite (sameP afix1P eqP) !inE eqperm_map /=. rewrite /act_f r1_inv !ffunE !permE andbC. by do 3![case E: {+}(_ == _); rewrite // {E}(eqP E)]; rewrite eqxx. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
F_r1
F_r3: 'Fix_to[r3] = [set x | (coin0 x == coin1 x)&&(coin1 x == coin2 x)&&(coin2 x == coin3 x)]. Proof. apply/setP=> x; rewrite (sameP afix1P eqP) !inE eqperm_map /=. rewrite /act_f r3_inv !ffunE !permE /=. by do 3![case: eqVneq=> // <-]. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
F_r3
card_n2: forall x y z t : square, uniq [:: x; y; z; t] -> #|[set p : col_squares | (p x == p y) && (p z == p t)]| = (n ^ 2)%N. Proof. move=> x y z t Uxt; rewrite -[n]card_ord. pose f (p : col_squares) := (p x, p z); rewrite -(@card_in_image _ _ f). rewrite -mulnn -card_prod; apply: eq_card => [] [c d] /=; apply/imageP. rewrite (cat_uniq [::x; y]) in Uxt; case/and3P: Uxt => _. rewrite /= !orbF !andbT => /norP[] /[!inE] nxzt nyzt _. exists [ffun i => if pred2 x y i then c else d]. by rewrite inE !ffunE /= !eqxx orbT (negbTE nxzt) (negbTE nyzt) !eqxx. by rewrite {}/f !ffunE /= eqxx (negbTE nxzt). move=> p1 p2 /[!inE] /andP[p1y p1t] /andP[p2y p2t] [px pz]. have eqp12: all (fun i => p1 i == p2 i) [:: x; y; z; t]. by rewrite /= -(eqP p1y) -(eqP p1t) -(eqP p2y) -(eqP p2t) px pz !eqxx. apply/ffunP=> i; apply/eqP; apply: (allP eqp12). by rewrite (subset_cardP _ (subset_predT _)) // (card_uniqP Uxt) card_ord. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
card_n2
card_n: #|[set x | (coin0 x == coin1 x)&&(coin1 x == coin2 x)&& (coin2 x == coin3 x)]| = n. Proof. rewrite -[n]card_ord /coin0 /coin1 /coin2 /coin3. pose f (p : col_squares) := p c3; rewrite -(@card_in_image _ _ f). apply: eq_card => c /=; apply/imageP. exists ([ffun => c] : col_squares); last by rewrite /f ffunE. by rewrite /= inE !ffunE !eqxx. move=> p1 p2; rewrite /= !inE /f -!andbA => eqp1 eqp2 eqp12. apply/eqP; rewrite eqperm_map /= andbT. case/and3P: eqp1; do 3!move/eqP->; case/and3P: eqp2; do 3!move/eqP->. by rewrite !andbb eqp12. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
card_n
burnside_app2: (square_coloring_number2 * 2 = n ^ 4 + n ^ 2)%N. Proof. rewrite (burnside_formula [:: id1; sh]) => [||p]; last first. - by rewrite !inE. - by rewrite /= inE diff_id_sh. by rewrite 2!big_cons big_nil addn0 {1}card_Fid F_Sh card_n2. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
burnside_app2
burnside_app_rot: (square_coloring_number4 * 4 = n ^ 4 + n ^ 2 + 2 * n)%N. Proof. rewrite (burnside_formula [:: id1; r1; r2; r3]) => [||p]; last first. - by rewrite !inE !orbA. - by apply: map_uniq (fun p : {perm square} => p c0) _ _; rewrite /= !permE. rewrite !big_cons big_nil /= addn0 {1}card_Fid F_r1 F_r2 F_r3. by rewrite card_n card_n2 //= [n + _]addnC !addnA addn0. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
burnside_app_rot
F_Sd1: 'Fix_to[sd1] = [set x | coin1 x == coin3 x]. Proof. apply/setP => x; rewrite (sameP afix1P eqP) !inE eqperm_map /=. rewrite /act_f sd1_inv !ffunE !permE /=. by rewrite !eqxx !andbT eq_sym /= andbb. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
F_Sd1
card_n3: forall x y : square, x != y -> #|[set k : col_squares | k x == k y]| = (n ^ 3)%N. Proof. move=> x y nxy; apply/eqP; case: (posnP n) => [n0|]. by rewrite n0; apply/existsP=> [] [p _]; case: (p c0) => i; rewrite n0. move/eqn_pmul2l <-; rewrite -expnS -card_Fid Fid cardsT. rewrite -{1}[n]card_ord -cardX. pose pk k := [ffun i => k (if i == y then x else i) : colors]. rewrite -(@card_image _ _ (fun k : col_squares => (k y, pk k))). apply/eqP; apply: eq_card => ck /=; rewrite inE /= [_ \in _]inE. apply/eqP/imageP; last first. by case=> k _ -> /=; rewrite !ffunE if_same eqxx. case: ck => c k /= kxy. exists [ffun i => if i == y then c else k i]; first by rewrite inE. rewrite !ffunE eqxx; congr (_, _); apply/ffunP=> i; rewrite !ffunE. case Eiy: (i == y); last by rewrite Eiy. by rewrite (negbTE nxy) (eqP Eiy). move=> k1 k2 [Eky Epk]; apply/ffunP=> i. have{Epk}: pk k1 i = pk k2 i by rewrite Epk. by rewrite !ffunE; case: eqP => // ->. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
card_n3
F_Sd2: 'Fix_to[sd2] = [set x | coin0 x == coin2 x]. Proof. apply/setP => x; rewrite (sameP afix1P eqP) !inE eqperm_map /=. by rewrite /act_f sd2_inv !ffunE !permE /= !eqxx !andbT eq_sym /= andbb. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
F_Sd2
burnside_app_iso: (square_coloring_number8 * 8 = n ^ 4 + 2 * n ^ 3 + 3 * n ^ 2 + 2 * n)%N. Proof. pose iso_list := [:: id1; r1; r2; r3; sh; sv; sd1; sd2]. rewrite (burnside_formula iso_list) => [||p]; last first. - by rewrite /= !inE. - apply: map_uniq (fun p : {perm square} => (p c0, p c1)) _ _. by rewrite /= !permE. rewrite !big_cons big_nil {1}card_Fid F_r1 F_r2 F_r3 F_Sh F_Sv F_Sd1 F_Sd2. rewrite card_n !card_n3 // !card_n2 //= !addnA !addn0. by rewrite [LHS]addn.[ACl 1 * 7 * 8 * 3 * 5 * 6 * 2 * 4]. Qed.
Lemma
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
burnside_app_iso
cube:= 'I_6. HB.instance Definition _ := SubType.on cube. HB.instance Definition _ := Finite.on cube.
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
cube
mkFcubei : cube := Sub (i %% 6) (ltn_mod i 6).
Definition
solvable
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div", "From mathcomp Require Import choice fintype tuple finfun bigop finset fingroup", "From mathcomp Require Import action perm primitive_action ssrAC" ]
solvable/burnside_app.v
mkFcube