fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
subact_is_action: is_action subact_dom subact. Proof. split=> [a u v eq_uv | u a b Na Nb]; apply: val_inj. move/(congr1 val): eq_uv; rewrite !val_subact. by case: (a \in _); first move/act_inj. have Da := astabs_dom Na; have Db := astabs_dom Nb. by rewrite !val_subact Na Nb groupM ?actMin. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
subact_is_action
subaction:= Action subact_is_action.
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
subaction
astab_subactS : 'C(S | subaction) = subact_dom :&: 'C(val @: S | to). Proof. apply/setP=> a; rewrite inE in_setI; apply: andb_id2l => sDa. have [Da _] := setIP sDa; rewrite !inE Da. apply/subsetP/subsetP=> [cSa _ /imsetP[x Sx ->] | cSa x Sx] /[!inE]. by have:= cSa x Sx; rewrite inE -val_eqE val_subact sDa. by have:= cSa _ (imset_f val Sx); rewrite inE -val_eqE val_subact sDa. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astab_subact
astabs_subactS : 'N(S | subaction) = subact_dom :&: 'N(val @: S | to). Proof. apply/setP=> a; rewrite inE in_setI; apply: andb_id2l => sDa. have [Da _] := setIP sDa; rewrite !inE Da. apply/subsetP/subsetP=> [nSa _ /imsetP[x Sx ->] | nSa x Sx] /[!inE]. by have /[1!inE]/(imset_f val) := nSa x Sx; rewrite val_subact sDa. have /[1!inE]/imsetP[y Sy def_y] := nSa _ (imset_f val Sx). by rewrite ((_ a =P y) _) // -val_eqE val_subact sDa def_y. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabs_subact
afix_subactA : A \subset subact_dom -> 'Fix_subaction(A) = val @^-1: 'Fix_to(A). Proof. move/subsetP=> sAD; apply/setP=> u. rewrite !inE !(sameP setIidPl eqP); congr (_ == A). apply/setP=> a /[!inE]; apply: andb_id2l => Aa. by rewrite -val_eqE val_subact sAD. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
afix_subact
qact_dom:= 'N(rcosets H 'N(H) | to^*).
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
qact_dom
qact_dom_group:= [group of qact_dom]. Local Notation subdom := (subact_dom (coset_range H) to^*). Fact qact_subdomE : subdom = qact_dom. Proof. by congr 'N(_|_); apply/setP=> Hx; rewrite !inE genGid. Qed.
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
qact_dom_group
qact_proof: qact_dom \subset subdom. Proof. by rewrite qact_subdomE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
qact_proof
qact: coset_of H -> aT -> coset_of H := act (to^*^? \ qact_proof).
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
qact
quotient_action:= [action of qact].
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
quotient_action
acts_qact_dom: [acts qact_dom, on 'N(H) | to]. Proof. apply/subsetP=> a nNa; rewrite !inE (astabs_dom nNa); apply/subsetP=> x Nx. have: H :* x \in rcosets H 'N(H) by rewrite -rcosetE imset_f. rewrite inE -(astabs_act _ nNa) => /rcosetsP[y Ny defHy]. have: to x a \in H :* y by rewrite -defHy (imset_f (to^~a)) ?rcoset_refl. by apply: subsetP; rewrite mul_subG ?sub1set ?normG. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
acts_qact_dom
qactEcondx a : x \in 'N(H) -> quotient_action (coset H x) a = coset H (if a \in qact_dom then to x a else x). Proof. move=> Nx; apply: val_inj; rewrite val_subact //= qact_subdomE. have: H :* x \in rcosets H 'N(H) by rewrite -rcosetE imset_f. case nNa: (a \in _); rewrite // -(astabs_act _ nNa). rewrite !val_coset ?(acts_act acts_qact_dom nNa) //=. case/rcosetsP=> y Ny defHy; rewrite defHy; apply: rcoset_eqP. by rewrite rcoset_sym -defHy (imset_f (_^~_)) ?rcoset_refl. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
qactEcond
qactEx a : x \in 'N(H) -> a \in qact_dom -> quotient_action (coset H x) a = coset H (to x a). Proof. by move=> Nx nNa; rewrite qactEcond ?nNa. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
qactE
acts_quotient(A : {set aT}) (B : {set rT}) : A \subset 'N_qact_dom(B | to) -> [acts A, on B / H | quotient_action]. Proof. move=> nBA; apply: subset_trans {A}nBA _; apply/subsetP=> a /setIP[dHa nBa]. rewrite inE dHa inE; apply/subsetP=> _ /morphimP[x nHx Bx ->]. rewrite inE /= qactE //. by rewrite mem_morphim ?(acts_act acts_qact_dom) ?(astabs_act _ nBa). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
acts_quotient
astabs_quotient(G : {group rT}) : H <| G -> 'N(G / H | quotient_action) = 'N_qact_dom(G | to). Proof. move=> nsHG; have [_ nHG] := andP nsHG. apply/eqP; rewrite eqEsubset acts_quotient // andbT. apply/subsetP=> a nGa; have dHa := astabs_dom nGa; have [Da _]:= setIdP dHa. rewrite inE dHa 2!inE Da; apply/subsetP=> x Gx; have nHx := subsetP nHG x Gx. rewrite -(quotientGK nsHG) 2!inE (acts_act acts_qact_dom) ?nHx //= inE. by rewrite -qactE // (astabs_act _ nGa) mem_morphim. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabs_quotient
modactx (Ha : coset_of H) := if x \in range then to x (repr (D :&: Ha)) else x.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
modact
modactEcondx a : a \in dom -> modact x (coset H a) = (if x \in range then to x a else x). Proof. case/setIP=> Da Na; case: ifP => Cx; rewrite /modact Cx //. rewrite val_coset // -group_modr ?sub1set //. case: (repr _) / (repr_rcosetP (D :&: H) a) => a' Ha'. by rewrite actMin ?(afixP Cx _ Ha') //; case/setIP: Ha'. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
modactEcond
modactEx a : a \in D -> a \in 'N(H) -> x \in range -> modact x (coset H a) = to x a. Proof. by move=> Da Na Rx; rewrite modactEcond ?Rx // inE Da. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
modactE
modact_is_action: is_action (D / H) modact. Proof. split=> [Ha x y | x Ha Hb]; last first. case/morphimP=> a Na Da ->{Ha}; case/morphimP=> b Nb Db ->{Hb}. rewrite -morphM //= !modactEcond // ?groupM ?(introT setIP _) //. by case: ifP => Cx; rewrite ?(acts_dom, Cx, actMin, introT setIP _). case: (set_0Vmem (D :&: Ha)) => [Da0 | [a /setIP[Da NHa]]]. by rewrite /modact Da0 repr_set0 !act1 !if_same. have Na := subsetP (coset_norm _) _ NHa. have NDa: a \in 'N_D(H) by rewrite inE Da. rewrite -(coset_mem NHa) !modactEcond //. do 2![case: ifP]=> Cy Cx // eqxy; first exact: act_inj eqxy. by rewrite -eqxy acts_dom ?Cx in Cy. by rewrite eqxy acts_dom ?Cy in Cx. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
modact_is_action
mod_action:= Action modact_is_action.
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
mod_action
astabs_mod: 'N(S | mod_action) = 'N(S | to) / H. Proof. apply/setP=> Ha; apply/idP/morphimP=> [nSa | [a nHa nSa ->]]. case/morphimP: (astabs_dom nSa) => a nHa Da defHa. exists a => //; rewrite !inE Da; apply/subsetP=> x Sx; rewrite !inE. by have:= Sx; rewrite -(astabs_act x nSa) defHa /= modactE ?(subsetP fixSH). have Da := astabs_dom nSa; rewrite !inE mem_quotient //; apply/subsetP=> x Sx. by rewrite !inE /= modactE ?(astabs_act x nSa) ?(subsetP fixSH). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabs_mod
astab_mod: 'C(S | mod_action) = 'C(S | to) / H. Proof. apply/setP=> Ha; apply/idP/morphimP=> [cSa | [a nHa cSa ->]]. case/morphimP: (astab_dom cSa) => a nHa Da defHa. exists a => //; rewrite !inE Da; apply/subsetP=> x Sx; rewrite !inE. by rewrite -{2}[x](astab_act cSa) // defHa /= modactE ?(subsetP fixSH). have Da := astab_dom cSa; rewrite !inE mem_quotient //; apply/subsetP=> x Sx. by rewrite !inE /= modactE ?(astab_act cSa) ?(subsetP fixSH). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astab_mod
afix_modG S : H \subset 'C(S | to) -> G \subset 'N_D(H) -> 'Fix_(S | mod_action)(G / H) = 'Fix_(S | to)(G). Proof. move=> cSH /subsetIP[sGD nHG]. apply/eqP; rewrite eqEsubset !subsetI !subsetIl /= -!astabCin ?quotientS //. have cfixH F: H \subset 'C(S :&: F | to). by rewrite (subset_trans cSH) // astabS ?subsetIl. rewrite andbC astab_mod ?quotientS //=; last by rewrite astabCin ?subsetIr. by rewrite -(quotientSGK nHG) //= -astab_mod // astabCin ?quotientS ?subsetIr. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
afix_mod
modact_faithfulG S : [faithful G / 'C_G(S | to), on S | mod_action 'C_G(S | to)]. Proof. rewrite /faithful astab_mod ?subsetIr //=. by rewrite -quotientIG ?subsetIr ?trivg_quotient. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
modact_faithful
actperma := perm (act_inj to a).
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actperm
actpermM: {in D &, {morph actperm : a b / a * b}}. Proof. by move=> a b Da Db; apply/permP=> x; rewrite permM !permE actMin. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actpermM
actperm_morphism:= Morphism actpermM.
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actperm_morphism
actpermEa x : actperm a x = to x a. Proof. by rewrite permE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actpermE
actpermKx a : aperm x (actperm a) = to x a. Proof. exact: actpermE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actpermK
ker_actperm: 'ker actperm = 'C(setT | to). Proof. congr (_ :&: _); apply/setP=> a /[!inE]/=. apply/eqP/subsetP=> [a1 x _ | a1]; first by rewrite inE -actpermE a1 perm1. by apply/permP=> x; apply/eqP; have:= a1 x; rewrite !inE actpermE perm1 => ->. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
ker_actperm
faithful_isom(A : {group aT}) S (nSA : actby_cond A S to) : [faithful A, on S | to] -> isom A (actperm <[nSA]> @* A) (actperm <[nSA]>). Proof. by move=> ffulAS; apply/isomP; rewrite ker_actperm astab_actby setIT. Qed. Variables (A : {set aT}) (sAD : A \subset D).
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
faithful_isom
ractpermE: actperm (to \ sAD) =1 actperm to. Proof. by move=> a; apply/permP=> x; rewrite !permE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
ractpermE
afix_ractB : 'Fix_(to \ sAD)(B) = 'Fix_to(B). Proof. by []. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
afix_ract
astab_ractS : 'C(S | to \ sAD) = 'C_A(S | to). Proof. by rewrite setIA (setIidPl sAD). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astab_ract
astabs_ractS : 'N(S | to \ sAD) = 'N_A(S | to). Proof. by rewrite setIA (setIidPl sAD). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabs_ract
acts_ract(B : {set aT}) S : [acts B, on S | to \ sAD] = (B \subset A) && [acts B, on S | to]. Proof. by rewrite astabs_ract subsetI. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
acts_ract
mactx a := phi a x.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
mact
mact_is_action: is_action D mact. Proof. split=> [a x y | x a b Da Db]; first exact: perm_inj. by rewrite /mact morphM //= permM. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
mact_is_action
morph_action:= Action mact_is_action.
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
morph_action
mactEx a : morph_action x a = phi a x. Proof. by []. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
mactE
injm_faithful: 'injm phi -> [faithful D, on setT | morph_action]. Proof. move/injmP=> phi_inj; apply/subsetP=> a /setIP[Da /astab_act a1]. apply/set1P/phi_inj => //; apply/permP=> x. by rewrite morph1 perm1 -mactE a1 ?inE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
injm_faithful
perm_macta : actperm morph_action a = phi a. Proof. by apply/permP=> x; rewrite permE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
perm_mact
comp_actx e := to x (f e).
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
comp_act
comp_is_action: is_action (f @*^-1 D) comp_act. Proof. split=> [e | x e1 e2]; first exact: act_inj. move=> /morphpreP[Be1 Dfe1] /morphpreP[Be2 Dfe2]. by rewrite /comp_act morphM ?actMin. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
comp_is_action
comp_action:= Action comp_is_action.
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
comp_action
comp_actEx e : comp_action x e = to x (f e). Proof. by []. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
comp_actE
afix_comp(A : {set gT}) : A \subset B -> 'Fix_comp_action(A) = 'Fix_to(f @* A). Proof. move=> sAB; apply/setP=> x; rewrite !inE /morphim (setIidPr sAB). apply/subsetP/subsetP; first by move=> + _ /imsetP[a + ->] => /[apply]/[!inE]. by move=> + a Aa => /(_ (f a)); rewrite !inE imset_f// => ->. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
afix_comp
astab_compS : 'C(S | comp_action) = f @*^-1 'C(S | to). Proof. by apply/setP=> x; rewrite !inE -andbA. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astab_comp
astabs_compS : 'N(S | comp_action) = f @*^-1 'N(S | to). Proof. by apply/setP=> x; rewrite !inE -andbA. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabs_comp
aperm_is_action: is_action setT (@aperm rT). Proof. by apply: is_total_action => [x|x a b]; rewrite apermE (perm1, permM). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
aperm_is_action
perm_action:= Action aperm_is_action.
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
perm_action
porbitEa : porbit a = orbit perm_action <[a]>%g. Proof. by rewrite unlock. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
porbitE
perm_act1Pa : reflect (forall x, aperm x a = x) (a == 1). Proof. apply: (iffP eqP) => [-> x | a1]; first exact: act1. by apply/permP=> x; rewrite -apermE a1 perm1. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
perm_act1P
perm_faithfulA : [faithful A, on setT | perm_action]. Proof. apply/subsetP=> a /setIP[Da crTa]. by apply/set1P; apply/permP=> x; rewrite -apermE perm1 (astabP crTa) ?inE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
perm_faithful
actperm_idp : actperm perm_action p = p. Proof. by apply/permP=> x; rewrite permE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actperm_id
orbit_morphim_actperm(A : {set aT}) : A \subset D -> orbit 'P (actperm to @* A) =1 orbit to A. Proof. move=> sAD x; rewrite morphimEsub // /orbit -imset_comp. by apply: eq_imset => a //=; rewrite actpermK. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
orbit_morphim_actperm
porbit_actperm(a : aT) : a \in D -> porbit (actperm to a) =1 orbit to <[a]>. Proof. move=> Da x. by rewrite porbitE -orbit_morphim_actperm ?cycle_subG ?morphim_cycle. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
porbit_actperm
restr_perm:= actperm (<[subxx 'N(S | 'P)]>).
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
restr_perm
restr_perm_morphism:= [morphism of restr_perm].
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
restr_perm_morphism
restr_perm_onp : perm_on S (restr_perm p). Proof. apply/subsetP=> x; apply: contraR => notSx. by rewrite permE /= /actby (negPf notSx). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
restr_perm_on
triv_restr_permp : p \notin 'N(S | 'P) -> restr_perm p = 1. Proof. move=> not_nSp; apply/permP=> x. by rewrite !permE /= /actby (negPf not_nSp) andbF. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
triv_restr_perm
restr_permE: {in 'N(S | 'P) & S, forall p, restr_perm p =1 p}. Proof. by move=> y x nSp Sx; rewrite /= actpermE actbyE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
restr_permE
ker_restr_perm: 'ker restr_perm = 'C(S | 'P). Proof. by rewrite ker_actperm astab_actby setIT (setIidPr (astab_sub _ _)). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
ker_restr_perm
im_restr_permp : restr_perm p @: S = S. Proof. exact: im_perm_on (restr_perm_on p). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
im_restr_perm
restr_perm_commutes : commute (restr_perm s) s. Proof. have [sC|/triv_restr_perm->] := boolP (s \in 'N(S | 'P)); last first. exact: (commute_sym (commute1 _)). apply/permP => x; have /= xsS := astabsP sC x; rewrite !permM. have [xS|xNS] := boolP (x \in S); first by rewrite ?(restr_permE) ?xsS. by rewrite !(out_perm (restr_perm_on _)) ?xsS. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
restr_perm_commute
SymE: Sym S = 'C(~: S | 'P). Proof. apply/setP => s; rewrite inE; apply/idP/astabP => [sS x|/= S_id]. by rewrite inE /= apermE => /out_perm->. by apply/subsetP => x; move=> /(contra_neqN (S_id _)); rewrite inE negbK. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
SymE
Aut_inA (B : {set gT}) := 'N_A(B | 'P) / 'C_A(B | 'P). Variables G H : {group gT}. Hypothesis sHG: H \subset G.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
Aut_in
Aut_restr_perma : a \in Aut G -> restr_perm H a \in Aut H. Proof. move=> AutGa. case nHa: (a \in 'N(H | 'P)); last by rewrite triv_restr_perm ?nHa ?group1. rewrite inE restr_perm_on; apply/morphicP=> x y Hx Hy /=. by rewrite !restr_permE ?groupM // -(autmE AutGa) morphM ?(subsetP sHG). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
Aut_restr_perm
restr_perm_Aut: restr_perm H @* Aut G \subset Aut H. Proof. by apply/subsetP=> a'; case/morphimP=> a _ AutGa ->{a'}; apply: Aut_restr_perm. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
restr_perm_Aut
Aut_in_isog: Aut_in (Aut G) H \isog restr_perm H @* Aut G. Proof. rewrite /Aut_in -ker_restr_perm kerE -morphpreIdom -morphimIdom -kerE /=. by rewrite setIA (setIC _ (Aut G)) first_isog_loc ?subsetIr. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
Aut_in_isog
Aut_sub_fullP: reflect (forall h : {morphism H >-> gT}, 'injm h -> h @* H = H -> exists g : {morphism G >-> gT}, [/\ 'injm g, g @* G = G & {in H, g =1 h}]) (Aut_in (Aut G) H \isog Aut H). Proof. rewrite (isog_transl _ Aut_in_isog) /=; set rG := _ @* _. apply: (iffP idP) => [iso_rG h injh hH| AutHinG]. have: aut injh hH \in rG; last case/morphimP=> g nHg AutGg def_g. suffices ->: rG = Aut H by apply: Aut_aut. by apply/eqP; rewrite eqEcard restr_perm_Aut /= (card_isog iso_rG). exists (autm_morphism AutGg); rewrite injm_autm im_autm; split=> // x Hx. by rewrite -(autE injh hH Hx) def_g actpermE actbyE. suffices ->: rG = Aut H by apply: isog_refl. apply/eqP; rewrite eqEsubset restr_perm_Aut /=. apply/subsetP=> h AutHh; have hH := im_autm AutHh. have [g [injg gG eq_gh]] := AutHinG _ (injm_autm AutHh) hH. have [Ng AutGg]: aut injg gG \in 'N(H | 'P) /\ aut injg gG \in Aut G. rewrite Aut_aut !inE; split=> //; apply/subsetP=> x Hx. by rewrite inE /= /aperm autE ?(subsetP sHG) // -hH eq_gh ?mem_morphim. apply/morphimP; exists (aut injg gG) => //; apply: (eq_Aut AutHh) => [|x Hx]. by rewrite (subsetP restr_perm_Aut) // mem_morphim. by rewrite restr_permE //= /aperm autE ?eq_gh ?(subsetP sHG). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
Aut_sub_fullP
astabs_Aut_isoma : a \in Aut G -> (fGisom a \in 'N(f @* H | 'P)) = (a \in 'N(H | 'P)). Proof. move=> AutGa; rewrite !inE sub_morphim_pre // subsetI sHD /= /aperm. rewrite !(sameP setIidPl eqP) !eqEsubset !subsetIl; apply: eq_subset_r => x. rewrite !inE; apply: andb_id2l => Hx; have Gx: x \in G := subsetP sHG x Hx. have Dax: a x \in D by rewrite (subsetP sGD) // Aut_closed. by rewrite Aut_isomE // -!sub1set -morphim_set1 // injmSK ?sub1set. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
astabs_Aut_isom
isom_restr_perma : a \in Aut G -> fHisom (inH a) = infH (fGisom a). Proof. move=> AutGa; case nHa: (a \in 'N(H | 'P)); last first. by rewrite !triv_restr_perm ?astabs_Aut_isom ?nHa ?morph1. apply: (eq_Aut (Aut_Aut_isom injf sHD _)) => [|fx Hfx /=]. by rewrite (Aut_restr_perm (morphimS f sHG)) ?Aut_Aut_isom. have [x Dx Hx def_fx] := morphimP Hfx; have Gx := subsetP sHG x Hx. rewrite {1}def_fx Aut_isomE ?(Aut_restr_perm sHG) //. by rewrite !restr_permE ?astabs_Aut_isom // def_fx Aut_isomE. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
isom_restr_perm
restr_perm_isom: isom (inH @* Aut G) (infH @* Aut (f @* G)) fHisom. Proof. apply: sub_isom; rewrite ?restr_perm_Aut ?injm_Aut_isom //=. rewrite -(im_Aut_isom injf sGD) -!morphim_comp. apply: eq_in_morphim; last exact: isom_restr_perm.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
restr_perm_isom
injm_Aut_sub: Aut_in (Aut (f @* G)) (f @* H) \isog Aut_in (Aut G) H. Proof. do 2!rewrite isog_sym (isog_transl _ (Aut_in_isog _ _)). by rewrite isog_sym (isom_isog _ _ restr_perm_isom) // restr_perm_Aut. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
injm_Aut_sub
injm_Aut_full: (Aut_in (Aut (f @* G)) (f @* H) \isog Aut (f @* H)) = (Aut_in (Aut G) H \isog Aut H). Proof. by rewrite (isog_transl _ injm_Aut_sub) (isog_transr _ (injm_Aut injf sHD)). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
injm_Aut_full
is_groupAction(to : actT) := {in D, forall a, actperm to a \in Aut R}.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
is_groupAction
groupAction:= GroupAction {gact :> actT; _ : is_groupAction gact}.
Structure
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
groupAction
clone_groupActionto := let: GroupAction _ toA := to return {type of GroupAction for to} -> _ in fun k => k toA : groupAction.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
clone_groupAction
gact_rangeof groupAction D R := R.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gact_range
gacentto A := 'Fix_(R | to)(D :&: A).
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gacent
acts_on_groupA S to := [acts A, on S | to] /\ S \subset R.
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
acts_on_group
actby_cond_groupA S to : acts_on_group A S to -> actby_cond A S to := @proj1 _ _.
Coercion
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actby_cond_group
acts_irreduciblyA S to := [min S of G | G :!=: 1 & [acts A, on G | to]].
Definition
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
acts_irreducibly
actperm_Aut: is_groupAction R to. Proof. by case: to. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actperm_Aut
im_actperm_Aut: actperm to @* D \subset Aut R. Proof. by apply/subsetP=> _ /morphimP[a _ Da ->]; apply: actperm_Aut. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
im_actperm_Aut
gact_outx a : a \in D -> x \notin R -> to x a = x. Proof. by move=> Da Rx; rewrite -actpermE (out_Aut _ Rx) ?actperm_Aut. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gact_out
gactM: {in D, forall a, {in R &, {morph to^~ a : x y / x * y}}}. Proof. move=> a Da /= x y; rewrite -!(actpermE to); apply: morphicP x y. by rewrite Aut_morphic ?actperm_Aut. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gactM
actmMa : {in R &, {morph actm to a : x y / x * y}}. Proof. by rewrite /actm; case: ifP => //; apply: gactM. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
actmM
act_morphisma := Morphism (actmM a).
Canonical
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
act_morphism
morphim_actm: {in D, forall a (S : {set rT}), S \subset R -> actm to a @* S = to^* S a}. Proof. by move=> a Da /= S sSR; rewrite /morphim /= actmEfun ?(setIidPr _). Qed. Variables (a : aT) (A B : {set aT}) (S : {set rT}).
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
morphim_actm
gacentIdom: 'C_(|to)(D :&: A) = 'C_(|to)(A). Proof. by rewrite /gacent setIA setIid. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gacentIdom
gacentIim: 'C_(R | to)(A) = 'C_(|to)(A). Proof. by rewrite setIA setIid. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gacentIim
gacentS: A \subset B -> 'C_(|to)(B) \subset 'C_(|to)(A). Proof. by move=> sAB; rewrite !(setIS, afixS). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gacentS
gacentU: 'C_(|to)(A :|: B) = 'C_(|to)(A) :&: 'C_(|to)(B). Proof. by rewrite -setIIr -afixU -setIUr. Qed. Hypotheses (Da : a \in D) (sAD : A \subset D) (sSR : S \subset R).
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gacentU
gacentE: 'C_(|to)(A) = 'Fix_(R | to)(A). Proof. by rewrite -{2}(setIidPr sAD). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gacentE
gacent1E: 'C_(|to)[a] = 'Fix_(R | to)[a]. Proof. by rewrite /gacent [D :&: _](setIidPr _) ?sub1set. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gacent1E
subgacentE: 'C_(S | to)(A) = 'Fix_(S | to)(A). Proof. by rewrite gacentE setIA (setIidPl sSR). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
subgacentE
subgacent1E: 'C_(S | to)[a] = 'Fix_(S | to)[a]. Proof. by rewrite gacent1E setIA (setIidPl sSR). Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
subgacent1E
gact1: {in D, forall a, to 1 a = 1}. Proof. by move=> a Da; rewrite /= -actmE ?morph1. Qed.
Lemma
fingroup
[ "From mathcomp Require Import ssreflect ssrbool ssrfun ssrnotations eqtype", "From mathcomp Require Import ssrnat div seq prime fintype bigop finset", "From mathcomp Require Import fingroup morphism perm automorphism quotient" ]
fingroup/action.v
gact1